JPH04191030A - Resin fuel tank - Google Patents

Resin fuel tank

Info

Publication number
JPH04191030A
JPH04191030A JP32124190A JP32124190A JPH04191030A JP H04191030 A JPH04191030 A JP H04191030A JP 32124190 A JP32124190 A JP 32124190A JP 32124190 A JP32124190 A JP 32124190A JP H04191030 A JPH04191030 A JP H04191030A
Authority
JP
Japan
Prior art keywords
fuel tank
continuous matrix
magnetic metal
resin
matrix phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32124190A
Other languages
Japanese (ja)
Inventor
Takeshi Uotani
魚谷 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP32124190A priority Critical patent/JPH04191030A/en
Publication of JPH04191030A publication Critical patent/JPH04191030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To facilitate the manufacturing of the tank concerned and obtain resin fuel tank, the permeability of fuel such as gasoline or the like through which can easily be judged, by a method wherein magnetic metal. powder is dispersed along a laminar layer in continuous matrix layer. CONSTITUTION:The resin fuel tank 10 concerned has laminar layer 12, which is made of polyamide-based resin and along which magnetic metal powder 13 is dispersed in continuous matrix phase 11 made of polyolefin. The laminar layer 12 mainly locates at the middle to the direction of the thickness of the continuous matrix phase 11 and extends to the direction of its surface. The magnetic metal powder 13 is composed of ferrite, iron oxide, chromium oxide or the like having the particle diameter of 100mum or less and dispersed together with the laminar layer 12 in the continuous matrix phase 11. The preferable mixing ratio of the magnetic metal powder is 1-30wt.%. Thus, the fuel. tank concerned perfectly prevents gasoline or the like from permeating. The quality of the prevention can be checked with an ultrasonic sensor or the like, to say nothing of with a metal finder.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、樹脂製の燃料タンクに関し、ガソリン等の燃
料の透過を容易に判断できるように工夫したものである
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a resin fuel tank, and is devised so that the permeation of fuel such as gasoline can be easily determined.

〈従来の技術〉 燃料タンクはほとんどが金属製であるが、軽量であると
共に容易に自由な形状に成形できる点を考慮して、樹脂
製の燃料タンクが検討されている。しかし、一般の樹脂
は、ガソリン等が完全に遮断することができず、多少の
透過性を有するので、成形した後に処理等を施してガソ
リン等の透過を完全に防止する必要がある。そこで、下
記のような樹脂製燃料タンクが提案されている。
<Prior Art> Most fuel tanks are made of metal, but fuel tanks made of resin are being considered because they are lightweight and can be easily molded into any shape. However, general resins cannot completely block out gasoline and the like and have some permeability, so it is necessary to perform treatment after molding to completely prevent the penetration of gasoline and the like. Therefore, the following resin fuel tank has been proposed.

第一には、例えば高密度ポリエチレン (HDPE)を単層にブロー成形した後、その成形品中
に803ガスを入れてオートクレーブ中で処理し、続い
てNH3ガスで中和することにより、成形品内面を80
3処理する方法である。
First, for example, after blow molding high density polyethylene (HDPE) into a single layer, 803 gas is introduced into the molded product, the molded product is treated in an autoclave, and then the molded product is neutralized with NH3 gas. 80 on the inside
This is a three-processing method.

第二には、HDPEをブロー成形する際にその内部に例
えば1%のF2ガスを吹き込み、成形品内面をフッ素処
理する方法である。
The second method is to blow 1% F2 gas into the HDPE during blow molding to treat the inner surface of the molded product with fluorine.

また、第三には、ガソリンを完全に透過しないナイロン
層を中央にしてその両側にHDPE層を形成するように
ブロー成形する方法である。この場合、中央のナイロン
層とその両側のHDPE層との間に接着剤が入るので三
種五層のブロー成形品となる。
The third method is to blow mold a nylon layer that is completely impermeable to gasoline so that HDPE layers are formed on both sides of the center nylon layer. In this case, the adhesive is inserted between the central nylon layer and the HDPE layers on both sides, resulting in a blow-molded product with three types and five layers.

しかし、これらの方法は、何れも製造工程や製造装置が
複雑となって製造コストが嵩むという問題がある。そこ
で、製造工程が単純な、いわゆるナイロン分散法という
方法が注目されている。この方法ばHDPEにポリアミ
ド系樹脂、例えばナイロンに接着剤を加えたシーク(商
品名;デュポン社製)を混合して単層ブロー成形する方
法である。かかる方法によると、第2図に示すようにH
DPEの連続マトリックス相1の厚さ方向中央部にポリ
アミド系樹脂からなる複数のラミナ層2が形成される。
However, all of these methods have a problem in that the manufacturing process and manufacturing equipment become complicated and the manufacturing cost increases. Therefore, a method called the so-called nylon dispersion method, which has a simple manufacturing process, is attracting attention. This method is a method in which HDPE is mixed with a polyamide resin such as SEEK (trade name; manufactured by DuPont), which is nylon with an adhesive added, and the mixture is blow-molded in a single layer. According to this method, as shown in FIG.
A plurality of lamina layers 2 made of polyamide resin are formed at the center in the thickness direction of the continuous matrix phase 1 of DPE.

このラミナ層2は不連続であるが上記厚さ方向に直交す
る方向に延びるものであり、ガソリンの透過を防止する
作用を有する。
This lamina layer 2 is discontinuous but extends in a direction perpendicular to the thickness direction, and has the function of preventing gasoline from permeating.

〈発明が解決しようとする課題〉 前述したナイロン分散法で、連続マトリックス相1の中
にナイロンのラミナ層2が形成されるのは、融点が異な
るHDPEとナイロンとが相溶せずに適度に混り合った
状態で延伸されるからである。しかし、ラミナ層2が形
成される温度条件等の範囲が狭く、常にラミナ層2が適
正に形成されているかどうか判らないという問題がある
。すなわち、条件によってはナイロンが粒状となり、透
過防止効果が発現しないが、実際には、どのようなラミ
ナ層2が形成されているか把握できないという問題があ
る。
<Problems to be Solved by the Invention> In the nylon dispersion method described above, the nylon lamina layer 2 is formed in the continuous matrix phase 1 because HDPE and nylon, which have different melting points, are not compatible with each other and are not mixed properly. This is because they are stretched in a mixed state. However, there is a problem that the range of temperature conditions etc. under which the lamina layer 2 is formed is narrow, and it is not always clear whether the lamina layer 2 is formed properly. That is, depending on the conditions, the nylon becomes granular and no permeation prevention effect is exhibited, but there is a problem in that it is not possible to ascertain what kind of lamina layer 2 is actually formed.

本発明はこのような事情に鑑み、製造が容易であり、且
つガソリン等の燃料の透過性を容易に判断できる樹脂製
燃料タンクを提供することを目的とする。
In view of these circumstances, an object of the present invention is to provide a resin fuel tank that is easy to manufacture and whose permeability to fuel such as gasoline can be easily determined.

く課題を解決するための手段〉 前記目的を達成する本発明に係る樹脂製燃料タンクは、
ポリオレフィンからなる連続マトリックス相の厚さ方向
中央部にポリアミド系樹脂からなると共に上記厚さ方向
に略直交する方向に延びる不連続の複数のラミナ層を有
する樹脂成形材からなる燃料タンクであって、上記連続
マトリックス相には、上記ラミナ層に沿って磁性金属粉
末が分散されていることを特徴とする。
Means for Solving the Problems〉 The resin fuel tank according to the present invention that achieves the above object has the following features:
A fuel tank made of a resin molded material having a continuous matrix phase made of polyolefin and a plurality of discontinuous lamina layers made of polyamide resin and extending in a direction substantially perpendicular to the thickness direction in the central part in the thickness direction, The continuous matrix phase is characterized in that magnetic metal powder is dispersed along the lamina layer.

く作   用〉 前記構成においては、連続マトリックス相中のラミナ層
に沿って磁性金属粉末が分散されているので、該磁性金
属粉末の分散具合を電磁波計測響等で検出すれば、ラミ
ナ層がどのような状態で形成されているかを把握するこ
とができ、ガソリン等の透過防止性を判断できろ。
In the above configuration, since the magnetic metal powder is dispersed along the lamina layer in the continuous matrix phase, if the degree of dispersion of the magnetic metal powder is detected by electromagnetic measurement or acoustics, it can be determined how the lamina layer is formed. It would be possible to determine whether it is formed in such a state and judge its ability to prevent the permeation of gasoline, etc.

く実 施 例〉 9下、本発明を実施例に基づいて説明する。Example of implementation 9 below, the present invention will be explained based on examples.

第1図(a)、(blには本実施例の樹脂製燃料タンク
を示す。
FIGS. 1(a) and 1(bl) show the resin fuel tank of this embodiment.

第1図(a)に示す樹脂製燃料タンク10は、第1図(
b)に示すように、ポリオレフィンからなる連続マトリ
ックス相11の中に、ポリアミド系樹脂で形成されたラ
ミナ層12を有すると共に、このラミナ層12に治って
磁性金属粉末13が分散されている。ここで、ラミナ層
12は主に連続マトリックス相11の厚さ方向中央部に
形成され、その面方向に延びるものであり、これは従来
のナイロン分散法で成形されたものと同様である。
The resin fuel tank 10 shown in FIG. 1(a) is shown in FIG.
As shown in b), a continuous matrix phase 11 made of polyolefin has a lamina layer 12 made of polyamide resin, and magnetic metal powder 13 is dispersed in this lamina layer 12. Here, the lamina layer 12 is mainly formed in the central part in the thickness direction of the continuous matrix phase 11 and extends in the surface direction thereof, which is similar to that formed by the conventional nylon dispersion method.

本発明でポリオレフィンとは、ポリエチレン、ポリプロ
ピレン、ポリブチレン等、及びこれらの二種以上の共重
合体をいう。また、ポリアミド系樹脂は、ナイロンの他
、ナイロンに接着剤を混合した樹脂をいう。
In the present invention, polyolefin refers to polyethylene, polypropylene, polybutylene, etc., and copolymers of two or more of these. In addition to nylon, the polyamide resin refers to a resin in which nylon is mixed with an adhesive.

一方、本発明で磁性金属粉末は、例えば粒径が100μ
mfd下のフェライト、酸化鉄、酸化クロムなどをいい
、磁性を予め有するか否かは問わない。なお、粒径が1
00μmをこえると、成形性に悪影響が出てくるので好
ましくない。
On the other hand, in the present invention, the magnetic metal powder has a particle size of, for example, 100 μm.
It refers to ferrite, iron oxide, chromium oxide, etc. under MFD, and it does not matter whether or not it has magnetism in advance. In addition, if the particle size is 1
If it exceeds 00 μm, it is not preferable because it will have an adverse effect on moldability.

このような樹脂製燃料タンク10を製造するには、ポリ
アミド系樹脂及び磁性金属粉末の混合物をポリオレフィ
ンに適度に混合した後、従来のナイロン分散法と同様に
延伸する条件で成形すればよく、例えば、押し出した円
筒体を型に収めた後、エアーを吹き込み延伸するブロー
成形によればよい。このように延伸成形されることによ
り、磁性金属粉末13は連続マトリックス相11内のラ
ミナ層12の形成と共に分散される。
In order to manufacture such a resin fuel tank 10, a mixture of polyamide resin and magnetic metal powder may be appropriately mixed with polyolefin, and then molded under stretching conditions similar to the conventional nylon dispersion method. Blow molding may be used in which the extruded cylindrical body is placed in a mold and then stretched by blowing air into it. By stretching and molding in this manner, the magnetic metal powder 13 is dispersed while forming the lamina layer 12 within the continuous matrix phase 11.

このような磁性金属粉末の配合割合は、1〜30重量%
が好ましい。1重量%未満ではその効果が発揮されず、
一方、30重量%をこえると成形性の悪化につながるか
らである。
The blending ratio of such magnetic metal powder is 1 to 30% by weight.
is preferred. If the amount is less than 1% by weight, the effect will not be exhibited.
On the other hand, if it exceeds 30% by weight, moldability will deteriorate.

ポリアミド型樹脂としてンーラ(商品名:デュポン社製
)を用い、これに磁性金属粉末としてフェライトを混合
した後、これを高密度高分子量ポリエチレンに混合し、
ブロー成形により燃料タンクを作製した。
Nura (trade name: manufactured by DuPont) is used as a polyamide type resin, and ferrite is mixed with it as a magnetic metal powder, and then this is mixed with high-density, high-molecular-weight polyethylene.
A fuel tank was manufactured by blow molding.

かかる燃料タンクを電磁波計測N(金属探知器)で計測
したところ、全域に亘って金属が検出された。なお、こ
の燃料タンクはガソリン等の透過が完全に防止されたも
のであった。
When this fuel tank was measured using an electromagnetic wave measurement N (metal detector), metal was detected throughout the entire area. Note that this fuel tank was completely prevented from permeating gasoline and the like.

比較のため、ラミナ層が形成されなし)条件で上記実施
例と同様にブロー成形し、その後、金属探知器で計測し
たところ、ところどころ金属が探知されず、ラミナ層が
十分に形成されていないことが認められた。なお、この
燃料タンクはガソリン等が透過してしまうものであった
For comparison, blow molding was performed in the same manner as in the above example under the condition that no lamina layer was formed, and then measurement was performed with a metal detector. No metal was detected in some places, indicating that the lamina layer was not sufficiently formed. was recognized. Note that this fuel tank allowed gasoline, etc. to permeate through it.

本発明の樹脂製燃料タンクは、このように容易に品質を
管理することができるものであり、安全性を保持するの
がきわめて容易となる。なお、品質をチエツクする方法
は、特に限定されず、上記した金属探知器の他、例えば
、装置は大型化するが超音波検出晋などによってもチエ
ツクすることができる。
The quality of the resin fuel tank of the present invention can be easily controlled in this way, and it is extremely easy to maintain safety. The method for checking the quality is not particularly limited, and in addition to the above-mentioned metal detector, it can also be checked by, for example, ultrasonic detection, although the device is larger.

〈発明の効果〉 す上説明したように、本発明の樹脂製燃料タンクは、ブ
ロー成形等により容易に製造でき、しかも、ラミナ層が
適正に形成されているかどうかを容易に測定できろもの
であり、品質管理を完全に行うことができるという効果
を奏するのである。
<Effects of the Invention> As explained above, the resin fuel tank of the present invention can be easily manufactured by blow molding, etc., and it is also possible to easily measure whether the lamina layer is properly formed. This has the effect of allowing complete quality control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図fal、(b)は、本発明の一実施例に係る樹脂
製燃料タンクを示す説明図、第2図は従来技術に係るナ
イロン分散法による成形体の断面図である。 図面中、 10は樹脂製燃料タンク、 11は連続マトリックス相、 12;よラミナ層、 13は磁性金属粉末である。 特  許  出  願  人 三菱自動車工業株式会社 代     理     人 弁理士   光  石  英  俊 (他1名) 第1図 (b) 第
FIG. 1 fal, (b) is an explanatory diagram showing a resin fuel tank according to an embodiment of the present invention, and FIG. 2 is a sectional view of a molded body formed by a nylon dispersion method according to the prior art. In the drawings, 10 is a resin fuel tank, 11 is a continuous matrix phase, 12 is a lamina layer, and 13 is a magnetic metal powder. Patent applicant Mitsubishi Motors Corporation representative Patent attorney Hidetoshi Hikari (and one other person) Figure 1 (b)

Claims (1)

【特許請求の範囲】[Claims] ポリオレフィンからなる連続マトリックス相の厚さ方向
中央部にポリアミド系樹脂からなると共に上記厚さ方向
に略直交する方向に延びる不連続の複数のラミナ層を有
する樹脂成形材からなる燃料タンクであって、上記連続
マトリックス相には、上記ラミナ層に沿って磁性金属粉
末が分散されていることを特徴とする樹脂製燃料タンク
A fuel tank made of a resin molded material having a continuous matrix phase made of polyolefin and a plurality of discontinuous lamina layers made of polyamide resin and extending in a direction substantially perpendicular to the thickness direction in the central part in the thickness direction, A resin fuel tank, wherein magnetic metal powder is dispersed in the continuous matrix phase along the lamina layer.
JP32124190A 1990-11-27 1990-11-27 Resin fuel tank Pending JPH04191030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32124190A JPH04191030A (en) 1990-11-27 1990-11-27 Resin fuel tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32124190A JPH04191030A (en) 1990-11-27 1990-11-27 Resin fuel tank

Publications (1)

Publication Number Publication Date
JPH04191030A true JPH04191030A (en) 1992-07-09

Family

ID=18130387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32124190A Pending JPH04191030A (en) 1990-11-27 1990-11-27 Resin fuel tank

Country Status (1)

Country Link
JP (1) JPH04191030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523292A (en) * 2000-02-17 2003-08-05 サルフレックス ポリマーズ リミテッド Flange member with barrier layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523292A (en) * 2000-02-17 2003-08-05 サルフレックス ポリマーズ リミテッド Flange member with barrier layer

Similar Documents

Publication Publication Date Title
DE69628470T2 (en) Device for the production of a pouring spout
CA2120895C (en) Cheese package, film, bag and process for packaging a co2 respiring foodstuff
GB1603014A (en) Tubular packaging material
US20010045433A1 (en) Permeation barrier fuel tank
JPH04191030A (en) Resin fuel tank
JPS61175038A (en) Oriented film from polypropylene copolymer and vinylidene chloride copolymer not platicized
JPH0564868A (en) Heat-sealable laminated film having high dimensional stability
GB1217892A (en) Face mask
JPH05492A (en) Polyamide laminated biaxially drawn film
JPH04191029A (en) Resin fuel tank
TWI242496B (en) Packaging bag
JP2016070840A (en) Method for measuring coverage by lubricant on packaging material surface
JPH07227944A (en) Curl free multilayered film and production thereof
JP3453274B2 (en) Gusset bag
US6921608B2 (en) Battery separator
JPH0624430A (en) Multilayer resin fuel oil tank
JPH10235131A (en) Sheet-like deoxydizing agent and its cutting method
JPS5931981Y2 (en) Antistatic duct hose
JPS5924506Y2 (en) container
JP3972159B2 (en) Film for vapor deposition balloon
JPH0431267A (en) Lid for packaging container
US20070240249A1 (en) Individual Protection Equipment with Lamellar Structure
JP3014061B2 (en) Plastic laminated container
JP7430388B2 (en) multilayer film
EP1040002A1 (en) Polymeric films