JPH04192186A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPH04192186A
JPH04192186A JP2326874A JP32687490A JPH04192186A JP H04192186 A JPH04192186 A JP H04192186A JP 2326874 A JP2326874 A JP 2326874A JP 32687490 A JP32687490 A JP 32687490A JP H04192186 A JPH04192186 A JP H04192186A
Authority
JP
Japan
Prior art keywords
chip
circuit
power supply
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2326874A
Other languages
Japanese (ja)
Inventor
Masanao Eino
營野 雅直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2326874A priority Critical patent/JPH04192186A/en
Publication of JPH04192186A publication Critical patent/JPH04192186A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a current consumption at the time of nonselection of chip by dropping the voltage of power source inside of a chip only when the chip is in nonselection. CONSTITUTION:When a pin 2 for chip select input is in the 'H' state, the inside of chip is not in operation. At this time, an inside power dropping circuit 6 is operated to drop the voltage of power source voltage level supplied from a power voltage supplying pin 1, and the dropped power is supplied to a peripheral circuit 4 and a memory cell array 5. Since the power source voltage of circuit 4 is also dropped at the unoperating time, a pass-through current is reduced for even the device wherein the initial stage of an address input is not cut such as a SRAM, etc., for which high speed access is required, then the current consumption including the current flowing in a high resistance of memory cell is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体記憶装置の待機時消費電力を抑える
為の、内部回路構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an internal circuit configuration for suppressing standby power consumption of a semiconductor memory device.

〔従来の技術〕[Conventional technology]

近年、半導体記憶装置の発展は著しく、高集積化、高速
化又は、低消費電力化が図られている。
In recent years, semiconductor memory devices have made remarkable progress, with efforts toward higher integration, higher speed, and lower power consumption.

第2図は、従来のSRAMの構成の一例を示す概略ブロ
ック図である。第2図において(1)はSRAMの回路
内に電源を供給する為の電源電圧供給ビン、(2)はチ
ップ内部の動作、非動作を制御するチップセレクト入力
ピン、(3)は回路動作を制御するCSバッファ回路、
(4)はメモリセルのデータを読み出したり、書き込ん
だりする為の周辺回路、(5)はメモリセルアレイであ
る。
FIG. 2 is a schematic block diagram showing an example of the configuration of a conventional SRAM. In Figure 2, (1) is a power supply voltage supply pin for supplying power to the SRAM circuit, (2) is a chip select input pin that controls internal chip operation and non-operation, and (3) is a pin that controls circuit operation. CS buffer circuit to control,
(4) is a peripheral circuit for reading and writing data in memory cells, and (5) is a memory cell array.

次に動作について説明する。電源電圧供給ビン(1)か
ら供給される電圧は、内部回路においては、電位変化を
せずに、そのまま内部に供給している。
Next, the operation will be explained. The voltage supplied from the power supply voltage supply bin (1) is supplied internally as it is without changing the potential in the internal circuit.

また、チップセレクト入力ビン(2)から入力される4
N号は、CSバッファ回路(3)において、周辺回路(
4)の動作を制御する為の信号を発生して、各回路に働
きかけている。例えばチップセレクト入力ピン(2)か
ら入力されるチップの動作、非動作を制御する信号(以
後C8信号を称す)は、H信号が入ると、CSバッファ
回路(3)からは、非動作させる為の信号が発生し、周
辺回路(4)は動作しなくなる。
Also, the 4 input from the chip select input bin (2)
No. N is the peripheral circuit (
4) It generates signals to control the operations and acts on each circuit. For example, when the H signal is input, the signal (hereinafter referred to as the C8 signal) that controls the operation or non-operation of the chip that is input from the chip select input pin (2) is sent from the CS buffer circuit (3) to control the operation or non-operation of the chip. A signal is generated, and the peripheral circuit (4) stops operating.

アクセスタイムの高速化をあまり重視しない中速SRA
Mにおいては、任意のメモリセルを選択する為のアドレ
ス入力初段回路にもCSバッファ回路(3)からの制御
信号が入り貫通電流を抑えているか、高速アクセスが要
求されるSRAMでは、アドレス入力初段をCSバッフ
ァ回路(3)からの信号でカットすると、アクセスがC
3信号をかんている分遅くなるので、通常は、アドレス
入力初段のみ、C8信号の制御がない。その為、非動作
時ても、入力初段回路で、貫通電流か流れている状態で
ある。
Medium-speed SRA that does not place much emphasis on speeding up access time
In M, the control signal from the CS buffer circuit (3) is also input to the address input first stage circuit for selecting an arbitrary memory cell to suppress the through current, or in SRAM that requires high-speed access, the address input first stage circuit When the signal from the CS buffer circuit (3) is cut, the access becomes C
Normally, only the first stage of address input is not controlled by the C8 signal, since the processing is delayed due to the 3 signals being used. Therefore, even when not in operation, a through current is flowing in the input first stage circuit.

また、メモリセルアレイ(5)を形成しているメモリセ
ルが、高抵抗負荷型であると、チップか非動作状態の時
は、電源電圧供給ビン(1)から、高抵抗を通して流れ
る電流か電源電流となる。すなわち、アクセスタイムを
重視しないSRAMにとっての待機時消費電流は、上記
高抵抗を通して流れる電流のみてあり、また、高速アク
セスタイムを重視するSRAMの、待機時消費電流はア
ドレス入力初段回路の貫通電流と、メモリセルの高抵抗
を通して流れる電流の和である。
Furthermore, if the memory cells forming the memory cell array (5) are of a high resistance load type, when the chip is in an inactive state, the current flowing from the power supply voltage supply bin (1) through the high resistance or the power supply current flowing through the high resistance. becomes. In other words, the standby current consumption for an SRAM that does not emphasize access time is only the current flowing through the high resistance mentioned above, and the standby current consumption for an SRAM that emphasizes high-speed access time is the through current of the address input first stage circuit. , is the sum of the current flowing through the high resistance of the memory cell.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

従来のSRAMは以上のように構成されているので、近
年進んてきた高集積化に対しては、メモリ容量が急激に
増加し、チップ非選択時の電流が増加するという問題か
あった。
Since the conventional SRAM is configured as described above, there have been problems in that the memory capacity has increased rapidly and the current when the chip is not selected has increased in response to the recent trend toward higher integration.

この発明は、上記のような問題点を解消するために、な
されたものであり、大容量のメモリにもかかわらず非動
作時の消費電流を充分に低減できる半導体記憶装置を得
ることを目的とする。
The present invention was made in order to solve the above-mentioned problems, and an object thereof is to obtain a semiconductor memory device that can sufficiently reduce current consumption during non-operation despite a large capacity memory. do.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体記憶装置は、記憶素子を活性化す
るためのチップ信号により、チップか非選択時に内部回
路に供給する電源レベルと降圧する内部電源降圧回路を
具備したちのである。
The semiconductor memory device according to the present invention includes an internal power supply step-down circuit that steps down the power supply level supplied to the internal circuit when a chip is not selected in response to a chip signal for activating a memory element.

〔作用〕[Effect]

この発明における内部回路の電源電圧は、動作時は外部
より与えられる電源電圧Vccになるのに対し、非動作
時は、内部電源降圧回路により動作時よりも、供給され
る電位が、降下される。
The power supply voltage of the internal circuit in this invention is the power supply voltage Vcc applied from the outside during operation, whereas when it is not operating, the potential supplied by the internal power supply voltage step-down circuit is lower than that during operation. .

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(1)〜(5)は第2図の従来例に示した
ものと同等であるのて説明を省略する。(6)は電源電
圧供給ピン(1)から与えられた電圧レベルを降圧し、
各内部回路に降圧した電源電圧を供給するだめの内部電
源降圧回路である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) to (5) are the same as those shown in the conventional example of FIG. 2, and therefore their explanation will be omitted. (6) steps down the voltage level given from the power supply voltage supply pin (1),
This is an internal power supply step-down circuit that supplies stepped-down power supply voltage to each internal circuit.

次に動作について説明する。Next, the operation will be explained.

チップセレクトビン(2)かL 状態の時は、チプ内部
か動作時である。この時、内部電源降圧回路(6)は動
作せず、そのまま電源電圧供給ピン(1)から与えられ
た電源か、チップ内部に伝わるようなロジックを内部電
源降圧回路(6)に組んでおけば、通常の動作状態と同
じになる。チップセレクト入力ビン(2)かH状態の時
は、チップ内部が非動作時である。この時、内部電源降
圧回路(6)が動作し、電源電圧供給ピン(1)から与
えられた電源電圧レベルを降圧して周辺回路(4)及び
メモリセルアレイ(5)に降圧した電源を供給すること
ができる。
When the chip select bin (2) is in the L state, the inside of the chip is in operation. At this time, the internal power supply step-down circuit (6) does not operate, and if the power is supplied from the power supply voltage supply pin (1) or the logic that is transmitted inside the chip is assembled in the internal power supply step-down circuit (6). , which is the same as normal operating condition. When the chip select input bin (2) is in the H state, the inside of the chip is inactive. At this time, the internal power supply step-down circuit (6) operates, steps down the power supply voltage level applied from the power supply voltage supply pin (1), and supplies the reduced power to the peripheral circuit (4) and memory cell array (5). be able to.

非動作時には、周辺回路(4)用の電源も降圧されるの
で、高速アクセスか要求されるSRAMなと、アドレス
の入力初段をカットしていないデバイスでも貫通電流が
低減されて、メモリセルの高抵抗を流れる電流と合せて
消費電流が、低減されることになる。
During non-operation, the power supply for the peripheral circuit (4) is also stepped down, so even in SRAMs that require high-speed access and devices where the first stage of address input is not cut, the through current is reduced and the high voltage of the memory cell is reduced. The current consumption, together with the current flowing through the resistor, is reduced.

なお、上記実施例ては内部電源降圧回路(6)を動作さ
せる手段として、CSバッファ回路(3)からの制御信
号かからんでいたか、電源電圧供給ピン(1)の入力か
ら直接内部電源降圧回路(6)を動作させる方法でもよ
い。
In the above embodiment, as a means for operating the internal power supply step-down circuit (6), the control signal from the CS buffer circuit (3) is applied, or the internal power supply step-down circuit (6) is operated directly from the input of the power supply voltage supply pin (1). A method of operating the circuit (6) may also be used.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればチップ内部の電源をチ
ップか非選択時のみ電圧降下させたので、チップ非選択
時の消費電流を低減させることかできる効果がある。
As described above, according to the present invention, since the voltage of the power supply inside the chip is reduced only when the chip is not selected, the current consumption when the chip is not selected can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例による半導体記憶装置の
概略ブロック図、第2図は、従来の一般的なSRAMの
構成を示す概略ブロック図である。 図において、(1)は電源電圧供給ピン、(2)はチッ
プセレクト入力ビン、(3)はCSバッファ回路、(4
)は周辺回路、(5)はメモリセルアレイ、(6)は内
部電源降圧回路である。 なお、図中、同一符号は同一、または相当部分を示す。
FIG. 1 is a schematic block diagram of a semiconductor memory device according to an embodiment of the present invention, and FIG. 2 is a schematic block diagram showing the configuration of a conventional general SRAM. In the figure, (1) is the power supply voltage supply pin, (2) is the chip select input pin, (3) is the CS buffer circuit, and (4) is the chip select input pin.
) is a peripheral circuit, (5) is a memory cell array, and (6) is an internal power supply step-down circuit. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 記憶素子を活性化するためのチップセレクト信号により
、チップが非選択時に、内部回路に供給する電源電圧を
降圧する内部電源降圧回路を備えたことを特徴とする半
導体記憶装置。
1. A semiconductor memory device comprising an internal power supply step-down circuit that steps down a power supply voltage supplied to an internal circuit when a chip is not selected in response to a chip select signal for activating a memory element.
JP2326874A 1990-11-27 1990-11-27 Semiconductor storage device Pending JPH04192186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2326874A JPH04192186A (en) 1990-11-27 1990-11-27 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2326874A JPH04192186A (en) 1990-11-27 1990-11-27 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH04192186A true JPH04192186A (en) 1992-07-10

Family

ID=18192700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2326874A Pending JPH04192186A (en) 1990-11-27 1990-11-27 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH04192186A (en)

Similar Documents

Publication Publication Date Title
US7450447B2 (en) Memory device and method having low-power, high write latency mode and high-power, low write latency mode and/or independently selectable write latency
US5804893A (en) Semiconductor device with appropriate power consumption
JP2003132683A (en) Semiconductor device
US20070247952A1 (en) Semiconductor memory device and semiconductor integrated circuit device
US5295112A (en) Semiconductor memory
JPS61105795A (en) Memory circuit
JPS62287499A (en) Semiconductor memory device
EP0098164A2 (en) Static type semiconductor memory device
US4982365A (en) Semiconductor memory device with a potential level-setting circuit
JPH04192186A (en) Semiconductor storage device
US20010004329A1 (en) Semiconductor memory device
JPS6326892A (en) Memory device
JPH0264997A (en) Semiconductor memory
JPH11283361A (en) Storage device
JPH0438698A (en) Semiconductor memory
JPH01205257A (en) Integrated circuit
JP3262053B2 (en) Semiconductor storage device
JPH1145947A (en) Semiconductor integrated circuit
JPS5833632B2 (en) semiconductor storage device
JPH05241946A (en) Random access memory device with built-in rom
JPH05267605A (en) Semiconductor memory
JPH0454650A (en) Memory circuit
JPH04105298A (en) Semiconductor memory integrated circuit
JPH07111834B2 (en) Serial access memory
JPH04313892A (en) Address control circuit of memory