JP2001284111A - High heat-resistant permanent magnet - Google Patents

High heat-resistant permanent magnet

Info

Publication number
JP2001284111A
JP2001284111A JP2000096120A JP2000096120A JP2001284111A JP 2001284111 A JP2001284111 A JP 2001284111A JP 2000096120 A JP2000096120 A JP 2000096120A JP 2000096120 A JP2000096120 A JP 2000096120A JP 2001284111 A JP2001284111 A JP 2001284111A
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
high heat
coercive force
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000096120A
Other languages
Japanese (ja)
Inventor
Takatomo Hirai
隆大 平井
Tadahiko Kobayashi
忠彦 小林
Takao Sawa
孝雄 沢
Masashi Sahashi
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000096120A priority Critical patent/JP2001284111A/en
Publication of JP2001284111A publication Critical patent/JP2001284111A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintered permanent magnet, having a high coercive force without having to reduce a saturated magnetic flux density and a residual magnetic flux density and exhibiting superior high temperature characteristics and long-term stability. SOLUTION: A high heat resistant permanent magnet consists of a composition of formula R1XR2YCoZGaUMVBWFe100-X-Y-Z-U-V-W, (where R1 is at least one type of light rare earth element, R2 is at least one type of heavy rare earth element, M is at least one type selected from among Al, Si, Cu and Sn, X, Y, Z, U, V and W are by atomic %, inequalities 7<=X+Y<=20, 1.5<=Y<=10, 6<=Z<=30, 0.4<=U<=2, 0.1<=V<=1/5, 2<=W<=20 are satisfied).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、永久磁石に係り、
特に、高い耐熱性を要求される焼結型永久磁石に関す
る。
TECHNICAL FIELD The present invention relates to a permanent magnet,
In particular, it relates to a sintered permanent magnet that requires high heat resistance.

【0002】[0002]

【従来の技術】近年、高性能希土類永久磁石として、R
−Fe−B系磁石(Rは希土類元素)が、その高い磁気
特性により、R−Co系磁石に代わって使用されるよう
になっている。この傾向は、小型化の要求がきわめて強
く、さほどの高温にさらされない各種の小型電気機器の
分野において顕著である。
2. Description of the Related Art In recent years, as high-performance rare earth permanent magnets, R
-Fe-B-based magnets (R is a rare earth element) have been used in place of R-Co-based magnets due to their high magnetic properties. This tendency is remarkable in the field of various small electric appliances which are extremely demanded for miniaturization and are not exposed to such a high temperature.

【0003】一方、電気自動車(EV)や各種の産業用
モータへの応用を考えた場合、同時に耐熱性も求められ
るようになった。しかしながら、開発初期に提案された
R−Fe−B系磁石は、高温特性が低いという欠点があ
ったため、高温ではキュリー温度の高いR−Co系磁石
からの置き換えが進みにくかった。
On the other hand, when considering application to electric vehicles (EV) and various industrial motors, heat resistance has also been required at the same time. However, the R-Fe-B based magnet proposed in the early stage of development had a drawback of low high-temperature characteristics, and it was difficult to replace with an R-Co based magnet having a high Curie temperature at a high temperature.

【0004】高温での特性向上のための手段としては、
キュリー温度(Tc )を上げることと、室温における保
磁力( ic )を高くすることによって(一般に永久磁
石の ic は温度上昇に伴い低下するのであるが)高温
で必要な保磁力を確保しようとすること、の2つが考え
られるが、それらの手段として、以下のものがある。
As means for improving characteristics at high temperatures,
Curie temperature (Tc) And keeping at room temperature
Magnetic force (iHc) (Generally permanent magnet
Stone iHcDecreases as the temperature rises)
To secure the necessary coercive force at
However, there are the following means.

【0005】(1)前者の手段として、Feの一部をC
oで置換することによってTcを上げることが提案され
ている(特開昭59−64733号公報)。
(1) As the former means, part of Fe is converted to C
It has been proposed to increase Tc by substituting with o (JP-A-59-64733).

【0006】(2)後者の手段として、Ti,Ni,B
i,V,Nb,Ta,Cr,Mo,W,Mn,Al,S
b,Zr,Hf,Ge,Sn等を添加することが提案さ
れている(特開昭59−89401号公報)。
(2) As the latter means, Ti, Ni, B
i, V, Nb, Ta, Cr, Mo, W, Mn, Al, S
It has been proposed to add b, Zr, Hf, Ge, Sn and the like (Japanese Patent Laid-Open No. 59-89401).

【0007】(3)他の後者の手段として、Tb,D
y,Hoのような重希土類元素によりNdの一部を置換
することが、高い最大エネルギー積を保持しつつ、 i
c を高めるために提案されている(特開昭60−323
06号公報,特開昭60−34005号公報)。これら
公報には、約30MGOeの(BH)maxのとき ic
9kOe程度のものが12〜18kOeに向上すること
が記載されている。
(3) As another latter means, Tb, D
Replacing part of Nd with heavy rare earth elements, such as y and Ho, is capable of maintaining high maximum energy product while maintaining i H
has been proposed to increase c (Japanese Patent Laid-Open No. 60-323).
No. 06, JP-A-60-34005). These publications, i H c when the (BH) max of about 30MGOe those about 9kOe have been described that improve the 12~18KOe.

【0008】更に、次のような提案もある。 (4)Gaに特異的な保磁力向上効果を見出した提案
(特許第2577373号)。 (5)Gaの特異的な保磁力向上効果に加え、Nb,
W,V,Ta,Moの結晶粒粗大化防止効果により熱安
定性の向上を狙った提案(特許第2751109号,特
開平10−97908号公報)。
Further, there is the following proposal. (4) A proposal for finding an effect of improving the coercive force specific to Ga (Japanese Patent No. 2577373). (5) In addition to the specific coercive force improving effect of Ga, Nb,
A proposal aimed at improving the thermal stability by the effect of preventing the crystal grains of W, V, Ta, and Mo from coarsening (Japanese Patent No. 2751109, Japanese Patent Application Laid-Open No. 10-97908).

【0009】[0009]

【発明が解決しようとする課題】しかし、前述の(1)
〜(5)の従来技術には、それぞれ、以下のような問題
点がある。
However, the above-mentioned (1)
Each of the related arts (1) to (5) has the following problems.

【0010】(1)Co単独の添加では、ic を低下
させてしまう。
[0010] (1) with the addition of Co alone, would reduce the i H c.

【0011】(2)前述の金属元素を多量に添加する
と、当然のことながら飽和磁束密度を下げ、ひいては残
留磁束密度(Br)を下げてしまう。微量の添加では、
保磁力向上効果が非常に小さい。
(2) If a large amount of the above-mentioned metal element is added, the saturation magnetic flux density is naturally lowered, and the residual magnetic flux density (Br) is naturally lowered. With a small amount of addition,
The effect of improving the coercive force is very small.

【0012】(3)重希土類元素の一部置換は、磁気異
方性そのものを増大させるので、保磁力向上には非常に
有効であるが、やはり飽和磁束密度および残留磁束密度
を下げてしまい、温度特性も十分ではない。
(3) Partial substitution of heavy rare earth elements increases the magnetic anisotropy itself and is very effective in improving the coercive force. However, it also lowers the saturation magnetic flux density and the residual magnetic flux density. Temperature characteristics are not enough.

【0013】(4)Gaの特異な保磁力向上効果につい
て述べているが、長期安定性は十分ではない。
(4) Although the specific coercive force improving effect of Ga is described, long-term stability is not sufficient.

【0014】(5)Gaの特異な保磁力向上効果につい
て述べているが、CoについてはT c 向上効果があると
しているが、長期安定性は十分ではない。
(5) Regarding the unique coercive force improving effect of Ga
As for Co, T cWhen there is an improvement effect
However, long-term stability is not enough.

【0015】本発明は、以上のような事情の下になさ
れ、残留磁束密度を下げることなく、高い保磁力を有す
るとともに、優れた高温特性および長期安定性を示す焼
結型高耐熱性永久磁石を提供することを目的とする。
The present invention has been made under the circumstances described above, and has a high coercive force without lowering the residual magnetic flux density, as well as a sintered high heat-resistant permanent magnet exhibiting excellent high-temperature characteristics and long-term stability. The purpose is to provide.

【0016】[0016]

【課題を解決するための手段】本発明者らは、電気自動
車など120〜180℃程度の高温環境の中で使用され
るような永久磁石を開発する上で必要とされる特性を得
るため、鋭意研究を重ねてきた。その結果、CoとGa
及びM(M:Al、Si、Cu、Sn)の複合添加効果
について詳細な検討を行い、高残留磁束密度、高保磁力
を有するとともに、優れた高温特性および長期安定性を
もつ高耐熱性永久磁石の完成に至った。
In order to obtain the characteristics required for developing a permanent magnet used in a high-temperature environment of about 120 to 180 ° C. such as an electric vehicle, the present inventors I have been working hard. As a result, Co and Ga
And M (M: Al, Si, Cu, Sn) have been studied in detail, and have high residual magnetic flux density, high coercive force, and high heat-resistant permanent magnets with excellent high-temperature characteristics and long-term stability. Was completed.

【0017】本発明は、組成が式 R1X R2Y CoZ GaU V W Fe
100-X-Y-Z-U-V-W (式中、R1は少なくとも1種の軽希土類元素、R2は
少なくとも1種の重希土類元素であり、MはAl、S
i、Cu、およびSnから選ばれる少なくとも1種を示
し、X、Y、Z、U、V、Wは、原子%で、下記不等式
を満たす。)により表されることを特徴とする。
[0017] The present invention, the composition has the formula R1 X R2 Y Co Z Ga U M V B W Fe
100-XYZUVW (wherein, R1 is at least one light rare earth element, R2 is at least one heavy rare earth element, and M is Al, S
It represents at least one selected from i, Cu, and Sn, and X, Y, Z, U, V, and W satisfy the following inequality in atomic%. ).

【0018】7≦X+Y≦20 1.5≦Y≦10 6≦Z≦30 0.4≦U≦2.0 0.1≦V≦1.5 2≦W≦20。7≤X + Y≤20 1.5≤Y≤10 6≤Z≤30 0.4≤U≤2.0 0.1≤V≤1.5 2≤W≤20.

【0019】本発明の永久磁石において、Gaの含有量
(U)は、0.4〜2.0重量%であり、好ましくは、
0.5〜1.5%である。Co含有量が増えるにしたが
って、U≧0.04Z+0.16で表される範囲内で増
やすのがより好ましい。
In the permanent magnet of the present invention, the content (U) of Ga is 0.4 to 2.0% by weight.
0.5-1.5%. As the Co content increases, it is more preferable to increase within the range represented by U ≧ 0.04Z + 0.16.

【0020】Gaは、急激な ic の低下を補償する形
で効果を発揮する。Co≦5原子%では、Ga添加によ
ic 向上効果は小さく、残留磁束密度が漸減すると
ともに、残留磁束密度の温度係数は十分改善されない。
[0020] Ga is effective in a manner to compensate for the reduction in sudden i H c. In Co ≦ 5 atomic%, i H c effect of improving Ga added is small, with the residual magnetic flux density is gradually reduced, the temperature coefficient of the residual magnetic flux density is not sufficiently improved.

【0021】一方、Co6%の場合には、0.5%のG
a添加で低Co領域と同程度の保磁力が得られるのに対
し、Coが増えると、0.5%のGa添加で大幅に保磁
力が向上するものの、1%以上のGa添加が好ましく、
含有Co量に応じてGa添加を増やしていくことが好ま
しい。
On the other hand, when Co is 6%, 0.5% of G
Although the same coercive force as that of the low Co region can be obtained by adding a, the addition of 0.5% Ga greatly improves the coercive force when Co is increased, but the addition of 1% or more Ga is preferable.
It is preferable to increase the amount of Ga added according to the Co content.

【0022】具体的には、U(%Ga)=0.04Z
(%Co)+0.16で表される値を下限とすることが
好ましい。だだし、Gaが多すぎると効果が飽和する
上、残留磁束密度が低下してしまうため、2.0%以下
であることが好ましい。
Specifically, U (% Ga) = 0.04Z
It is preferable that the lower limit be a value represented by (% Co) +0.16. However, if the content of Ga is too large, the effect is saturated and the residual magnetic flux density is reduced. Therefore, the content is preferably 2.0% or less.

【0023】Coは残留磁束密度の温度特性改善に有効
であり、その量は、6〜30原子%である。6%未満で
はその効果が小さく、一方、30%を超えると残留磁束
密度が低下してしまう。好ましくは、6〜20原子%で
ある。
Co is effective for improving the temperature characteristics of the residual magnetic flux density, and its amount is 6 to 30 atomic%. If it is less than 6%, the effect is small, while if it exceeds 30%, the residual magnetic flux density decreases. Preferably, it is 6 to 20 atomic%.

【0024】R1およびR2は、本発明の永久磁石の基
本となる元素であり、磁気異方性の発現に寄与する。軽
希土類元素であるR1元素としては、NdとPrが特に
好ましく、両元素合わせてR1の50%以上であること
が好ましく、90%以上であるのがより好ましい。ここ
で、軽希土類元素とは、Ce,Pr,Nd,Sm,Eu
である。
R1 and R2 are basic elements of the permanent magnet of the present invention, and contribute to the development of magnetic anisotropy. As the R1 element which is a light rare earth element, Nd and Pr are particularly preferable, and the total of both elements is preferably 50% or more of R1, more preferably 90% or more. Here, the light rare earth elements are Ce, Pr, Nd, Sm, and Eu.
It is.

【0025】重希土類元素であるR2元素としては、D
yとTbが特に好ましく、両元素合わせてR2の70%
以上であることが好ましく、90%以上であるのがより
好ましい。また、R2の含有量(Y)は、希土類の総量
(R1とR2との合計、X+Y)の50%を越えないこ
とが好ましい。ここで、重希土類元素とは、Gd,T
b,Dy,Ho,Er,Tm,Yb,Luである。軽希
土類元素および重希土類元素の総量は、7〜20%であ
り、より好ましい範囲は、11〜18%である。
As the heavy rare earth element R2, D 2
y and Tb are particularly preferred, and the total of both elements is 70% of R2.
It is preferably at least 90%, more preferably at least 90%. Further, it is preferable that the content (Y) of R2 does not exceed 50% of the total amount of rare earth elements (the sum of R1 and R2, X + Y). Here, heavy rare earth elements are Gd, T
b, Dy, Ho, Er, Tm, Yb, Lu. The total amount of light rare earth elements and heavy rare earth elements is 7 to 20%, and a more preferable range is 11 to 18%.

【0026】高保磁力化のためには、Dyなどの重希土
類元素を添加することが必要となる。具体的には、不可
逆減磁率を低く抑制するために必要な20kOe程度の
保磁力を得るため、1.5%以上の重希土類を必要とす
る。一方、重希土類元素が多すぎると、大幅に磁化を下
げるので、10%を上限とするのがよい。重希土類元素
の量は、希土類の50%を上限とするのがよい。
In order to increase the coercive force, it is necessary to add a heavy rare earth element such as Dy. Specifically, in order to obtain a coercive force of about 20 kOe necessary to suppress the irreversible demagnetization rate, a heavy rare earth element of 1.5% or more is required. On the other hand, if the amount of heavy rare earth elements is too large, the magnetization is greatly reduced. The upper limit of the amount of the heavy rare earth element is preferably 50% of the rare earth element.

【0027】M元素は、Al、Si、Cu、およびSn
から選ばれる少なくとも1種であり、これらの中ではA
lが最も好ましい。Al以外の元素を含む場合でも、そ
の20%以上がAlであることが好ましい。さらに好ま
しくは、M元素の80%以上がAlであることがよい。
M元素の含有量は、0.1〜1.5%であるが、1.5
%を超えると角形性を劣化させる。1%未満であること
がより好ましい。
The element M is Al, Si, Cu, and Sn.
At least one member selected from the group consisting of A
l is most preferred. Even when an element other than Al is contained, it is preferable that 20% or more of the element is Al. More preferably, 80% or more of the M element is Al.
The content of the M element is 0.1 to 1.5%,
%, The squareness is deteriorated. More preferably, it is less than 1%.

【0028】M元素は、Ga、Coとの組み合わせで長
期安定性を達成する効果をもつ。その原因は明確ではな
いが、保磁力発現に極めて有効な希土類リッチ相の高温
での酸化を抑制するものと推測される。
The element M has the effect of achieving long-term stability in combination with Ga and Co. Although the cause is not clear, it is presumed that the oxidation of the rare earth-rich phase, which is extremely effective for expressing the coercive force, at a high temperature is suppressed.

【0029】BおよびFeは、希土類元素とともに本発
明の2−14−1相を形成する元素である。Bの含有量
は2〜20%であり、5〜8%であるのが好ましい。F
eは、以上の元素の残部である。
B and Fe are elements that form the 2-14-1 phase of the present invention together with rare earth elements. The content of B is 2 to 20%, and preferably 5 to 8%. F
e is the balance of the above elements.

【0030】本発明の組成からなる高耐熱性永久磁石
は、20〜150℃における残留磁束密度の温度係数α
が、α>−0.09%/℃であることが好ましい。ま
た、同範囲において保磁力の温度係数βは、β>−0.
45%/℃であることが好ましい。
The high heat-resistant permanent magnet having the composition of the present invention has a temperature coefficient α of the residual magnetic flux density at 20 to 150 ° C.
Is preferably α> −0.09% / ° C. In the same range, the temperature coefficient β of the coercive force is β> −0.
Preferably, it is 45% / ° C.

【0031】また、本発明の永久磁石は、その使用目的
から、高温における不可逆減磁率を抑制するため、室温
保磁力が20kOe以上であることが好ましい。また、
本発明の永久磁石は、通常の高周波溶解で得られた合金
を出発原料としてもよいが、ストリップキャスト材等を
出発原料として製造される、均一で微細な組織を有する
ものであることが好ましい。ストリップキャスト材と
は、いわゆるストリップキャスト法、すなわちAr雰囲
気中にて溶解した合金溶湯を周速1m/s程度の低速で
回転するロール上に流し込み、急冷凝固させる方法によ
って得られる、0.03〜1mm程度の厚さの短冊状の
合金である。
Further, the permanent magnet of the present invention preferably has a room temperature coercive force of 20 kOe or more in order to suppress the irreversible demagnetization rate at a high temperature from the purpose of use. Also,
The permanent magnet of the present invention may use an alloy obtained by ordinary high-frequency melting as a starting material, but preferably has a uniform and fine structure manufactured using a strip cast material or the like as a starting material. The strip cast material is obtained by a so-called strip cast method, that is, a method in which a molten alloy melted in an Ar atmosphere is poured onto a roll rotating at a low speed of about 1 m / s at a peripheral speed and rapidly solidified. It is a strip-shaped alloy having a thickness of about 1 mm.

【0032】このストリップキャスト材は、大半の結晶
粒が短軸方向で0.1〜50μm、長軸方向で0.1〜
100μm程度の結晶粒径を有している。ただし、均一
で微細な組織を得るために、ストリップキャスト法では
なく、水素中熱処理等の方法を用いて得たものでも良
い。
In this strip cast material, most of the crystal grains are 0.1 to 50 μm in the short axis direction and 0.1 to 50 μm in the long axis direction.
It has a crystal grain size of about 100 μm. However, in order to obtain a uniform and fine structure, a material obtained by a method such as heat treatment in hydrogen may be used instead of the strip casting method.

【0033】本発明の永久磁石は、焼結型であるので、
その密度は真密度に近い。従って、通常、7.5〜7.
6である。密度が真密度から大きくはずれると、優れた
磁気特性を得ることが出来ない。
Since the permanent magnet of the present invention is a sintered type,
Its density is close to true density. Therefore, usually 7.5 to 7.
6. If the density deviates greatly from the true density, excellent magnetic properties cannot be obtained.

【0034】本発明の永久磁石の用途は、高温環境で使
用される永久磁石型モータおよび発電機、センサー、ア
クチュエータなど高温に曝される可能性のある応用部品
すべてに関わる。
The use of the permanent magnet of the present invention relates to a permanent magnet type motor used in a high-temperature environment and to all application parts that may be exposed to high temperatures, such as generators, sensors, and actuators.

【0035】具体的には、産業用モータとしての1kW
クラス以上の永久磁石型モータおよび1kWクラス以下
の高温対応永久磁石型モータに用いることが出来る。ま
た、高温環境が要求される自動車用のパワーステアリン
グ用モータ、電気自動車用モータ、エンジン用発電機、
メータ用モータ、エンジン制御用モータ、トラクション
コントロール用モータ、パワーウインドウ用モータなど
に用いることが出来る。
Specifically, 1 kW as an industrial motor
It can be used for permanent magnet type motors of class or higher and high temperature permanent magnet type motors of 1 kW class or lower. In addition, motors for power steering, motors for electric vehicles, generators for engines,
It can be used for meter motors, engine control motors, traction control motors, power window motors, and the like.

【0036】電車などの車両応用においても、駆動モー
タ、回生ブレーキなどに用いることが出来る。センサ
ー、アクチュエータにおいては、自動車用スロットルア
クチュエータ、燃料噴射用アクチュエータ、油圧制御用
アクチュエータ、エンジンノッキングセンサー、圧力セ
ンサーなどに用いられる。家電分野においても、エアコ
ン、コンプレッサー用モータなどに用いることが出来
る。電力分野においては、原子力および火力プラント内
の各種モータ、センサー、アクチュエータに用いること
が出来る。
The present invention can be used for a drive motor, a regenerative brake, and the like also in a vehicle application such as a train. Sensors and actuators are used for automotive throttle actuators, fuel injection actuators, hydraulic control actuators, engine knock sensors, pressure sensors, and the like. Also in the field of home appliances, it can be used for air conditioners, compressor motors and the like. In the electric power field, it can be used for various motors, sensors and actuators in nuclear and thermal power plants.

【0037】[0037]

【発明の実施の形態】以下、本発明の実施の形態として
の、種々の実施例と比較例について説明する。 (実施例1、比較例1〜5)まず、Nd,Pr,Dy,
Fe,Co,Ga,Al,Bの各原料を、下記表1に示
す所定の割合で配合し、Ar雰囲気中にて溶解して得た
合金溶湯を、タンディッシュを介して、周速1m/sで
回転するロール上に流し込み、急冷凝固させた。こうし
て、いわゆるストリップキャスト材を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments and comparative examples will be described below as embodiments of the present invention. (Example 1, Comparative Examples 1 to 5) First, Nd, Pr, Dy,
The raw materials of Fe, Co, Ga, Al, and B were blended at a predetermined ratio shown in Table 1 below and melted in an Ar atmosphere to obtain a molten alloy. Then, the mixture was poured onto a roll rotating at s and rapidly solidified. Thus, a so-called strip cast material was obtained.

【0038】このストリップキャスト材を粗粉砕した
後、ジェットミルにてN2 中で平均粒径2〜3μmにま
で微粉砕した。得られた粉末を磁界中にてプレスして成
型し、真空炉中で1100℃で3.6ks焼結し、50
0〜650℃の範囲で保磁力が最も高くなるような時効
温度(例えば、550℃)で時効処理を行なった。
After the strip cast material was coarsely pulverized, it was finely pulverized with a jet mill in N 2 to an average particle diameter of 2 to 3 μm. The obtained powder was pressed and molded in a magnetic field, sintered in a vacuum furnace at 1100 ° C. for 3.6 ks, and
The aging treatment was performed at an aging temperature (for example, 550 ° C.) at which the coercive force was highest in the range of 0 to 650 ° C.

【0039】これらの試料について、BHトレーサーを
用いて磁石特性の温度係数αを20〜150℃の範囲で
測定した。また、これらの試料を実際にIPM型のロー
ターに組み込み、永久磁石モータを作製し、50℃の環
境温度で、1000時間、実働させた後のBrの経時変
化を調べた。また、これらの試料の密度の測定も行っ
た。
For these samples, the temperature coefficient α of the magnet properties was measured in the range of 20 to 150 ° C. using a BH tracer. Further, these samples were actually incorporated into an IPM-type rotor to produce a permanent magnet motor, and the time-dependent change of Br after operating 1000 hours at an environmental temperature of 50 ° C. was examined. The density of these samples was also measured.

【0040】磁気特性等の結果を同じく下記表1に示
す。下記表1中、 ic (保磁力)及びBr(残留磁束
密度)は室温での値である。表中の組成は原子%表示で
あり、Febal.とあるのは、全体を100%としたとき
の残部が鉄であることを示す。以下に掲示する表(表
2)の説明も、上に同じである。
Table 1 below also shows the results of the magnetic characteristics and the like. In Table 1, i H c (coercivity) and Br (residual magnetic flux density) is the value at room temperature. The compositions in the table are expressed in atomic%, and Fe bal. Means that the balance is iron when the whole is 100%. The description of the table (Table 2) posted below is the same as above.

【0041】[0041]

【表1】 [Table 1]

【0042】上記表1から明らかなように、Co量が1
6%であり、Gaを1%、Alを0.5%添加した試料
(実施例)は、保磁力およびキュリー温度が高く、温度
係数が低く、かつ高温での長期安定性に優れている。経
時劣化は、初期のBrに対する1000時間後のBrの
比である。
As is apparent from Table 1, the amount of Co is 1
The sample containing 6% of Ga, 1% of Ga and 0.5% of Al (Example) has high coercive force and Curie temperature, low temperature coefficient, and excellent long-term stability at high temperature. The aging is the ratio of Br after 1000 hours to the initial Br.

【0043】これに対し、Coが1%の場合(比較例
3)、Gaなしでも21.5kOeと比較的高い保磁力
を得られている。しかしながら、このように低いCo量
(1%)では、キュリー温度が低いため、αが低い。
On the other hand, when Co was 1% (Comparative Example 3), a relatively high coercive force of 21.5 kOe was obtained without Ga. However, with such a low Co content (1%), α is low because the Curie temperature is low.

【0044】また、Gaの添加がなく、Coが16%と
高いCo領域では(比較例2)、キュリー温度が高いも
のの、保磁力は11.0kOeと半減してしまうのに対
し、Gaを1%添加すると(比較例1)、20.5kO
eと高い保磁力が得られている。
In a Co region where Co is high and Co is high (16%) without addition of Ga (Comparative Example 2), although the Curie temperature is high, the coercive force is reduced by half to 11.0 kOe. % (Comparative Example 1), 20.5 kO
e and a high coercive force are obtained.

【0045】更に、Alを0.5%添加すると(実施例
1)、22.0kOeとさらに高い保磁力が得られると
ともに、Alの添加がない場合(比較例1、2)では得
られないような、高温での長期安定性を得ることが出来
ることがわかる。
Further, when Al is added by 0.5% (Example 1), a higher coercive force of 22.0 kOe can be obtained, and when Al is not added (Comparative Examples 1 and 2), it cannot be obtained. It can be seen that long-term stability at high temperatures can be obtained.

【0046】更にAlを増加させ、Alを1.6%添加
すると(比較例4)、確かに比較例2に比べて保磁力は
高まるのであるが、図2に示すように、比較例4では角
型性が悪くなり、高保磁力が高温で生かされない。ま
た、図3に示すように、Gaを含まない比較例5では、
角型性はある程度維持するものの、高保磁力化が十分で
ない。また、両者とも残留磁束密度の減少を無視できな
くなる。
When Al is further increased and Al is added by 1.6% (Comparative Example 4), the coercive force is certainly increased as compared with Comparative Example 2, but as shown in FIG. The squareness deteriorates and high coercive force cannot be utilized at high temperatures. Further, as shown in FIG. 3, in Comparative Example 5 not containing Ga,
Although the squareness is maintained to some extent, the high coercive force is not sufficient. In both cases, the decrease in the residual magnetic flux density cannot be ignored.

【0047】(実施例2〜24)下記表2に示す組成と
なるような原料を用いて、実施例1と同様にして試料を
作製し、同様に特性の測定を行った。
Examples 2 to 24 Samples were prepared in the same manner as in Example 1 using raw materials having the compositions shown in Table 2 below, and the characteristics were measured in the same manner.

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】上記表2からわかるように、実施例2〜2
4では、室温保磁力、残留磁束密度の温度係数、長期安
定性、ともに良好な特性を得ている。これに対し、比較
例では、室温保磁力が20kOeに満たない、残留磁束
密度の温度係数が−0.09を下回る、もしくは経時劣
化が10%を越える(表中では0.9を下回る)等の理
由により、更に、比較例9では保磁力が低い割に磁束密
度が小さいことにより、高温での使用には問題がある。
As can be seen from Table 2 above, Examples 2 to 2
In the case of No. 4, good characteristics were obtained in the coercive force at room temperature, the temperature coefficient of the residual magnetic flux density, and the long-term stability. On the other hand, in the comparative example, the room temperature coercive force is less than 20 kOe, the temperature coefficient of the residual magnetic flux density is lower than -0.09, or the deterioration with time exceeds 10% (lower than 0.9 in the table). Further, in Comparative Example 9, since the magnetic flux density is small in spite of the low coercive force, there is a problem in use at a high temperature.

【0051】以上の実施例の結果から、R−Fe−B系
(R:希土類元素)に対し、重希土類元素、Co、M等
の金属、およびGaを所定量添加することにより初め
て、優れた特性、特に優れた高温特性の永久磁石が得ら
れることがわかる。添加元素のいずれを欠いても、すべ
ての特性を満たすことは出来ない。
From the results of the above examples, it was found that the addition of a predetermined amount of heavy rare earth elements, metals such as Co and M, and Ga to the R—Fe—B system (R: rare earth elements) was excellent. It can be seen that a permanent magnet having excellent properties, especially excellent high-temperature properties, can be obtained. All properties cannot be satisfied even if any of the added elements are missing.

【0052】[0052]

【発明の効果】以上、詳細に説明したように、本発明に
よると、キュリー温度が高く、室温保磁力も高い、優れ
た高温特性を有するとともに、長期安定性に優れた焼結
型永久磁石を得ることが可能である。
As described above in detail, according to the present invention, a sintered permanent magnet having a high Curie temperature, a high room temperature coercive force, excellent high-temperature characteristics and excellent long-term stability is provided. It is possible to get.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1と比較例4の減磁曲線を示す特性図。FIG. 1 is a characteristic diagram showing demagnetization curves of Example 1 and Comparative Example 4.

【図2】実施例1と比較例5の減磁曲線を示す特性図。FIG. 2 is a characteristic diagram showing demagnetization curves of Example 1 and Comparative Example 5.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢 孝雄 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 佐橋 政司 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 4K018 AA27 BA18 BB04 DA11 KA45 5E040 AA04 AA06 AA19 BD01 CA01 NN01 NN06 NN12 NN13 NN17 NN18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takao Sawa 1st Toshiba R & D Center, Komukai-shi, Kawasaki City, Kanagawa Prefecture (72) Inventor Masaji Sabashi Toshiba Komukai, Saiwai-ku, Kawasaki City, Kanagawa Prefecture 1-cho, Toshiba R & D Center, F-term (reference) 4K018 AA27 BA18 BB04 DA11 KA45 5E040 AA04 AA06 AA19 BD01 CA01 NN01 NN06 NN12 NN13 NN17 NN18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】組成が式 R1X R2Y CoZ GaU V W Fe
100-X-Y-Z-U-V-W (式中、R1は少なくとも1種の軽希土類元素、R2は
少なくとも1種の重希土類元素であり、MはAl、S
i、Cu、およびSnから選ばれる少なくとも1種を示
し、X、Y、Z、U、V、Wは、原子%で、下記不等式
を満たす。)により表されることを特徴とする焼結型高
耐熱性永久磁石。 7≦X+Y≦20 1.5≦Y≦10 6≦Z≦30 0.4≦U≦2.0 0.1≦V≦1.5 2≦W≦20
1. A composition wherein R1 X R2 Y Co Z Ga U M V B W Fe
100-XYZUVW (wherein, R1 is at least one light rare earth element, R2 is at least one heavy rare earth element, and M is Al, S
It represents at least one selected from i, Cu, and Sn, and X, Y, Z, U, V, and W satisfy the following inequality in atomic%. A sintered high heat-resistant permanent magnet characterized by being represented by: 7 ≦ X + Y ≦ 20 1.5 ≦ Y ≦ 10 6 ≦ Z ≦ 30 0.4 ≦ U ≦ 2.0 0.1 ≦ V ≦ 1.5 2 ≦ W ≦ 20
【請求項2】20〜150℃における残留磁束密度の温
度係数がα>−0.09%/℃であることを特徴とする
請求項1に記載の焼結型高耐熱性永久磁石。
2. The sintered high heat resistant permanent magnet according to claim 1, wherein the temperature coefficient of the residual magnetic flux density at 20 to 150 ° C. is α> −0.09% / ° C.
【請求項3】室温保磁力が20kOe以上であることを
特徴とする請求項1または2に記載の焼結型高耐熱性永
久磁石。
3. The sintered high heat-resistant permanent magnet according to claim 1, wherein the room temperature coercive force is 20 kOe or more.
【請求項4】平均結晶粒径が0.1〜100μmである
合金を出発原料として製造される請求項1ないし3のい
ずれかの項に記載の焼結型高耐熱性永久磁石。
4. The sintered high heat-resistant permanent magnet according to claim 1, which is produced using an alloy having an average crystal grain size of 0.1 to 100 μm as a starting material.
【請求項5】厚さが100μm〜1mmである急冷合金
を出発原料として製造される請求項1ないし4のいずれ
かの項に記載の焼結型高耐熱性永久磁石。
5. The sintered high heat-resistant permanent magnet according to claim 1, which is manufactured using a quenched alloy having a thickness of 100 μm to 1 mm as a starting material.
JP2000096120A 2000-03-31 2000-03-31 High heat-resistant permanent magnet Pending JP2001284111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000096120A JP2001284111A (en) 2000-03-31 2000-03-31 High heat-resistant permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000096120A JP2001284111A (en) 2000-03-31 2000-03-31 High heat-resistant permanent magnet

Publications (1)

Publication Number Publication Date
JP2001284111A true JP2001284111A (en) 2001-10-12

Family

ID=18610926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000096120A Pending JP2001284111A (en) 2000-03-31 2000-03-31 High heat-resistant permanent magnet

Country Status (1)

Country Link
JP (1) JP2001284111A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016815A1 (en) 2007-07-27 2009-02-05 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET
CN105023688A (en) * 2015-07-27 2015-11-04 合肥凯士新材料贸易有限公司 High-temperature-resistant rare earth bonded permanent magnet
WO2022178958A1 (en) * 2021-02-24 2022-09-01 浙江英洛华磁业有限公司 R-t-b-si-m-a-series rare earth permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016815A1 (en) 2007-07-27 2009-02-05 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET
US8177921B2 (en) 2007-07-27 2012-05-15 Hitachi Metals, Ltd. R-Fe-B rare earth sintered magnet
CN105023688A (en) * 2015-07-27 2015-11-04 合肥凯士新材料贸易有限公司 High-temperature-resistant rare earth bonded permanent magnet
WO2022178958A1 (en) * 2021-02-24 2022-09-01 浙江英洛华磁业有限公司 R-t-b-si-m-a-series rare earth permanent magnet

Similar Documents

Publication Publication Date Title
JP7170833B2 (en) Ce-containing sintered rare earth permanent magnet with high durability and high coercivity, and method for preparing same
US10109403B2 (en) R-T-B based sintered magnet and motor
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JP5527434B2 (en) Magnetic material
WO2015020182A1 (en) R-t-b type sintered magnet, and motor
JP2001189206A (en) Permanent magnet
JP2023509225A (en) Heavy rare earth alloy, neodymium iron boron permanent magnet material, raw material and manufacturing method
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
JP2010123722A (en) Permanent magnet, permanent magnet motor using the same, and power generator
JP3296507B2 (en) Rare earth permanent magnet
JP2001284111A (en) High heat-resistant permanent magnet
JPH04268051A (en) R-fe-co-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability
JP7214043B2 (en) Rare earth sintered magnet, method for producing rare earth sintered magnet, rotor and rotating machine
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JPS60182107A (en) Permanent magnet material and manufacture thereof
JPH04268050A (en) R-fe-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability
JPH0146575B2 (en)
JPH068488B2 (en) Permanent magnet alloy
US20120001711A1 (en) Permanent magnet with low or no dysprosium for high temperature performance
JP2019169560A (en) Manufacturing method of r-t-b-based sintered magnet
JPS59218705A (en) Permanent magnet material and manufacture thereof
JP2000323310A (en) Rare-earth containing permanent magnet
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JP4934787B2 (en) Magnetic alloys and bonded magnets
JP3588692B2 (en) Permanent magnet synchronous motor magnet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040113