JPH04191303A - Compound for compacting powder and manufacture of sintered body - Google Patents

Compound for compacting powder and manufacture of sintered body

Info

Publication number
JPH04191303A
JPH04191303A JP2320685A JP32068590A JPH04191303A JP H04191303 A JPH04191303 A JP H04191303A JP 2320685 A JP2320685 A JP 2320685A JP 32068590 A JP32068590 A JP 32068590A JP H04191303 A JPH04191303 A JP H04191303A
Authority
JP
Japan
Prior art keywords
compound
organic compound
steam
powder
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2320685A
Other languages
Japanese (ja)
Other versions
JPH0674441B2 (en
Inventor
Takahisa Koshida
孝久 越田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2320685A priority Critical patent/JPH0674441B2/en
Publication of JPH04191303A publication Critical patent/JPH04191303A/en
Publication of JPH0674441B2 publication Critical patent/JPH0674441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a compound for compacting powder efficiently shortening degreasing time by incorporating the specific quantity of vaporizing component reacted with water at the temp. of the fluidized point or below in the mixture having the specific composition composed of organic compound and sinterable powder. CONSTITUTION:In the mixed material composed of 40-50vol.% the organic compound and the balance substantially sinterable powder of metal, ceramic, cermet, etc., the organic compound generating gaseous compound by reacting the water or steam at the time of fluidized point or below of this mixed material or capable of steam- distillation, is incorporated at 2.5-25vol.% to volume partial ratio of the whole organic compound. As this reactive organic compound, e.g. acetophenon oxime, etc., is used. This mixed material is used as the compound for compacting powder, and this green compact is heated at <=150 deg.C in steam-containing atmosphere. By this method, the component reaction with the water or the steam in the organic compound is removed. Thereafter, the residual organic compound is heated and removed and successively, the green compact is heated to the sintering temp. and sintered to obtain good sintered body for a short time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、焼結可能な粉末材料を有機材料と混合成形し
た後、効率良く有機材料を除去し、その後の焼結により
得られる金属、セラミックス、サーメット焼結体の製造
に供する粉末成形用コンパウンド及びそのコンパウンド
を用いた焼結体の製造方法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to mixing and molding a sinterable powder material with an organic material, efficiently removing the organic material, and then sintering the resulting metal, The present invention relates to a powder molding compound used in the production of ceramics and cermet sintered bodies, and a method for producing sintered bodies using the compound.

[従来の技術] 金属、セラミックス、サーメット等の粉末材料を焼結す
ることにより所望の形状の焼結体を得る方法は磁器、陶
器等のセラミックス、粉末冶金として古(から知られて
いる。
[Prior Art] A method of obtaining a sintered body of a desired shape by sintering powder materials such as metals, ceramics, and cermets has been known since ancient times as a technique for producing ceramics such as porcelain and pottery, and for powder metallurgy.

近年この技術の進歩に従って熱可塑性の有機材料と焼結
可能な粉末を混合し、高温で流動性を有しプラスチック
スと同様に複雑な形状の製品を成形する技術が開発され
た。この技術の中でも最も難しいのは成形の目的で40
〜50vo 1%添加した有機材料を成形体を変形させ
ることなく除去(脱脂)して焼結体を製造することであ
る。これに関する先行技術としては、 ■ 可溶性バインダを有機溶剤により抽出除去する方法
(特公昭57−40111号公報)■ 加熱により熱分
解させる方法(特開昭57−26105号公報) ■ 流動点以上に加熱してバインダを流出させる多孔質
の吸収体に吸収させる方法(特公昭62−33282号
公報) が代表的なものである。
In recent years, as this technology has progressed, a technology has been developed that mixes thermoplastic organic materials and sinterable powders to form products with fluidity at high temperatures and complex shapes similar to plastics. The most difficult part of this technique is the molding purpose.
~50vo 1% of the added organic material is removed (degreased) without deforming the molded body to produce a sintered body. Prior art related to this includes: ■ A method of extracting and removing a soluble binder with an organic solvent (Japanese Patent Publication No. 57-40111) ■ A method of thermally decomposing it by heating (Japanese Patent Publication No. 57-26105) ■ Heating above the pour point A typical method is a method in which the binder is absorbed into a porous absorbent body from which the binder flows out (Japanese Patent Publication No. 33282/1982).

[発明が解決しようとする課題1 有機材料と粉末を十分混合したコンパウンド(複合材)
を製造した後、このコンパウンドを射出成形、押出成形
等の成形技術により所望の形状の成形体を製造する。こ
の時コンパウンドに必要とされる特性は流動性、保形性
である。さらに最終焼結体を製造するには成形体中の樹
脂成分を除去しておかないと炭化物を生成したりして目
的の特性の製品が得られない。
[Problem to be solved by the invention 1 Compound (composite material) made by sufficiently mixing organic material and powder
After producing this compound, a molded article of a desired shape is produced using a molding technique such as injection molding or extrusion molding. At this time, the properties required for the compound are fluidity and shape retention. Furthermore, in order to produce the final sintered body, unless the resin component in the molded body is removed, carbide may be generated, making it impossible to obtain a product with desired characteristics.

このため従来は成形体をゆっくりと加熱することにより
バインダを蒸発除去させていた(特公昭48−2280
4号公報)。急激にバインダを除去すると成形体に亀裂
及び破損を生じるため数日かけて徐々にバインダを除去
しなければならず、生産性において改善の余地が大いに
あった。この問題を解決するために種々な方法が開発さ
れており、代表的な方法として、 ■ バインダの一部を溶剤中で溶解除去した後、残った
バインダを加熱除去する方法(特公昭57−40111
号公報) ■ バインダの一部を融点以上に加熱して流出させ多孔
質吸収体に吸収させる方法(特公昭62−33282号
公報) がある。
For this reason, conventionally the binder was removed by evaporation by slowly heating the molded body (Japanese Patent Publication No. 48-2280
Publication No. 4). Rapid removal of the binder would cause cracks and breakage in the molded body, so the binder had to be removed gradually over several days, leaving much room for improvement in productivity. Various methods have been developed to solve this problem, and representative methods include: (1) A method in which a portion of the binder is dissolved and removed in a solvent, and then the remaining binder is removed by heating (Japanese Patent Publication No. 57-40111).
1) There is a method (Japanese Patent Publication No. 62-33282) in which a part of the binder is heated to a temperature higher than its melting point so that it flows out and is absorbed into a porous absorbent body.

これらの方法は前記の単純な加熱法に比べて脱脂時間は
かなり短縮されるが、以下のような問題を残している。
Although these methods reduce the degreasing time considerably compared to the simple heating method described above, they still have the following problems.

すなわち、溶剤で溶解除去する方法では、バインダを除
去した後の溶剤の処理が問題であり、溶剤の劣化等によ
り製品の品質にバラツキを生じ安定しない。また有機溶
剤を使用する場合には環境保全のための溶剤処理設備を
必要とするため設備費が高価となり製品のコストアップ
の要因となる。
That is, in the method of dissolving and removing the binder with a solvent, there is a problem in processing the solvent after removing the binder, and the quality of the product varies due to deterioration of the solvent and is unstable. Furthermore, when an organic solvent is used, solvent treatment equipment is required for environmental protection, which increases equipment costs and increases the cost of the product.

バインダを流出させ吸収体に吸収させ脱脂時間の短縮を
はかる方法は製品特性上大きな欠点を有している。特に
、バインダ流出時に粉末成分も一部流出して5焼結時に
収縮する際、多孔体中の粉末がアンカーとなり均一に収
縮しなくなる。
The method of draining the binder and absorbing it into the absorbent body to shorten the degreasing time has major drawbacks in terms of product characteristics. Particularly, when the binder flows out, some of the powder components also flow out, and when the porous body contracts during sintering, the powder in the porous body becomes an anchor and does not shrink uniformly.

本発明は前記技術の欠点を克服して製品特性を損なうこ
となく効率的に脱脂時間の短縮をはかろうとするもので
、このような要求を充たす粉末成形用コンパウンド及び
焼結体の製造方法を提供することを目的とする。
The present invention aims to overcome the drawbacks of the above-mentioned techniques and efficiently shorten the degreasing time without impairing the product properties, and provides a method for producing a powder molding compound and sintered body that satisfies these requirements. The purpose is to provide.

「課題を解決するための手段〕 本発明は、40〜50vol%の有機化合物を含み残部
実質的に焼結可能な粉末から成る混合物であって、この
混合物の流動点以下の温度で水あるいは水蒸気と反応し
て気体状化合物を生成するか又は水蒸気蒸留が可能な有
機化合物を、全有機化合物中の体積分率で2.5〜25
vo 1%含有することを特徴とする粉末成形用コンパ
ウンドである。
"Means for Solving the Problems" The present invention provides a mixture containing 40 to 50 vol% of an organic compound and the remainder substantially sinterable powder. Organic compounds that react with gas to form gaseous compounds or that can be steam distilled in a volume fraction of 2.5 to 25% of the total organic compounds.
This is a powder molding compound characterized by containing 1% of vo.

本発明方法は、このようなのコンパウンドから成る成形
体を150℃以下の温度で水蒸気含有雰囲気中で加熱し
、有機化合物中の水又は水蒸気と反応する成分を除去し
た後、残りの有機化合物を焼結温度よりも低い温度で加
熱除去し、次いで、焼結温度まで加熱し焼結することを
特徴とする焼結体の製造方法である。
In the method of the present invention, a molded body made of such a compound is heated in an atmosphere containing water vapor at a temperature of 150°C or less to remove components that react with water or water vapor in the organic compound, and then the remaining organic compound is sintered. This method of producing a sintered body is characterized in that the sintered body is removed by heating at a temperature lower than the sintering temperature, and then heated to the sintering temperature for sintering.

本発明は効果的に脱脂を行うことができるバインダを含
むコンパウンドを用い、脱脂を容易に達成して焼結体を
製造するものである。基本となる構成要件としては水又
は水蒸気と反応して気体状化合物として成形体から容易
に除去できる有機化合物を含んでいるか、水蒸気蒸留が
可能である有機化合物を含んでいることであり、このよ
うなバインダと焼結可能な粉末とのコンパウンドを流動
点以下で効率的に脱脂することである。
The present invention uses a compound containing a binder that can be effectively degreased, and easily accomplishes degreasing to produce a sintered body. The basic constituent requirements are that it contains an organic compound that can be easily removed from the molded article as a gaseous compound by reacting with water or steam, or it must contain an organic compound that can be steam distilled. The object of the present invention is to efficiently degrease a compound of a binder and a sinterable powder below the pour point.

また、本発明方法の最も重要な特徴は、バインダ中の特
定成分を100’C前後の低温で分解あるいは蒸留する
ことにより効率よく除去すること及び、後工程の脱脂を
短時間で行うことにある。
Furthermore, the most important features of the method of the present invention are that specific components in the binder can be efficiently removed by decomposition or distillation at a low temperature of around 100'C, and that degreasing in the post-process can be carried out in a short time. .

[作用] 本発明者は従来技術の改善により脱脂時間の短縮をはか
ることを目的として種々の方法を検討した。
[Function] The present inventor investigated various methods for the purpose of shortening the degreasing time by improving the conventional technology.

その結果、成形体中から特定成分を除去して成形体を多
孔質にすれば、気孔を通して有機成分が効率的に除去さ
れるため脱脂速度を速(しても膨れ、亀裂などを生じな
いとの知見を得た。本発明はこの知見に基づくものであ
る。
As a result, if specific components are removed from the molded body to make it porous, the organic components can be efficiently removed through the pores, so the degreasing speed can be increased (even if it does not cause blistering, cracking, etc.). The present invention is based on this knowledge.

単に加熱によるバインダの蒸発では沸点の低い化合物は
ど効果的であるが成形時にコンパウンドに流動性をもた
せるため、150℃前後に加熱したときに蒸発成分によ
り成形体中に気孔等の欠陥を生ずる。このため加熱によ
る蒸発除去には限界がある。本発明では気相反応でバイ
ンダ中の特定の有機化合物を反応除去することが可能で
ある成分を含んでいる点とこれらの成分をコンパウンド
の流動点以下で効果的に脱脂できることが特徴となる。
If the binder is simply evaporated by heating, a compound with a low boiling point is effective, but in order to give the compound fluidity during molding, when the compound is heated to around 150°C, the evaporated components cause defects such as pores in the molded product. Therefore, there is a limit to evaporation removal by heating. The present invention is characterized in that it contains components that can react and remove specific organic compounds in the binder in a gas phase reaction, and that these components can be effectively degreased below the pour point of the compound.

反応性ガスとして有機物を用いると、排ガス処理設備、
設備コスト等の点から従来の有機溶剤による抽出技術と
変らないため、改善したこととはならない。そこで最も
安価で処理の容易な水蒸気で分解する方法を開発した。
When organic substances are used as reactive gases, exhaust gas treatment equipment,
This is not an improvement, as it is no different from conventional extraction techniques using organic solvents in terms of equipment costs, etc. Therefore, we developed a method of decomposing with steam, which is the cheapest and easiest to process.

水又は水蒸気と反応して気体状化合物を生成して分解し
てゆくバインダ中の成分あるいは水蒸気蒸留が可能な成
分は、 ■ 150℃前後の成形時にその温度では容易に除去さ
れない成分であること ■ 脱脂時にできる限り低温で効率的に水又は水蒸気と
反応するか又は蒸留されること の2つの条件を満足するものである。
Components in the binder that react with water or steam to generate gaseous compounds and decompose, or components that can be steam distilled, must be components that cannot be easily removed at temperatures around 150°C during molding. It satisfies two conditions: it reacts with water or steam efficiently at the lowest possible temperature during degreasing, or it is distilled.

この2つの要件を満足させる化合物としてアセトフェノ
ンオキシム、アトロバ酸、P−アニスアルデヒド、アニ
ス酸、アミノアセトフェノール、アミノケイ皮酸、アミ
ノナフトールアントラニル酸メニル、イソシアヌル酸エ
チル、イソフタルアルデヒド、イタコン酸インドリジン
、エチルマロン酸、キサンチン、クマリン、グリオキシ
ル酸、ジアミノ安息香酸、ジアミノフェノール、ジメチ
ル安息香酸、デツキサル酸、テトラメチルベンゼン、デ
ヒドロアスト酸、トリメチルフェノール、トルレイン酸
、ヒドロキシトルイル酸、ビフェニル、フェニルグリオ
キサール、フェニルナフタレン、フランカルボン酸、フ
ルオロ安置、香酸、ヘプタン酸エチル、メタアクロレイ
ン酸、メタアクロイレン4.2−エチルヘキサノール等
がある。
Compounds that satisfy these two requirements include acetophenone oxime, atrobic acid, P-anisaldehyde, anisic acid, aminoacetophenol, aminocinnamic acid, menyl aminonaphthole anthranilate, ethyl isocyanurate, isophthalaldehyde, indolizine itaconate, and ethyl Malonic acid, xanthine, coumarin, glyoxylic acid, diaminobenzoic acid, diaminophenol, dimethylbenzoic acid, detuxaric acid, tetramethylbenzene, dehydroastoic acid, trimethylphenol, toluleic acid, hydroxytoluic acid, biphenyl, phenylglyoxal, phenylnaphthalene, Examples include furocarboxylic acid, fluoroamic acid, ethyl heptanoate, methacroleic acid, methacroylene 4,2-ethylhexanol, and the like.

これらの易反応性の有機物は、低温で水又は水蒸気と反
応して成形体から除去され、通気孔を生ずるために、含
有量としては全有機化合物中の気孔の体積分率が2.5
〜25vol%になる程度が好ましい、2.5vol%
未満では効果が小さ(25vol%より多くなると流動
性、保形性の点からコンパウンド成形時に問題がでるか
らである。
These easily reactive organic substances react with water or steam at low temperatures and are removed from the molded body, creating vents, so that the volume fraction of pores in all organic compounds is 2.5.
The amount is preferably 2.5 vol% to 25 vol%.
If it is less than 25 vol %, the effect will be small (if it is more than 25 vol %, problems will occur during compound molding in terms of fluidity and shape retention).

バインダの他の成分としては本来要康される粒子間を接
着させて成形体の保形性を保つためにはアクリル樹脂、
酢酸ビニルポリスチレン、ポリエチレン、ポリプロピレ
ン、ポリブチルメタアクリレートなどが代表的な成分で
あり、他に成形時に複雑形状の成形型に容易に入り込ま
せる必要がある場合には、流動性を向上させる必要があ
るのでワックス、ステアリン酸、オレイン酸などを使用
する。
Other components of the binder include acrylic resin, which is essential for adhesion between particles and maintaining the shape retention of the molded product.
Typical ingredients include vinyl acetate polystyrene, polyethylene, polypropylene, and polybutyl methacrylate, and if it is necessary to easily enter a complex-shaped mold during molding, it is necessary to improve fluidity. Therefore, wax, stearic acid, oleic acid, etc. are used.

成形体に弾力性をもたせるための可塑剤としてはジエチ
ルフタレート、ジブチルフタレート、ジオクチルフタレ
ート、ブチルステアレートなどを添加したりする。さら
に粉末の処理剤として樹脂とのなじみを良(する目的で
カプリング剤、界面活性剤などを添加して流動性を良く
することもある。
As a plasticizer for imparting elasticity to the molded article, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, butyl stearate, etc. may be added. Furthermore, coupling agents, surfactants, etc. are sometimes added as powder processing agents to improve compatibility with resins to improve fluidity.

通常は粉末の粒子形状により接着剤、滑材、可塑剤の成
分比を調整する。通常接着剤と滑材は必須とされてる。
Usually, the component ratio of adhesive, lubricant, and plasticizer is adjusted depending on the particle shape of the powder. Adhesives and lubricants are usually required.

有機化合物は体積分率で40〜50%が通常使用される
範囲である。他の要件としては脱脂促進剤を水又は水蒸
気と反応させる場合に保形性の点からコンパウンドの流
動点以下で水又は水蒸気と反応しない成分を含んでいる
ことが必要である。
The volume fraction of the organic compound is usually 40 to 50%. Another requirement is that when the degreasing accelerator is reacted with water or steam, it must contain a component that does not react with water or steam at a temperature below the pour point of the compound in terms of shape retention.

脱脂促進剤は流動点以上では流れ出して粉末を伴って流
出してくるので好ましくない。このため流動点以下の温
度で加熱除去する必要がある。通常のバインダは高温に
なるほど成形体の粘度が低下してダレ等の保形性に問題
が生じる。そこでできるだけ150’C以下の温度で取
り除かれるものが好ましい。
The degreasing accelerator is not preferable at temperatures above the pour point because it flows out and comes out with powder. Therefore, it is necessary to remove it by heating at a temperature below the pour point. With ordinary binders, as the temperature increases, the viscosity of the molded product decreases, causing problems in shape retention such as sagging. Therefore, it is preferable to use a material that can be removed at a temperature as low as 150'C or less.

樹脂とワックスの混合比は粒子の形状、大きさ、密度等
によって異なり、実際に粉末と混練して決定する。混線
方法はバインダ成分が流動性を有するような100〜1
50℃で加圧しながら強力に撹拌する方法が一般に取ら
れる。脱脂促進剤は良く混練されたコンパウンドに添加
して均一分散させる。
The mixing ratio of resin and wax varies depending on the shape, size, density, etc. of the particles, and is determined by actually kneading them with powder. The cross-wire method is such that the binder component has fluidity.
Generally, a method of vigorously stirring while applying pressure at 50° C. is used. The degreasing accelerator is added to the well-kneaded compound and uniformly dispersed.

粉末は焼結が可能な材料であれば金属、セラミックス、
サーメットなどのいずれものものでも可能である。
Powder can be made of metals, ceramics, etc. as long as it can be sintered.
Any material such as cermet is also possible.

さらに前記コンパウンドを使用した焼結晶の製造工程を
以下説明する。
Furthermore, the manufacturing process of baked crystals using the above-mentioned compound will be explained below.

コンパウンドを一定の形状に成形する方法は以前から行
オつれているプレス成形、押出成形、射出成形などによ
ることができる。本発明では成形法を限定するものでは
ない。
The compound can be molded into a certain shape by conventional methods such as press molding, extrusion molding, and injection molding. The present invention does not limit the molding method.

次に、本発明の核心技術である、成形体からバインダを
除去する工程について説明する。
Next, the process of removing the binder from the molded body, which is the core technology of the present invention, will be explained.

まず室温付近から水蒸気含有雰囲気中で成形体を徐々に
加熱する。このときの水蒸気分圧は目的とする低温で除
去可能な有機化合物(脱脂促進剤)と反応する量が供給
されていれば良い。水蒸気雰囲気中での加熱は前述した
ようにバインダの流動点以下での加熱が望ましく成形状
態のまま粉末が保形されることを要する。
First, the molded body is gradually heated in an atmosphere containing water vapor from around room temperature. The partial pressure of water vapor at this time may be such that it is supplied in an amount that reacts with the organic compound (degreasing accelerator) that can be removed at the desired low temperature. As described above, heating in a steam atmosphere is preferably performed at a temperature below the pour point of the binder, and the powder must be kept in shape while remaining in a molded state.

つづいて脱脂促進剤が除去された後は残存するバインダ
を焼結温度以下まで加熱してバインダを完全に除去する
。通常は樹脂成分が除去される500℃前後の温度まで
加熱して除去する。このときの加熱速度は、脱脂促進剤
が除去され通気孔が生成して残りのバインダが蒸発し易
くはなっているが、急激に加熱するとガスの発生が多く
なり、亀裂、膨れ等を生ずることがあるので成形体の寸
法等など考慮して条件を決める必要がある。
Subsequently, after the degreasing accelerator is removed, the remaining binder is heated to a temperature below the sintering temperature to completely remove the binder. Usually, the resin component is removed by heating to a temperature of around 500° C., which is the temperature at which the resin component is removed. The heating speed at this time is such that the degreasing accelerator is removed and vent holes are formed, making it easier for the remaining binder to evaporate, but rapid heating will generate more gas and cause cracks, blisters, etc. Therefore, it is necessary to decide the conditions by considering the dimensions of the molded body, etc.

次に焼結は対象とする粉末によって条件は異なるが公知
の技術で処理可能である。前記工程とは分離した工程と
してもよく、連続工程としてもよい。
Next, sintering can be performed using known techniques, although conditions vary depending on the target powder. This step may be a separate step from the above steps or may be a continuous step.

C実施例〕 実施例 水アトマイズ法で製造した平均粒径10.2 u mの
5US304ステンレス粉末100重量部に対して酢酸
ビニル(接着剤)2重量部、ワックス(滑材)2重量部
、フタル酸ジブチル(可塑剤)2重量部、ポリメタワリ
ル酸ブチル(接着剤)4重量部を、3βの加圧ニーダを
使用して120℃でih混線した。混線後100℃まで
冷却し、再度混練してジエチルヘキサノールを1.2重
量部(全有機化合物中の体積分率は約11.9vol%
)添加して1h混線した。その後2軸混練押出装置で3
〜5mmのペレットに整粒してコンパウンドを製造した
Example C] Example 2 parts by weight of vinyl acetate (adhesive), 2 parts by weight of wax (sliding material), and phthalate per 100 parts by weight of 5US304 stainless steel powder with an average particle size of 10.2 um produced by the water atomization method. 2 parts by weight of dibutyl acid (plasticizer) and 4 parts by weight of butyl polymethawalylate (adhesive) were subjected to IH crosstalk at 120°C using a 3β pressure kneader. After mixing, cool to 100°C and knead again to add 1.2 parts by weight of diethylhexanol (volume fraction in all organic compounds is approximately 11.9 vol%).
) was added, causing crosstalk for 1 hour. After that, 3
A compound was produced by sizing into pellets of ~5 mm.

次いでこのコンパウンドを射出成形機を用いて150℃
x1000kgf/cm”の成形条件でφ40Xφ30
XIOmmのリング状成形体とした。成形体はハンドリ
ング時に変形することもなく適切な強度を有する良好な
状態にあった。 この成形体をアルミナ板上に置き通気
方式の乾燥機にセットした後75℃に昇温し、空気をキ
ャリヤーガスとして水蒸気を吹込んで4h処理を行った
。このとき重量減少率は0.8%であり脱脂促進剤は効
率的に除去されていた。
This compound was then heated to 150°C using an injection molding machine.
φ40×φ30 under the molding condition of “x1000kgf/cm”
It was made into a ring-shaped molded body of XIO mm. The molded body did not deform during handling and was in good condition with appropriate strength. This molded body was placed on an alumina plate, set in a ventilation type dryer, heated to 75° C., and treated for 4 hours by blowing water vapor into the molded body using air as a carrier gas. At this time, the weight reduction rate was 0.8%, and the degreasing accelerator was efficiently removed.

さらに雰囲気炉中にセットして5℃/ m i nの速
度でN2雰囲気中で加熱し、500℃で1h保持した後
連続して5℃/ m i nの速度で加熱し、1300
℃で1h保持した、このときの雰囲気は1O−IPaの
真空条件である。得られた焼結体は密度が97%で寸法
精度は内径で同慶を調べると最大径と最小径の差で2〜
3μmレベルにあった。このときの残炭量もO,OO2
重量%と良好な条件であった。
Furthermore, it was set in an atmosphere furnace and heated at a rate of 5°C/min in a N2 atmosphere, and after being held at 500°C for 1 hour, it was continuously heated at a rate of 5°C/min, and heated at a rate of 1300°C.
The temperature was maintained at 1 h for 1 hour, and the atmosphere at this time was a vacuum condition of 1 O-IPa. The density of the obtained sintered body is 97%, and the dimensional accuracy of the inner diameter is 2 to 2 depending on the difference between the maximum and minimum diameters.
It was at the 3 μm level. The amount of remaining coal at this time is also O, OO2
% by weight and good conditions.

比較例 実施例から脱脂促進剤を除いたコンパウンドを同−の条
件で成形、脱脂、焼結を行った焼結体を製造した。焼結
体は表面に膨れ、亀裂が観察され正常な状態ではなかっ
た。
COMPARATIVE EXAMPLE A sintered body was produced by molding, degreasing, and sintering a compound from the example except that the degreasing accelerator was removed under the same conditions. The sintered body was not in a normal state, with swelling and cracks observed on the surface.

[発明の効果1 本発明のコンパウンドは、水蒸気で反応し、蒸留可能な
有機化合物を含有しているので短時間で脱脂しても良好
な焼成品の製品を製造することができるようになった。
[Effect of the invention 1] The compound of the present invention reacts with water vapor and contains an organic compound that can be distilled, so it is now possible to produce baked products that are good even when degreased in a short time. .

特に新規な設備を必要とせず容易に脱脂時間の短縮化を
はかることが可能となった。
It has become possible to easily shorten the degreasing time without particularly requiring new equipment.

Claims (1)

【特許請求の範囲】 1 40〜50vol%の有機化合物を含み残部実質的
に焼結可能な粉末から成る混合物であって、該混合物の
流動点以下の温度で水あるいは水蒸気と反応して気体状
化合物を生成するか又は水蒸気蒸留が可能な有機化合物
を、全有機化合物中の体積分率で2.5〜25vol%
含有することを特徴とする粉末成形用コンパウンド。 2 請求項1記載ののコンパウンドから成る成形体を1
50℃以下の温度で水蒸気含有雰囲気中で加熱し、有機
化合物中の水又は水蒸気と反応する成分を除去した後、
残りの有機化合物を焼結温度よりも低い温度で加熱除去
し、次いで、焼結温度まで加熱し焼結することを特徴と
する焼結体の製造方法。
[Scope of Claims] 1. A mixture containing 40 to 50 vol% of an organic compound and the remainder being substantially sinterable powder, which reacts with water or steam at a temperature below the pour point of the mixture to form a gaseous state. The organic compound that can produce a compound or can be steam distilled is 2.5 to 25 vol% in volume fraction of the total organic compounds.
A powder molding compound characterized by containing: 2. A molded article made of the compound according to claim 1.
After heating in a steam-containing atmosphere at a temperature of 50 ° C. or lower to remove components that react with water or steam in the organic compound,
A method for producing a sintered body, which comprises removing remaining organic compounds by heating at a temperature lower than a sintering temperature, and then heating and sintering to a sintering temperature.
JP2320685A 1990-11-27 1990-11-27 Method for producing powder molding compound and sintered body Expired - Lifetime JPH0674441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2320685A JPH0674441B2 (en) 1990-11-27 1990-11-27 Method for producing powder molding compound and sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2320685A JPH0674441B2 (en) 1990-11-27 1990-11-27 Method for producing powder molding compound and sintered body

Publications (2)

Publication Number Publication Date
JPH04191303A true JPH04191303A (en) 1992-07-09
JPH0674441B2 JPH0674441B2 (en) 1994-09-21

Family

ID=18124194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2320685A Expired - Lifetime JPH0674441B2 (en) 1990-11-27 1990-11-27 Method for producing powder molding compound and sintered body

Country Status (1)

Country Link
JP (1) JPH0674441B2 (en)

Also Published As

Publication number Publication date
JPH0674441B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
JP3142828B2 (en) Binder system for powder injection molding
US5531958A (en) Process for improving the debinding rate of ceramic and metal injection molded products
EP0428719B1 (en) Method of forming shaped components from mixtures of thermosetting binders and powders having a desired chemistry
JPS6141867B2 (en)
JPH03170624A (en) Manufacture of inorganic sintered compact body
US6761852B2 (en) Forming complex-shaped aluminum components
JPH04329801A (en) Production of sintered parts
JPH02137779A (en) Manufacture of porous molded article
JPH04191303A (en) Compound for compacting powder and manufacture of sintered body
JPH0211703A (en) Method for degreasing metal powder injection green compact
JPH0770610A (en) Method for sintering injection-molded product
JPH02290642A (en) Manufacture of ceramic core
JPH01215907A (en) Manufacture of metal sintered compact
JPH0339403A (en) Method for sintering metal powder
JP2949130B2 (en) Method for producing porous metal filter
JPH11131103A (en) Composition for powder injection molding and production of powder injection molded goods
EP0365460B1 (en) Method to obtain coatings on mechanical parts by P/M techniques
JPH06287055A (en) Production of sintered article of ceramic
JPH0825178B2 (en) Method of manufacturing injection molded body
JPH04165005A (en) Method for removing binder from powder green compact
JPH0823042B2 (en) Metal injection molding method
CN115650762A (en) Ceramic slurry and preparation method of porous ceramic atomizing core
JPH04308005A (en) Production of metal molded with iron powder
JPS5832202B2 (en) Granulation method of Mo metal powder
JPH09328369A (en) Production of ceramic sintered compact