JPH04191313A - Method for controlling immersed depth of immersion tubes in vacuum sucking-up degassing treatment - Google Patents

Method for controlling immersed depth of immersion tubes in vacuum sucking-up degassing treatment

Info

Publication number
JPH04191313A
JPH04191313A JP31802490A JP31802490A JPH04191313A JP H04191313 A JPH04191313 A JP H04191313A JP 31802490 A JP31802490 A JP 31802490A JP 31802490 A JP31802490 A JP 31802490A JP H04191313 A JPH04191313 A JP H04191313A
Authority
JP
Japan
Prior art keywords
molten steel
sensor holder
ladle
vacuum
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31802490A
Other languages
Japanese (ja)
Inventor
Akihiko Mine
峰 昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP31802490A priority Critical patent/JPH04191313A/en
Publication of JPH04191313A publication Critical patent/JPH04191313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To easily control the immersed depth of an immersion tube in a vacuum degassing vessel by detecting the immersion of a tip part of a strain gage fitted to a temp. sensor holder into a molten steel to accurately detect the position of molten steel surface level. CONSTITUTION:A ladle 2 incorporating the molten steel M is ascended, and the immersion tube at the lower part of the vacuum degassing vessel 1 is immersed into the molten steel M. Simultaneously, the temp. sensor holder 4 for temp. measuring instrument 3 is lowered while keeping away from the immersed tube and the tip part 4a thereof is immersed into the molten steel M. In such a condition, the vacuum degassing vessel 1 is evacuated to execute vacuum sucking-up degassing to the molten steel M. Then, the molten steel surface level is detected from compressive displacement developed with buoyance at the time of immersing the tip part 4a into the molten steel M, with the strain gage fitted to the temp. sensor holder 4. Thus, the immersed depth of the above- mentioned immersed depth of the immersion tube can be accurately controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、真空脱ガス槽の浸漬管を取鍋内の溶鋼に浸漬
して真空吸上げ脱ガス処理を行う際の浸漬管の浸漬深さ
のコントロール方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to the immersion depth of a immersion tube in a vacuum degassing tank when performing vacuum suction degassing treatment by immersing the immersion tube in molten steel in a ladle. This relates to a method of controlling the temperature.

〔従来の技術〕[Conventional technology]

溶鋼の真空吸上げ脱ガス処理は、取鍋内の溶鋼を真空に
した真空脱ガス槽内に吸い上げ、溶鋼中に存在する水素
、酸素や非金属介在物などを脱ガス或いは除去する処理
である。このような処理に使用する真空吸上げ脱ガス装
置は、底部に下方向に向かって突出している浸漬管が設
けられ頂部に排気口を有する真空脱ガス槽及びその下方
に設置された取鍋と、上記浸漬管を避けて上下動する温
度センサホルダをその先端側から取鍋内の溶鋼中に浸漬
して溶鋼温度を測定する測温装置とから主として成って
いる。
Vacuum suction degassing treatment of molten steel is a process in which molten steel in a ladle is sucked up into a vacuum degassing tank to degas or remove hydrogen, oxygen, non-metallic inclusions, etc. present in the molten steel. . The vacuum suction degassing equipment used for this type of treatment consists of a vacuum degassing tank with a dip tube protruding downward at the bottom and an exhaust port at the top, and a ladle installed below the vacuum degassing tank. It mainly consists of a temperature measuring device that measures the temperature of molten steel by immersing a temperature sensor holder, which moves up and down avoiding the immersion tube, into molten steel in a ladle from its tip side.

このような真空吸上げ脱ガス処理には、浸漬管を2本有
する真空脱ガス槽を使用して溶鋼を取鍋と真空脱ガス槽
との間で循環させながら行うRH法や、浸漬管を1本し
か有さない真空脱ガス槽を使用して真空脱ガス槽内に溶
鋼を吸い上げた状態で暫時(数十秒)経過させた後に溶
鋼を取鍋に戻し攪拌してから再び吸−ヒげを繰り返すD
H法等がある。
Such vacuum suction degassing treatment is carried out using the RH method, which uses a vacuum degassing tank with two immersion tubes and circulates the molten steel between the ladle and the vacuum degassing tank, and Using only one vacuum degassing tank, the molten steel is sucked up into the vacuum degassing tank for a while (several tens of seconds), then the molten steel is returned to the ladle, stirred, and sucked up again. D to repeat the rash
There are methods such as H method.

以下に、代表としてRH法について図面により説明する
Below, the RH method will be explained with reference to the drawings as a representative example.

第4図はRH法の実施に使用する真空吸上げ脱ガス装置
の1例の断面説明図、第5図は第4図の装置による真空
吸上げ脱ガスの実施状況の断面説明図である。
FIG. 4 is a cross-sectional explanatory view of one example of a vacuum suction degassing device used for carrying out the RH method, and FIG. 5 is a cross-sectional explanatory view of the implementation status of vacuum suction degassing by the device of FIG. 4.

第4図に示すように、RH法用の真空吸上げ脱ガス装置
も前記の通り真空脱ガス槽1と取鍋2と測温装置3とか
ら主として構成されており、真空脱ガス槽1の頂部には
真空ポンプ(図示なし)に接続された排出口1cが設け
られており、取鍋2は真空脱ガス槽1の下方に設置さ九
でおり、測温装置3は先端部4aに温度センサを有する
温度センサホルダ4が所定位置から真空脱カス槽1の浸
漬管を避けて取鍋2内に向かって降下し或いは引き揚げ
られるように移動して溶鋼Mの温度を計るようになって
いる。このRH法用の真空吸」二げ脱ガス装置の場合に
は、真空脱ガス槽1の浸漬管として2本が吸上げ管1a
及び排出管1bとして下方に向かって突出して設けられ
ていて、吸上げ管1aの内壁にはガス吸込管1dが開口
している。測温装置3には色々なものがあり、その1例
として第4図に示すものは位置固定された2つのスプロ
ケット5゜5間に掛は渡され駆動モータ6により移動せ
しめられるチェノ7に温度センサホルダ4が取り付けら
れた構造となっている。真空吸上げ脱ガス処理の実施に
おいては、溶鋼Mの吸い上げを円滑にするため、真空脱
ガス槽1と取鍋2とを近付けたり離したり或いは適切な
距離に維持する等の両者の相対位置の調節をする必要が
ある。そのため、−般に両者のうち何れか一方だけを昇
降させるようになっており、第4図に示すものは取鍋2
を昇降させる場合の装置であって、油圧袋[8aによっ
て上下動する取鍋台8が設けられており、その位置を知
るための佐賀発信器8bが付設されている。
As shown in FIG. 4, the vacuum suction degassing device for the RH method is also mainly composed of the vacuum degassing tank 1, the ladle 2, and the temperature measuring device 3 as described above. A discharge port 1c connected to a vacuum pump (not shown) is provided at the top, a ladle 2 is installed below the vacuum degassing tank 1, and a temperature measuring device 3 measures the temperature at the tip 4a. A temperature sensor holder 4 having a sensor moves from a predetermined position toward the inside of the ladle 2 avoiding the immersion pipe of the vacuum descaling tank 1 to measure the temperature of the molten steel M. . In the case of this vacuum suction degassing device for the RH method, two suction pipes 1a are used as immersion pipes for the vacuum degassing tank 1.
A gas suction pipe 1d is provided to protrude downward as a discharge pipe 1b, and a gas suction pipe 1d is opened on the inner wall of the suction pipe 1a. There are various types of temperature measuring device 3, one example of which is shown in FIG. It has a structure in which a sensor holder 4 is attached. In carrying out the vacuum suction degassing process, in order to smoothly suck up the molten steel M, the relative positions of the vacuum degassing tank 1 and the ladle 2 may be adjusted, such as by moving them closer together or separating them, or by maintaining them at an appropriate distance. Need to make adjustments. Therefore, in general, only one of the two is raised or lowered, and the one shown in Figure 4 is the ladle 2.
This is a device for raising and lowering a ladle, and is equipped with a ladle stand 8 that is moved up and down by a hydraulic bag [8a, and is equipped with a Saga transmitter 8b for knowing its position.

このような真空吸上げ脱ガス装置でRH法を実施するに
は、先ず転炉等から溶鋼Mを移した取鍋2を低い位置に
ある取鍋台8上に移載し、真空脱ガス槽1と取鍋2との
距離を縮めて、即ちこの装置の場合は油圧装置8aによ
り取鍋8を上方に移動させて、真空脱ガス槽1の吸上げ
管1a及び排出管1bの少なくとも先端部分が溶鋼Mに
浸漬するように真空脱ガス槽1と取鍋2との相対位置を
調節する。次いで真空ポンプを作動させると共にガス吸
込管1dからアルゴンガスのような不活性ガスを吹き込
むと、気泡ポンプの原理によって第5図に示すように溶
鋼Mは吸上げ管1aを経て真空脱ガス槽1内に吸い上げ
られて真空脱ガス槽1内を移動し、排出管1bを経て取
鍋2内へ戻る。溶鋼Mはこのように循環しながら真空脱
ガス槽1内で脱ガスが行われ、脱ガスが終われば真空ポ
ンプ及び不活性ガスの吹込みを停止し、取鍋2を下げて
真空脱ガス槽1中の溶鋼Mを取鍋2に排出する。このよ
うな操業の間に適時に第5図に示すように測温装置3の
温度センサホルダ4を−F下動させて溶鋼温度を測定し
て温度管理を行うのである。
To carry out the RH method with such a vacuum degassing device, first transfer the ladle 2 into which the molten steel M has been transferred from the converter etc. onto the ladle stand 8 located at a low position, and then place the ladle 2 in the vacuum degassing tank. 1 and the ladle 2, that is, in the case of this device, the ladle 8 is moved upward by the hydraulic device 8a, and at least the tip portions of the suction pipe 1a and the discharge pipe 1b of the vacuum degassing tank 1 are removed. The relative positions of the vacuum degassing tank 1 and the ladle 2 are adjusted so that they are immersed in the molten steel M. Next, when the vacuum pump is activated and an inert gas such as argon gas is blown into the gas suction pipe 1d, the molten steel M passes through the suction pipe 1a and into the vacuum degassing tank 1 as shown in FIG. 5 due to the principle of a bubble pump. The gas is sucked up into the vacuum degassing tank 1, and returns to the ladle 2 via the discharge pipe 1b. The molten steel M is degassed in the vacuum degassing tank 1 while circulating in this way, and when the degassing is finished, the vacuum pump and inert gas injection are stopped, the ladle 2 is lowered, and the vacuum degassing tank 1 is removed. The molten steel M in 1 is discharged into the ladle 2. During such operations, the temperature sensor holder 4 of the temperature measuring device 3 is moved down -F at appropriate times as shown in FIG. 5 to measure the temperature of the molten steel, thereby controlling the temperature.

DH法の場合は、1本の浸漬管から溶鋼を真空脱ガス槽
内へ吸い上げて一定時間滞留させて脱ガスした後に同じ
浸漬管から取鍋へ戻しく従って1本の浸漬管が吸上げ管
及び排出管の2つの役をする)、これを繰り返す。この
点以外は基本的にはRH法と同様である。
In the case of the DH method, molten steel is sucked up from one immersion pipe into a vacuum degassing tank, left to stay for a certain period of time, degassed, and then returned to the ladle from the same immersion pipe.Therefore, one immersion pipe is used as a suction pipe. and a discharge pipe), and repeat this process. Other than this point, it is basically the same as the RH method.

このような真空吸上げ脱ガス処理においては、溶鋼Mの
環流(RH法)、吸上げ(D H法)を円滑に行うため
には、RH法における吸上管1a及びDH法における吸
上管としての浸漬管(以下、吸上げ管1aについて説明
しても、それは同時にDH法における吸上管としての浸
漬管についての説明でもある)の少なくとも先端が常に
溶鋼M内に浸漬しているように吸上管1aの浸漬深さを
コントロールすること、即ち真空脱ガス槽]と取鍋2と
の相対位置の調節が重要である。上記相対位置の肩節は
、取鍋2か真空脱ガス槽1かの何れか一方を昇降させて
行う。先に示した真空吸上げ脱ガス装置は取鍋台8を上
下動させて取鍋2を昇降させるものであり、それにより
吸上管1aの浸漬深さをコントロールする。
In such vacuum suction degassing treatment, in order to smoothly circulate (RH method) and suck up (DH method) the molten steel M, it is necessary to use the suction pipe 1a in the RH method and the suction pipe 1a in the DH method. so that at least the tip of the immersion pipe as a suction pipe (hereinafter, the description of the suction pipe 1a is also an explanation of the immersion pipe as a suction pipe in the DH method) is always immersed in the molten steel M. It is important to control the immersion depth of the suction tube 1a, that is, to adjust the relative position between the vacuum degassing tank] and the ladle 2. The above-mentioned relative positioning of the shoulders is performed by raising or lowering either the ladle 2 or the vacuum degassing tank 1. The vacuum suction degassing device shown above moves the ladle stand 8 up and down to raise and lower the ladle 2, thereby controlling the immersion depth of the suction pipe 1a.

従来、このような吸上管1aの浸漬深さのコントロール
は、吸上げ管1aと溶鋼レベルとを目視しながら真空脱
ガス槽1と取鍋2との相対位置を調節して行っていた。
Conventionally, the immersion depth of the suction pipe 1a has been controlled by adjusting the relative positions of the vacuum degassing tank 1 and the ladle 2 while visually observing the suction pipe 1a and the molten steel level.

しかしながら、作業現場の状況は目視の精確さを常に保
証するものではなく、若し脱ガス処理中に取鍋2内の溶
鋼レベルが吸上げ管1aの下端より下方にまで降下した
ときは、溶鋼Mは一瞬のうちに取鍋2へ落下し、場合に
よっては取鍋2外へ溢れ出て重大な事故を引き起こす危
険性を孕んでいる欠点があった(RH法の場合、排出管
1bの先端は吸上げ管1aの先端レベルと同じかそれ以
下に設けられているから、排出管1bの先端が先に溶鋼
レベルから離れることはない)。
However, the conditions at the work site do not always guarantee the accuracy of visual inspection, and if the molten steel level in the ladle 2 drops below the lower end of the suction pipe 1a during degassing, the molten steel M falls into the ladle 2 in an instant, and in some cases it may overflow outside the ladle 2, causing a serious accident. is provided at the same level as or below the level of the tip of the suction pipe 1a, so the tip of the discharge pipe 1b does not leave the molten steel level first).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記従来技術の欠点を解消し、目視によること
なく精確に溶鋼レベルを検知して真空脱ガス槽と取鍋と
の相対位置を調節することが出来るように、しかも比較
的費用をかけないで簡便に行い得るように浸漬深さのコ
ントロール方法を構成することを課題とする。
The present invention solves the above-mentioned drawbacks of the prior art, and makes it possible to accurately detect the molten steel level without visual inspection and adjust the relative position between the vacuum degassing tank and the ladle, and at a relatively low cost. The object of the present invention is to configure a method for controlling the immersion depth so that it can be easily performed without the need for immersion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は種々検討した結果、真空吸上げ脱ガス装置に
備えられている測温装置3を利用してその温度センサホ
ルダ4に歪ゲージを取り付けておき、温度センサホルダ
4の先端部が溶鋼に浸漬したときに歪ゲージにより得ら
れる信号をキャッチしてそのときの温度センサホルダの
位置から溶鋼レベルを精確に知り得ることを究明して本
発明を完成した。
As a result of various studies, the inventor of the present invention found that a strain gauge was attached to the temperature sensor holder 4 using the temperature measuring device 3 provided in the vacuum suction degassing device, and that the tip of the temperature sensor holder 4 was connected to the molten steel. The present invention was completed by discovering that the level of molten steel can be accurately determined from the position of the temperature sensor holder by catching the signal obtained by the strain gauge when the steel is immersed in water.

以下に、本発明に係る真空吸上げ脱ガス処理における浸
漬管の浸漬深さのコントロール方法を詳細に説明する。
Below, a method for controlling the immersion depth of the immersion tube in the vacuum suction degassing process according to the present invention will be explained in detail.

第1図は本発明方法で使用する歪ゲージ付きの温度セン
サホルダの1例を一部切欠して示す拡大説明図、第2図
は第1図中のA部の拡大図、第3図は第2図におけるB
−B線断面図である。
FIG. 1 is an enlarged explanatory view with a part cut away showing an example of a temperature sensor holder with a strain gauge used in the method of the present invention, FIG. 2 is an enlarged view of section A in FIG. 1, and FIG. B in Figure 2
-B sectional view.

測温袋W3の温度センサホルダ4は、大略第1図のよう
な形状を成している。即ち、その先端部4aには温度セ
ンサとして熱雷対が取り付けられており、それに接続さ
れたリード線4Cは温度センサホルダ4内を通り抜けて
基部4b側の端部でメタルコネクタ4dにより本線に接
続される。基部4b側の袋ナツト4eは温度センサホル
ダ4内に冷却用気体を供給するための冷却用気体供給用
配管との接続部を構成するものであり、温度センサホル
ダ4の基部4b側の位置を保持するコネクタが第4図の
チェノ7に取り付けられている。本発明方法では、先ず
このような温度センサホルダ4の外管の内面に第2図及
び第3図に示すように歪ゲージ9を取り付け、その歪ゲ
ージ9に生じる歪量は歪ゲージリード線を経て歪検出装
置(図示なし)に入力されるようになっている。従って
、温度センサホルダ4の先端部4aが溶鋼M中に浸漬し
たときは浮力が温度センサホルダ4の外管に伝わって歪
ゲージ9に急激な圧縮変位が発生し、電気信号が発生す
るのである。
The temperature sensor holder 4 of the temperature measurement bag W3 has a shape roughly as shown in FIG. That is, a thermal lightning pair is attached to the tip 4a as a temperature sensor, and the lead wire 4C connected to it passes through the temperature sensor holder 4 and is connected to the main wire by a metal connector 4d at the end on the base 4b side. be done. The cap nut 4e on the base 4b side constitutes a connection part with a cooling gas supply pipe for supplying cooling gas into the temperature sensor holder 4, and determines the position of the temperature sensor holder 4 on the base 4b side. A holding connector is attached to the chino 7 shown in FIG. In the method of the present invention, first, a strain gauge 9 is attached to the inner surface of the outer tube of the temperature sensor holder 4 as shown in FIGS. 2 and 3, and the amount of strain generated in the strain gauge 9 is measured by connecting the strain gauge lead wire. The signal is then input to a distortion detection device (not shown). Therefore, when the tip 4a of the temperature sensor holder 4 is immersed in the molten steel M, the buoyant force is transmitted to the outer tube of the temperature sensor holder 4, causing a sudden compressive displacement in the strain gauge 9, and generating an electrical signal. .

以上のように歪ゲージ9の取付けが出来たら、駆動モー
タ6を作動させて取鍋台8上の取鍋2に向かって温度セ
ンサホルダ4を所定の位置から下降させ、その先端部4
aが溶鋼Mに浸漬した時に歪ゲージ9が発する信号を前
記歪検出装置によってキャッチすることによって溶鋼レ
ベルを検知し、その時の温度センサホルダ4の位置と温
度センサホルダ4の最初の所定位置とから溶鋼Mのレベ
ルの位置を知るのである。そしてそれにより如何程取鍋
2を上昇させれば吸上げ管1aが溶鋼M中の適切な浸漬
深さとなるのかを求めてそのように油圧装置8aを作動
させるのである。
Once the strain gauge 9 has been installed as described above, the drive motor 6 is operated to lower the temperature sensor holder 4 from a predetermined position toward the ladle 2 on the ladle stand 8, and
The molten steel level is detected by catching the signal emitted by the strain gauge 9 with the strain detection device when a is immersed in the molten steel M, and the molten steel level is detected from the position of the temperature sensor holder 4 at that time and the first predetermined position of the temperature sensor holder 4. The location of the level of molten steel M is known. Then, it is determined how much the ladle 2 needs to be raised so that the suction pipe 1a is immersed in the molten steel M at an appropriate depth, and the hydraulic device 8a is operated accordingly.

具体的にその1例を図面によって説明する。One example will be specifically explained with reference to the drawings.

第4図に示すように温度センサホルダ4が所定位置にあ
るときのその先端の床上高さをHoとし、例えばチェシ
フ上の定点Pの水平位置をり。とする。取鍋2の底面(
取鍋台8の上面としても同じ)が床上高さDの位置にあ
る取鍋2内に向かって温度センサホルダ4が垂直距離り
だけ下降して定点Pが水平位置L□に位置したときに歪
ゲージ9からの信号をキャッチしたとすれば、取鍋2内
の溶鋼Mのレベルは第4図に示すように床上高さH2(
=H0−h)の位置にある。回倒の装置では真空脱ガス
槽1は位置固定されているから吸上げ管1aの先端の床
上高さGは一定である。従って、吸上管1aの溶!II
Mへの浸漬を確実にするのは勿論、最適の浸漬深さにし
て真空吸上げ脱ガス処理を円滑に行うための取鍋2(従
ってその底面〉の適切な上昇量dが求められる。この上
昇量dは真空脱ガス槽1及び取鍋2の各大きさや操業条
件等によって異なるから、真空吸上げ脱ガス装置毎に個
別に定められるものである。この取鍋2の適切な上昇量
dが決まれば、第5図に示すように取鍋台8を上昇量d
だけ上昇させて前記のように真空吸上げ脱ガス処理を行
えば良い。上記のような操作にお −いて温度センサホ
ルダ4の垂直下随意を測定演算するために、図示するよ
うに駆動モータ6にセルシン10を組み込んでおくと良
い。セルシン10とは位置発信器であり、温度センサホ
ルダ4の移動量を電気信号に変換する作用をなすもので
ある。回倒はRH法であるが、DH法の場合も同様に行
うことが出来る。
As shown in FIG. 4, the height of the tip of the temperature sensor holder 4 above the floor when it is in a predetermined position is Ho, and for example, the horizontal position of a fixed point P on Chesif is defined as Ho. shall be. The bottom of ladle 2 (
When the temperature sensor holder 4 is lowered by a vertical distance toward the inside of the ladle 2, where the upper surface of the ladle stand 8 is at a height D above the floor, and the fixed point P is located at the horizontal position L□. If the signal from the strain gauge 9 is caught, the level of the molten steel M in the ladle 2 will be at the height above the floor H2 (as shown in Fig. 4).
=H0-h). In the rotating device, the vacuum degassing tank 1 is fixed in position, so the height G above the floor of the tip of the suction pipe 1a is constant. Therefore, the suction pipe 1a is melted! II
An appropriate amount of rise d of the ladle 2 (therefore, its bottom surface) is required to not only ensure immersion into M but also to achieve the optimum immersion depth and smoothly perform vacuum suction degassing treatment. The amount of rise d differs depending on the size and operating conditions of the vacuum degassing tank 1 and ladle 2, so it is determined individually for each vacuum suction degassing device.The appropriate amount of rise d of the ladle 2 Once determined, raise the ladle stand 8 by the amount d as shown in Figure 5.
It is sufficient to perform the vacuum suction degassing treatment as described above. In order to measure and calculate the vertical movement of the temperature sensor holder 4 in the above-described operation, it is preferable to incorporate a cercin 10 into the drive motor 6 as shown in the figure. The Celsin 10 is a position transmitter, and functions to convert the amount of movement of the temperature sensor holder 4 into an electrical signal. Although the rotation is performed using the RH method, it can be performed similarly using the DH method.

〔発明の効果〕〔Effect of the invention〕

以上に詳述した如く本発明に係る真空吸上げ脱ガス処理
における浸漬管の浸漬深さのコントロール方法は、真空
吸上げ脱ガス処理におj)で、上下動する温度センサホ
ルダを利用してそれに歪ゲージを取り付けておき、その
温度センサホルダの先端部が溶鋼に浸漬したときに歪ケ
ージが発する信号をキャッチすることにより溶鋼レベル
を検知して吸」;げ管としての浸漬管の浸漬深さのコン
トロールをするように構成したことにより、溶鋼レベル
の位置を精確に知ることが出来、従って浸漬管の溶鋼へ
の浸漬が確実となり、目視による場合のような浸漬管の
溶鋼面からの離れによる不意の溶鋼排出、溢流等の危険
発生の不安は全くなく、しかも既設の測温装置を利用す
るのであるから比較的費用をかけないで簡便に浸漬管の
浸漬深さをコントロールすることが出来るのであり、そ
の工業的価値の非常に大きなものである。
As detailed above, the method of controlling the immersion depth of the immersion tube in the vacuum suction degassing process according to the present invention utilizes a temperature sensor holder that moves up and down in the vacuum suction degassing process. A strain gauge is attached to it, and the molten steel level is detected by catching the signal emitted by the strain cage when the tip of the temperature sensor holder is immersed in molten steel. By controlling the temperature of the molten steel, the position of the molten steel level can be accurately known, and the immersion tube can be reliably immersed in the molten steel. There is no fear of unexpected molten steel discharge or overflow, and since the existing temperature measuring device is used, the immersion depth of the immersion pipe can be easily controlled at relatively low cost. It is possible to do so, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法で使用する歪ゲージ付きの温度セン
サホルダの1例を一部切欠して示す拡大説明図、第2図
は第1図中のA部の拡大図、第3図は第2図におけるB
−B線断面図、第4図はRH法の実施に使用する真空吸
上げ脱ガス装置の1例の断面説明図、第5図は第4図の
装置による真空吸上げ脱ガスの実施状況の断面説明図で
ある。 図面中 1・・・・真空脱ガス槽 1a・・・・吸上げ管 1b・・・・排出管 lc・・・・排気口 1d・・・・ガス吸込管 2・・・・取鍋 3・・・・測温装置 4・・・・温度センサホルダ 4a・・・・先端部 4b・・・・基部 4c・・・・リート線 4d・・・・メタルコネクタ 4e・・・・袋ナツト 5・・・・スプロケット 6・・・・駆動モータ 7・・・・チェノ 8・・・・取鍋台 8a・・・・油圧装置 8b・・・・位置発信器 9・・・・歪ゲージ 10・・・・セルシン D・・・・取鍋底の床上高さ d・・・・取鍋底の上昇高さ G・・・・真空脱ガス槽の吸上管の床上高さHo・・・
・温度センサホルダが所定位置のときのその先端の床上
高さ H□・・・・溶鋼レベルの床上高さ h・・・・温度センサホルダが所定位置のときのその先
端と溶鋼レベルとの間の垂直距離 M・・・・溶鋼 第2TA B f 3 霞 第4 図
FIG. 1 is an enlarged explanatory view with a part cut away showing an example of a temperature sensor holder with a strain gauge used in the method of the present invention, FIG. 2 is an enlarged view of section A in FIG. 1, and FIG. B in Figure 2
-B line sectional view, Figure 4 is a cross-sectional explanatory diagram of an example of a vacuum suction degassing device used in the implementation of the RH method, and Figure 5 is an illustration of the implementation status of vacuum suction degassing using the device shown in Figure 4. It is a cross-sectional explanatory view. In the drawing 1... Vacuum degassing tank 1a... Suction pipe 1b... Discharge pipe lc... Exhaust port 1d... Gas suction pipe 2... Ladle 3. ...Temperature measuring device 4...Temperature sensor holder 4a...Tip portion 4b...Base 4c...Lead wire 4d...Metal connector 4e...Fall nut 5. ... Sprocket 6 ... Drive motor 7 ... Cheno 8 ... Ladle stand 8a ... Hydraulic system 8b ... Position transmitter 9 ... Strain gauge 10 ... ...Celsin D... Height above the floor of the bottom of the ladle d... Rise height of the bottom of the ladle G... Height above the floor of the suction pipe of the vacuum degassing tank Ho...
・Height above the floor of the tip of the temperature sensor holder when it is in the specified position H□...Height above the floor of the molten steel level h...Between the tip of the temperature sensor holder and the molten steel level when it is in the specified position Vertical distance M... Molten steel 2nd TA B f 3 Kasumi Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 1 底部に下方に向かつて突出している浸漬管が設けら
れ頂部に排気口を有する真空脱ガス槽及びその下方に設
置された取鍋と、上記浸漬管を避けて上下動する温度セ
ンサホルダをその先端側から溶鋼に浸漬して溶鋼温度を
測定する測温装置とから主として成る真空吸上げ脱ガス
装置を使用して溶鋼の真空吸上げ脱ガスを行うに際し、
温度センサホルダに歪ゲージを取り付けておき、温度セ
ンサホルダを下降させてその先端部が溶鋼に浸漬した時
に歪ゲージにより得られる信号をキヤッチしてその時の
温度センサホルダの位置と温度センサホルダの最初の所
定位置とから溶鋼レベルの位置を知つて真空脱ガス槽と
取鍋との相対位置を調節することを特徴とする真空吸上
げ脱ガス処理における浸漬管の浸漬深さのコントロール
方法。
1. A vacuum degassing tank with a downwardly protruding immersion tube at the bottom and an exhaust port at the top, a ladle installed below it, and a temperature sensor holder that moves up and down avoiding the immersion tube. When performing vacuum suction degassing of molten steel using a vacuum suction degassing device that mainly consists of a temperature measuring device that measures the temperature of the molten steel by immersing it in the molten steel from the tip side,
A strain gauge is attached to the temperature sensor holder, and when the temperature sensor holder is lowered and its tip is immersed in molten steel, the signal obtained by the strain gauge is captured and the position of the temperature sensor holder at that time and the beginning of the temperature sensor holder are measured. 1. A method for controlling the immersion depth of a immersion tube in vacuum suction degassing treatment, characterized by adjusting the relative position of a vacuum degassing tank and a ladle by knowing the position of the molten steel level from the predetermined position of the molten steel.
JP31802490A 1990-11-26 1990-11-26 Method for controlling immersed depth of immersion tubes in vacuum sucking-up degassing treatment Pending JPH04191313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31802490A JPH04191313A (en) 1990-11-26 1990-11-26 Method for controlling immersed depth of immersion tubes in vacuum sucking-up degassing treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31802490A JPH04191313A (en) 1990-11-26 1990-11-26 Method for controlling immersed depth of immersion tubes in vacuum sucking-up degassing treatment

Publications (1)

Publication Number Publication Date
JPH04191313A true JPH04191313A (en) 1992-07-09

Family

ID=18094647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31802490A Pending JPH04191313A (en) 1990-11-26 1990-11-26 Method for controlling immersed depth of immersion tubes in vacuum sucking-up degassing treatment

Country Status (1)

Country Link
JP (1) JPH04191313A (en)

Similar Documents

Publication Publication Date Title
CN110202107A (en) Tundish immersed nozzle immersion depth Automatic adjustment method
CN204524246U (en) A kind of automaton of vacuum casting stopper rod of tundish
CN105057634B (en) A kind of method and device of the quantitative molten metal of vacuum pumping
JPH04191313A (en) Method for controlling immersed depth of immersion tubes in vacuum sucking-up degassing treatment
CN111304410A (en) Molten steel refining slag absorption preventing method and system
TWI747779B (en) Mechanical agitated desulfurization system
GB1600310A (en) Indication of levels in receptacles
CN221588610U (en) RH vacuum chamber anti-suction alarm device
JPH05320738A (en) Method for controlling sucking-up type vacuum refining apparatus
CN214666704U (en) Device for automatically measuring underwater concrete pouring height and concrete pouring device
JP2894220B2 (en) Method and apparatus for degassing molten steel in refining process
JPS5831045A (en) Vacuum degassing method of molten metal and its device
JP3327210B2 (en) Vacuum refining method and apparatus
CN115652020B (en) Ladle clearance detector and ladle clearance detection method
JP4258414B2 (en) Detecting the amount of metal
KR100469295B1 (en) filler ladle safe arrival signal sensing apparatus
JPH058019A (en) Instrument for detecting level difference between ladle spout and molten metal surface
EP0062911A1 (en) Method and apparatus for removing slags
JPH11291015A (en) Method for supplying molten metal and device for supplying molten metal
JPH02213409A (en) Instrument for detecting molten metal surface in degassing refining
JPS59147987A (en) Method and device for measuring temperature
JPH07179925A (en) Method for refining molten steel in ladle
JPH09206912A (en) Closed type molten metal supplying apparatus and method for supplying molten metal
JPH09206911A (en) Closed type molten metal supplying apparatus and method for supplying molten metal
JPS5997748A (en) Method and device for continuous casting using communicating pipe