JPH0419294B2 - - Google Patents

Info

Publication number
JPH0419294B2
JPH0419294B2 JP61220935A JP22093586A JPH0419294B2 JP H0419294 B2 JPH0419294 B2 JP H0419294B2 JP 61220935 A JP61220935 A JP 61220935A JP 22093586 A JP22093586 A JP 22093586A JP H0419294 B2 JPH0419294 B2 JP H0419294B2
Authority
JP
Japan
Prior art keywords
graphite
vibration
alloy
magnetic
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61220935A
Other languages
Japanese (ja)
Other versions
JPS6376845A (en
Inventor
Tsutomu Iikawa
Takehiko Sato
Takeaki Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61220935A priority Critical patent/JPS6376845A/en
Publication of JPS6376845A publication Critical patent/JPS6376845A/en
Publication of JPH0419294B2 publication Critical patent/JPH0419294B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の概要〕 本発明は各種装置の騒音を低減するため、音源
となる機構部品にSi−Fe合金および黒鉛とから
成る焼結防振磁性材料を用いることにより磁場中
でも高い磁気特性と固有減衰能(SDC)を発揮
せしめ装置全体の騒音を有効に防止せんとするも
のである。
[Detailed Description of the Invention] [Summary of the Invention] In order to reduce the noise of various devices, the present invention uses a sintered anti-vibration magnetic material made of Si-Fe alloy and graphite for mechanical parts that serve as sound sources. Above all, it aims to exhibit high magnetic properties and specific damping capacity (SDC) to effectively prevent noise from the entire device.

〔産業上の利用分野〕[Industrial application field]

本発明は、軟磁性特性を有するSi−Fe合金と
黒鉛とから成る焼結防振磁性材料およびその製造
方法に関する。
The present invention relates to a sintered anti-vibration magnetic material made of a Si--Fe alloy having soft magnetic properties and graphite, and a method for manufacturing the same.

〔従来技術および発明が解決しようとする問題点〕[Prior art and problems to be solved by the invention]

近年、種々の機械・装置の著るしい普及・高速
化に伴いこれらの装置等のよる振動・騒音が問題
化されている。この対策として、音が漏れ広がら
ないようにするための遮音対策とか、更に積極的
に騒音源で音の発生を未然に防ぐ防振あるいは制
振対策が行なわれている。この後者の目的のた
め、防振合金に関する研究開発が進められつつあ
る。ところで、防振・防振効果を奏する機構(減
衰能の機構)については以下の四種に大別され、
これらの機構に基づき実用化が図られつつある。
In recent years, with the remarkable spread and speed increase of various machines and devices, vibration and noise caused by these devices have become a problem. To counter this, sound insulation measures are being taken to prevent sound from leaking and spreading, and vibration isolation or damping measures are being taken to proactively prevent sound from occurring at the noise source. For this latter purpose, research and development on anti-vibration alloys is progressing. By the way, mechanisms that provide anti-vibration and anti-vibration effects (damping capacity mechanisms) are roughly divided into the following four types:
Practical applications are underway based on these mechanisms.

強磁性型であり、強磁歪効果を利用する
(例:Fe−15Cr−3Al、サイレンタロイ); 双晶型であり、熱弾性型マルテンサイトにお
ける変態双晶境界、または母相とマルテンサイ
ト相との境界の移動に関連する静履歴(例:
50Mn−47Cu−3Al、インフラミユート); 転位型であり、転位が不純物原子による固着
点から離脱するために生じる静履歴(例:Mg
−0.8Zr); 複合型であり、母相と第二相との間の界面で
の粘性流動(または塑性硫動)など(例:Fe
−C−Si、黒鉛鋳鉄); しかしながら、上記4種のものは全く磁性を有
しないか(上記双晶型転位型)、あるいは磁
性を有していても磁場中では磁性を失うもの(
強磁性型)、あるいは軟磁性が疑問視されるもの
(複合型)である。
It is a ferromagnetic type and utilizes the ferromagnetostrictive effect (e.g. Fe-15Cr-3Al, Silentalloy); It is a twin type and uses the transformation twin boundary in thermoelastic martensite or the transition between the parent phase and the martensite phase. static history associated with boundary movement (e.g.
50Mn−47Cu−3Al, inflammate); Dislocation type, static hysteresis (e.g., Mg
−0.8Zr); Composite type, viscous flow (or plastic sulfation) at the interface between the parent phase and the second phase (e.g. Fe
-C-Si, graphite cast iron); However, the above four types either have no magnetism at all (the above-mentioned twin dislocation type), or even if they have magnetism, they lose their magnetism in a magnetic field (
ferromagnetic type), or those whose soft magnetism is questionable (composite type).

しかるに、例えばワイヤドツトプリンタのアー
マチヤの如き磁気回路内で磁性を有しかつ防振・
防音効果を有する部品に応用できる材料は未だ存
しない。
However, for example, in a magnetic circuit such as the armature of a wire dot printer, there is magnetism and vibration-proofing.
There is still no material that can be applied to parts that have a soundproofing effect.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の問題点を解決するための防振磁
性材料を提供するものであり、軟磁性特性を有す
る1−6.5%Si−Fe合金85〜99%および黒鉛1〜
15%とから成り、黒鉛が、1−6.5%Si−Fe合金
マトリツクスの粒界に析出した組織を有するもの
である。すなわち、本発明は上記の機構に基づ
き1〜6.5%Si−Feのマトリツクス部において高
い軟質磁性特性を確保し、1〜15%添加した黒鉛
(グラフアイト)をマトリツクスの結晶粒界に析
出させ、このグラフアイト相とマトリツクスとの
界面での粒弾性効果を利用して防振性を得んとす
る。
The present invention provides an anti-vibration magnetic material for solving the above-mentioned problems, and includes a 1-6.5% Si-Fe alloy having soft magnetic properties of 85-99% and graphite 1-6.5%.
15%, and has a structure in which graphite is precipitated at the grain boundaries of a 1-6.5% Si--Fe alloy matrix. That is, the present invention secures high soft magnetic properties in the 1-6.5% Si-Fe matrix part based on the above mechanism, and precipitates graphite (graphite) added at 1-15% at the grain boundaries of the matrix. We aim to obtain vibration damping properties by utilizing the grain elasticity effect at the interface between the graphite phase and the matrix.

本発明はまた、このような防振磁性材料の製造
方法を提供するものであり、このため85〜99%の
軟磁性特性を有する1−6.5%Si−Fe合金粉に1
〜15%の黒鉛粉を混合し、5〜7トン/cm2で圧縮
成形し、次いで、1050〜1140℃の温度で、かつ水
素雰囲気下で焼結することを含んでなるものであ
る。
The present invention also provides a method for manufacturing such a vibration-proof magnetic material, for which 1-6.5% Si-Fe alloy powder having 85-99% soft magnetic properties is mixed with 1-6.5% Si-Fe alloy powder.
It comprises mixing ~15% graphite powder, compression molding at 5-7 tons/cm 2 , and then sintering at a temperature of 1050-1140° C. and under a hydrogen atmosphere.

以下、本発明を実施例等に基づいて詳細に説明
する。まず、本発明の磁性材料の原料としては、
軟磁性特性を有するSi−Fe合金粉並びに黒鉛粉
末を用いる。Si−Fe合金は1〜6.5%(%は、本
明細書中、全て重量%である)のSiを含む合金で
ある。このようにSiを添加した理由は次の通りで
ある。すなわち、FeにSiを添加すると飽和磁束
密度は若干低下するが、最大透磁率は飛躍的に上
昇し、ヒステリシス損が少くなることは周知であ
り特にSi3%,6.5%の時にそれぞれ最大透磁率は
極大値をもつ。このように軟磁性特性を優先する
ためFe−Si合金を利用するのである。また、Si
の添加量を1〜6.5としたのは次の理由による。
すなわち、1%未満では組織が合金マトリツクス
の粒界に黒鉛が析出した形とならず、磁気的性質
も低いためであり、また6.5%を超えると合金粉
末の硬さが急激に増加するため成形密度が低くな
り、従つてポアが多く、密度が低く、磁気的特性
も劣化するためである。また、本発明において黒
鉛の量が1〜15%であるのは以下の理由による。
黒鉛1%未満の場合、グラフアイトがSi−Fe中
に固溶し、粒界にグラフアイト相がほとんど存在
しなくなるため、グラフアイト相のマトリツクス
との界面での粘弾性効果が期待できないからであ
る。また黒鉛が15%を越えると後記のように防振
効果は向上するが磁気特性が落ちてしまい、材料
自体の機械的特性が劣化してしまう。従つて磁気
特性を維持しつつ防振効果(減衰能で表示)を得
るために上記範囲を採用する。
Hereinafter, the present invention will be explained in detail based on examples and the like. First, as raw materials for the magnetic material of the present invention,
Si-Fe alloy powder and graphite powder with soft magnetic properties are used. A Si--Fe alloy is an alloy containing 1 to 6.5% (all percentages herein are by weight) of Si. The reason for adding Si in this way is as follows. In other words, it is well known that when Si is added to Fe, the saturation magnetic flux density slightly decreases, but the maximum magnetic permeability increases dramatically and the hysteresis loss decreases. In particular, when Si is 3% and 6.5%, the maximum permeability is It has a maximum value. In this way, Fe-Si alloy is used to give priority to soft magnetic properties. Also, Si
The reason for setting the addition amount to 1 to 6.5 is as follows.
In other words, if it is less than 1%, the structure will not be in the form of graphite precipitated at the grain boundaries of the alloy matrix, and the magnetic properties will be low, and if it exceeds 6.5%, the hardness of the alloy powder will increase rapidly, making it difficult to form. This is because the density is low, and therefore there are many pores, the density is low, and the magnetic properties are also deteriorated. Furthermore, the reason why the amount of graphite is 1 to 15% in the present invention is as follows.
If the graphite content is less than 1%, graphite will dissolve in Si-Fe and there will be almost no graphite phase at the grain boundaries, so no viscoelastic effect can be expected at the interface with the graphite phase matrix. be. Furthermore, if the graphite content exceeds 15%, the vibration-proofing effect will improve as described later, but the magnetic properties will drop and the mechanical properties of the material itself will deteriorate. Therefore, the above range is adopted in order to obtain a vibration-proofing effect (indicated by damping capacity) while maintaining magnetic properties.

本発明の焼結防振磁性材料は、粉末治金法の原
理に従つて製造できる。すなわち、1〜15%の黒
鉛粉末をSi−Fe合金粉末に添加混合し、1050〜
1140℃の温度範囲で1〜24時間焼結する。焼結の
場合は、粉末同しを均一に混合するのでグラフア
イトが均一分散した組織を得ることが可能であ
り、この点が焼結の場合の有利な点となる。この
場合、水素雰囲気下で焼結するのが好ましい。
尚、焼結温度ではFe−Si合金がγ相になるので、
添加したグラフイトはFe−Si中に固溶してしま
う。また、焼結のプロセスにおいては、焼結材料
を徐々に加熱し、しかる後一定の焼結温度で保持
し、次いで徐冷を行う。この場合、100℃/h以
下で徐々に加熱し、所定温度で焼結し、100℃/
h以下で徐冷を行う。このような徐冷はグラフイ
トを均一に粒界に析出させるためである。
The sintered anti-vibration magnetic material of the present invention can be manufactured according to the principles of powder metallurgy. That is, 1 to 15% graphite powder is added and mixed to Si-Fe alloy powder, and 1050 to
Sinter at a temperature range of 1140°C for 1 to 24 hours. In the case of sintering, since the powders are mixed uniformly, it is possible to obtain a structure in which graphite is uniformly dispersed, which is an advantage in the case of sintering. In this case, it is preferable to sinter in a hydrogen atmosphere.
Furthermore, since the Fe-Si alloy becomes the γ phase at the sintering temperature,
The added graphite ends up being dissolved in Fe-Si. In the sintering process, the sintered material is gradually heated, then held at a constant sintering temperature, and then slowly cooled. In this case, gradually heat at 100℃/h or less, sinter at a predetermined temperature,
Perform slow cooling at a temperature of 100 hrs or less. The purpose of this slow cooling is to uniformly precipitate the graphite at the grain boundaries.

以下、本発明を更に実施例により説明するが、
本発明はこれに限定されるものではない。
Hereinafter, the present invention will be further explained with reference to Examples.
The present invention is not limited to this.

〔実施例〕〔Example〕

−200メツシユのFe−3%Si合金粉(不可避不
純物として、C,Mn,P,S,Cu,Ni,Cr,
Moを含む。それらの合計は0.18%である。)に1
〜15%の10μmの大きさの黒鉛粉を添加し、V型
混合機を用いて4時間混合した。各種黒鉛含量粉
末(1%、3%、5%、7.5%、10%、12.5%、
15%)を6トン/cm2の圧力でプレス成形した。次
いで1020゜,1060゜,1100゜、および1140℃でかつ1
時間、3時間、5時間および24時間焼成した。焼
成は、水素、窒素および水素/窒素=1の雰囲気
下で行つた。徐々に昇温する速度は100℃/hで
あり、徐冷速度は50℃/hであつた。このように
して得られた各種試料について防振性を測定し
た。防振性は、「インパルス応答関数を用いる減
数係数の計測方法」(日本音響学会講演論文集
(昭和60年9月発行)P487頁)記載の方法に従い
減衰率(W2o−W2o+1/Wn×102)%を求めることに
よ り測定した。また、得られた試料について磁束密
度を常法に従い測定した。
-200 mesh Fe-3%Si alloy powder (C, Mn, P, S, Cu, Ni, Cr,
Contains Mo. Their total is 0.18%. ) to 1
~15% of 10 μm size graphite powder was added and mixed for 4 hours using a V-type mixer. Various graphite content powders (1%, 3%, 5%, 7.5%, 10%, 12.5%,
15%) was press-molded at a pressure of 6 tons/cm 2 . Then at 1020°, 1060°, 1100°, and 1140°C and 1
It was baked for 3 hours, 5 hours and 24 hours. Firing was performed in an atmosphere of hydrogen, nitrogen, and hydrogen/nitrogen=1. The rate of gradual temperature increase was 100°C/h, and the slow cooling rate was 50°C/h. The vibration damping properties of the various samples thus obtained were measured. The vibration damping property is determined by measuring the damping rate (W 2 / o − W 2 / It was measured by determining o+1 /Wn×10 2 )%. Further, the magnetic flux density of the obtained sample was measured according to a conventional method.

第1図に黒鉛含量とSDCおよび磁束密度との
関係を示す。第1図から明らかなように、黒鉛含
量が増加するとSDCは増加し、従つて防音効果
は大となる。しかし、磁束密度は、黒鉛含量の増
加と共に減少する。このような結果から、磁場中
で使用しても軟磁性特性を示すつつ防振性を得る
ためには、最大黒鉛含量は15%であることが分か
る。
Figure 1 shows the relationship between graphite content, SDC, and magnetic flux density. As is clear from FIG. 1, as the graphite content increases, the SDC increases, and therefore the soundproofing effect increases. However, the magnetic flux density decreases with increasing graphite content. From these results, it can be seen that the maximum graphite content is 15% in order to obtain vibration damping properties while exhibiting soft magnetic properties even when used in a magnetic field.

第2図に焼結温度1060℃および1140℃で得られ
た本発明の試料(c.c.:1〜5%)並びに公知の防
振材料(サイレンタロイおよび鋳鉄(FC20))の
減衰率を示す。第2図より本発明による磁性材料
は公知の防振材料よりはるかに秀れたSDCを示
すことが分かる。第3図に本発明による防振磁性
材料の磁気特性等と焼結温度との関係を示す。こ
の図から明らかなように本合金系の融点直下であ
る1140℃で焼結した場合に、磁気特性は最も高
い。また黒鉛量5%までのいずれの試料について
も1140℃で焼結した場合磁束密度B50=10〜
11KGを示し、磁性材料として十分有効である。
第4図に磁束密度等を焼結時間との関係を示す。
この図から焼結時間が長い程磁束密度は高くな
る。しかし、作業性等を考慮すると5時間程度で
適当である。第5図に、黒鉛含量1〜5%につい
ての各種磁気的特性を示す。
FIG. 2 shows the damping factors of the samples of the present invention (cc: 1-5%) obtained at sintering temperatures of 1060 DEG C. and 1140 DEG C., as well as of known vibration damping materials (silentalloy and cast iron (FC20)). It can be seen from FIG. 2 that the magnetic material according to the present invention exhibits a far superior SDC than the known vibration-proofing material. FIG. 3 shows the relationship between the magnetic properties and sintering temperature of the vibration-proof magnetic material according to the present invention. As is clear from this figure, the magnetic properties are highest when sintered at 1140°C, which is just below the melting point of this alloy system. In addition, for any sample containing up to 5% graphite, when sintered at 1140℃, the magnetic flux density B 50 = 10 ~
It shows 11KG and is sufficiently effective as a magnetic material.
Figure 4 shows the relationship between magnetic flux density, etc. and sintering time.
From this figure, the longer the sintering time, the higher the magnetic flux density. However, considering workability and the like, about 5 hours is appropriate. FIG. 5 shows various magnetic properties for graphite contents of 1 to 5%.

保磁力Hc、最大透磁率μmとも1140℃で焼結し
た場合高くなり、5%Cまではほぼ一定の値とな
り、十分に磁性材料として使用できる値を示す。
Both the coercive force Hc and the maximum magnetic permeability μm become high when sintered at 1140°C, and remain almost constant up to 5%C, which is a value that can be used as a magnetic material.

第6図に炉内雰囲気による相対密度、および磁
束密度の変化を示す。この図より、水素雰囲気で
焼結するのが好ましいことが分かる。
FIG. 6 shows changes in relative density and magnetic flux density depending on the furnace atmosphere. This figure shows that it is preferable to sinter in a hydrogen atmosphere.

以上の説明から明らかなように本発明方法では
グラフアイト量や、焼成条件を変化させることに
より任意の磁気密度B50と固有減衰能(SDC)を
有する合金の製造が可能となる。
As is clear from the above description, the method of the present invention makes it possible to produce an alloy having any desired magnetic density B 50 and specific damping capacity (SDC) by changing the amount of graphite and firing conditions.

また、3%の黒鉛を含む本発明の磁性材料をワ
イヤードツトプリンタ用ヘツドのアーマチヤとし
て加工し器機に適用して騒音を測定した。その結
果、従来の防振材料(サイレンタロイ)による場
合は+65dBであつたものが+55dBまで低下し、
秀れた防振、防音効果が得られた。またワイヤー
ドツトプリンターのアーマチヤとしての高速性能
も維持されており、防振・磁性合金としての極め
て有用であることが判明した。更に磁気デイスク
のヘツドキヤリツジに本発明の一磁性材料(黒鉛
15%含有のもの)を適用したところ、(これは磁
性は必要でない)、従来以上に高精度の位置決め
が可能(振動が少ないため)となり、さらに高密
度記録の可能性も生じた。
Further, the magnetic material of the present invention containing 3% graphite was processed as an armature for a head for a wire dot printer, and the noise was measured by applying it to a device. As a result, the +65 dB with conventional anti-vibration material (Silentalloy) has been reduced to +55 dB.
Excellent vibration and soundproofing effects were obtained. It also maintained high-speed performance as an armature for wire dot printers, and was found to be extremely useful as an anti-vibration and magnetic alloy. Furthermore, the monomagnetic material (graphite) of the present invention is applied to the head carriage of the magnetic disk.
When we applied a material containing 15% (this does not require magnetism), it became possible to position with higher precision than before (because there was less vibration), and there was also the possibility of high-density recording.

以上説明したように本発明は構成されているの
で、磁場中でも高い磁気特性と減衰能を有する合
金が得られ、騒音・振動の発生源となる機構部材
に適用すると秀れた防振効果を得ることが可能と
なる。
Since the present invention is configured as explained above, an alloy having high magnetic properties and damping ability even in a magnetic field can be obtained, and when applied to mechanical members that are a source of noise and vibration, an excellent vibration-proofing effect can be obtained. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、黒鉛含量と減衰量および磁束密度と
の関係を示すグラフであり、第2図は、黒鉛含量
と減衰能との関係並びに従来の防振材料の減衰率
を示すグラフであり、第3図は、磁束密度、相対
密度および縮化寸法変化率と焼結温度との関係を
示すグラフであり、第4図は、磁束密度、相対密
度および縮化寸法変化率と焼結時間との関係を示
すグラフであり、第5図は、黒鉛含量と各種磁気
的性質との関係を示すグラフであり、第6図は、
各種炉内雰囲気による相対密度および磁束密度の
変化を示すグラフである。
FIG. 1 is a graph showing the relationship between graphite content, attenuation amount, and magnetic flux density, and FIG. 2 is a graph showing the relationship between graphite content and damping capacity as well as the damping rate of conventional vibration-proofing materials. Figure 3 is a graph showing the relationship between magnetic flux density, relative density, shrinkage dimensional change rate, and sintering temperature, and Figure 4 is a graph showing the relationship between magnetic flux density, relative density, shrinkage dimensional change rate, and sintering time. FIG. 5 is a graph showing the relationship between graphite content and various magnetic properties, and FIG. 6 is a graph showing the relationship between graphite content and various magnetic properties.
It is a graph showing changes in relative density and magnetic flux density due to various furnace atmospheres.

Claims (1)

【特許請求の範囲】 1 軟磁性特性を有する1−6.5%Si−Fe合金85
〜99%および黒鉛1〜15%とから成り、黒鉛が、
1−6.5%Si−Fe合金マトリツクスの粒界に析出
した組織を有する焼結防振磁性材料。 2 軟磁性特性を有する1−6.5%Si−Fe合金85
〜99%および黒鉛1〜15%とから成り、黒鉛が、
1−6.5%Si−Fe合金マトリツクスの粒界に析出
した組織を有する焼結防振磁性材料の製造方法で
あつて、85〜99%の軟磁性特性を有する1−6.5
%Si−Fe合金粉に1〜15%の黒鉛粉を混合し、
5〜7トン/cm2で圧縮成形し、次いで、1050〜
1140℃の温度で、かつ水素雰囲気下で焼結するこ
とを含んでなる、前記焼結防振磁性材料の製造方
法。 3 焼結の際、徐冷を行う特許請求の範囲第2項
記載の方法。
[Claims] 1. 1-6.5% Si-Fe alloy 85 with soft magnetic properties
~99% and graphite 1~15%, graphite is
A sintered anti-vibration magnetic material having a structure precipitated at the grain boundaries of a 1-6.5% Si-Fe alloy matrix. 2 1-6.5% Si-Fe alloy 85 with soft magnetic properties
~99% and graphite 1~15%, graphite is
1-6.5% A method for producing a sintered anti-vibration magnetic material having a structure precipitated at the grain boundaries of a Si-Fe alloy matrix, the material having soft magnetic properties of 85-99%.
%Si-Fe alloy powder mixed with 1~15% graphite powder,
Compression molding at 5-7 tons/ cm2 , then 1050-
The method for producing the sintered anti-vibration magnetic material, comprising sintering at a temperature of 1140° C. and in a hydrogen atmosphere. 3. The method according to claim 2, wherein slow cooling is performed during sintering.
JP61220935A 1986-09-20 1986-09-20 Vibration-proof magnetic material and its production Granted JPS6376845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61220935A JPS6376845A (en) 1986-09-20 1986-09-20 Vibration-proof magnetic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61220935A JPS6376845A (en) 1986-09-20 1986-09-20 Vibration-proof magnetic material and its production

Publications (2)

Publication Number Publication Date
JPS6376845A JPS6376845A (en) 1988-04-07
JPH0419294B2 true JPH0419294B2 (en) 1992-03-30

Family

ID=16758862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61220935A Granted JPS6376845A (en) 1986-09-20 1986-09-20 Vibration-proof magnetic material and its production

Country Status (1)

Country Link
JP (1) JPS6376845A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2796848B2 (en) * 1989-08-02 1998-09-10 昭和電工株式会社 Thermoplastic elastomer
WO2007092397A2 (en) * 2006-02-06 2007-08-16 Kci Licensing, Inc. Systems and methods for improved connection to wound dressings in conjunction with reduced pressure wound treatment systems
JP2009102711A (en) * 2007-10-24 2009-05-14 Denso Corp Soft magnetic sintering material, method for producing the same, and electromagnetic structure
JP5644844B2 (en) * 2012-11-21 2014-12-24 株式会社デンソー Method for producing soft magnetic sintered material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496743A (en) * 1972-05-04 1974-01-21
JPS496744A (en) * 1972-05-04 1974-01-21
JPS4913318A (en) * 1972-03-30 1974-02-05

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913318A (en) * 1972-03-30 1974-02-05
JPS496743A (en) * 1972-05-04 1974-01-21
JPS496744A (en) * 1972-05-04 1974-01-21

Also Published As

Publication number Publication date
JPS6376845A (en) 1988-04-07

Similar Documents

Publication Publication Date Title
US2992474A (en) Magnetic tape recorder heads
JPH0419294B2 (en)
GB2129440A (en) Magnetically soft ferritic fe-cr-ni alloys
US4696696A (en) Sintered alloy having improved wear resistance property
JPS63190138A (en) Rare-earth permanent magnet material
US5298052A (en) High temperature bearing alloy and method of producing the same
US3769100A (en) Method for manufacturing semi-hard magnetic material
JPH0339451A (en) Permanent magnet material
US3837844A (en) Wear resisting magnetic material having high permeability
US3836406A (en) PERMANENT MAGNETIC Fe-Mn-Cr ALLOY CONTAINING NITROGEN
US4582535A (en) Invar alloy on the basis of iron having a crystal structure of the cubic NaZn13 type, an article herefrom
Adams Recent developments in soft magnetic alloys
US3542542A (en) Magnetic permeability material
JPH0832949B2 (en) Method for manufacturing iron-cobalt based soft magnetic material
KR101870792B1 (en) Semi-hard magnetic materials and hysteresis ring for dynamically tuned gyro sensor
US4398972A (en) Ferritic Fe-Ni magnetic alloys
JPH0320001A (en) Rare earth element-b-fe system sintered magnet superior in corrosion resistance and magnetic characteristic
JPH01184244A (en) Permanent magnetic material and its manufacture
JPH02125835A (en) Manufacture of fe-co alloy soft magnetic material sintered body
JP2001284111A (en) High heat-resistant permanent magnet
KR100384624B1 (en) Permanent Magnet Alloy and its Manufacturing Method
Liu et al. Development of new high temperature and high performance permanent magnet materials
JPH04143240A (en) Permanent magnet alloy
JPH04176802A (en) Production of high density sintered body
JPH04221002A (en) Production of sintered body of soft fe-based b-containing magnetic material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees