JPH04190092A - Heat pipe - Google Patents

Heat pipe

Info

Publication number
JPH04190092A
JPH04190092A JP32043690A JP32043690A JPH04190092A JP H04190092 A JPH04190092 A JP H04190092A JP 32043690 A JP32043690 A JP 32043690A JP 32043690 A JP32043690 A JP 32043690A JP H04190092 A JPH04190092 A JP H04190092A
Authority
JP
Japan
Prior art keywords
heat pipe
tube
copper
gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32043690A
Other languages
Japanese (ja)
Inventor
Yumiko Susa
諏佐 由美子
Jiyunji Sotani
順二 素谷
Kuniyoshi Sato
佐藤 邦芳
Suemi Tanaka
田中 末美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP32043690A priority Critical patent/JPH04190092A/en
Publication of JPH04190092A publication Critical patent/JPH04190092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To prevent the generation of non-condensable gas during operation and permit the operation stabilized for a long period of time by a method wherein a tube, having a strength ratio between oxygen and copper, which is lower than a specified value when the inner surface of the tube before operation is measured utilizing a X-ray microanalyzer, is employed. CONSTITUTION:A copper tube for a heat pipe is received in a vessel capable of heating, evacuating and conducti.ng reducing gas for example, and evacuation is effected between 5kgf/cm<2> from G-1X1O<8> Torr with a sufficient time to remove adsorption gas in the tube. Then, reducing process is effected and the pipe is dried in the atmosphere of inert gas. In the tube material, processed in such a manner, the strength ratio between oxygen (O) and copper (Cu) becomes lower than 1.0X10-<2> when the inner surface of the tube is measured utilizing a X-ray microanalyzer. According to this method, the generation of non-condensable gas upon operating a heat pipe can be prevented. Accordingly, a performance, stabilized for a long period of time, can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非凝縮性ガス発生がなく使用時間の経過に伴
う性能の劣化を防止した銅系ヒートパイプに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a copper-based heat pipe that does not generate non-condensable gas and prevents deterioration of performance over time of use.

〔従来の技術とその課題〕[Conventional technology and its issues]

ヒートパイプは、銅などの金属管の中に水などの作動液
を減圧、封入したもので蒸発部における作動液の蒸発と
、この蒸気の凝縮部における凝縮とを繰り返すことによ
り熱輸送を行うものである。
A heat pipe is a metal tube made of copper or other material that is sealed with a working fluid such as water under reduced pressure.It transports heat by repeatedly evaporating the working fluid in the evaporator and condensing the steam in the condensing part. It is.

このヒートパイプは一般に銅などの管が用いられており
、通常はダイスで引抜いて作製し、その後は大空中で保
管される。このため管の内面に酸素の皮膜ができる。酸
素皮膜はヒートパイプ中のガス発生要因となりヒートパ
イプ作動時にガスの溜まった部分はヒートパイプの機能
を果さない劣化部分となる。そこで従来は第3図(イ)
に示すようにガス発生によって生じる劣化部分の長さを
予め見込んで設計したり、(ロ)に示すように使用する
作用温度よりも高い温度で予め作動させてガスを発生さ
せ、(ハ)に示すようにガスの溜った先端を再び封じ切
ってヒートパイプとするものである。
These heat pipes are generally made of copper or other materials, and are usually produced by drawing them out with a die, and then stored in the open air. This creates an oxygen film on the inner surface of the tube. The oxygen film becomes a cause of gas generation in the heat pipe, and the part where gas accumulates when the heat pipe is in operation becomes a deteriorated part that does not function as a heat pipe. Therefore, conventionally, Figure 3 (a)
As shown in (b), the length of the deteriorated part caused by gas generation is anticipated in the design, or as shown in (b), the gas is generated by operating at a temperature higher than the working temperature to be used, and (c). As shown, the tip where gas has accumulated is sealed off again to create a heat pipe.

ところで直径が大きいヒートパイプではガス発生量はあ
まり問題とならないが、ヒートパイプの径が小さくなっ
たり、或いは長さが短くなったりすることによって内容
積が小さくなるにしたがって発生するガスの影響は大き
くなる。
By the way, the amount of gas generated is not so much of a problem with heat pipes with large diameters, but as the diameter of the heat pipe becomes smaller or the length becomes shorter, and the internal volume becomes smaller, the effect of the gas generated becomes greater. Become.

特に径が4m以下のマイクロヒートパイプでは、作動さ
せるために表面積を大きく確保する必要があるが内容積
は内径の2乗で小さくなる。したがって表面に付着した
酸素の量が問題となってくるのである。
In particular, for micro heat pipes with a diameter of 4 m or less, it is necessary to ensure a large surface area for operation, but the internal volume decreases as the square of the inner diameter. Therefore, the amount of oxygen attached to the surface becomes a problem.

すなわち、より細い、より小さいヒートパイプの使用を
目的とする場合、従来のように劣化部分の長さを許容し
たのでは劣化部分の占める割合が大き過ぎて本来の要求
仕様を満たすことが困難である。
In other words, when the purpose is to use a thinner and smaller heat pipe, if the length of the deteriorated part is allowed as in the past, the proportion of the deteriorated part will be too large and it will be difficult to meet the original required specifications. be.

また上記の二度封止を行う場合にも二度封止後のガス発
生を完全に防止することはできず仕様に伴う劣化部分の
拡張が生じる問題があった。
Further, even when the above-mentioned double sealing is performed, it is not possible to completely prevent gas generation after the double sealing, and there is a problem in that the deteriorated portion expands due to specifications.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記の問題について検討の結果なされたもので
、作動中における非凝縮性ガスの発生がなく、したがっ
て使用時間の経過に伴う性能の劣化を防止し安定した作
動を可能とした銅系ヒートパイプを開発したものである
The present invention was developed as a result of consideration of the above problems, and is a copper-based heat that does not generate non-condensable gas during operation, thereby preventing performance deterioration over time and enabling stable operation. The pipe was developed.

[課題を解決するための手段および作用]本発明は、管
材が銅からなるヒートパイプであってヒートパイプの作
動前の該管材の内表面をX線マイクロアナライザーを用
いて測定したとき酸素(O)と銅(Cu )の強度比が
1.OXl0−”以下である管材を用いたことを特徴と
するヒートパイプである。
[Means and effects for solving the problems] The present invention provides a heat pipe whose tube material is made of copper, and when the inner surface of the tube material is measured using an X-ray microanalyzer before the heat pipe is operated, oxygen (O ) and copper (Cu) strength ratio is 1. The heat pipe is characterized by using a tube material having a hardness of OXl0-" or less.

すなわち本発明は、ヒートパイプ管材の鋼管を例えば、
加熱可能な真空引きおよび還元ガスを流すことができる
容器中に収容し、 ■5 kgf /dG〜I Xl0−”TorrO間で
充分時間をかけて真空引きして管材の吸着ガスを除去す
る。
That is, the present invention uses a steel pipe as a heat pipe material, for example,
It is housed in a container that can be heated and can be evacuated and a reducing gas can flow therethrough, and vacuum is applied for a sufficient time between 5 kgf/dG and IX10-''TorrO to remove the adsorbed gas on the tube material.

■還元処理を行う。■Perform reduction processing.

■不活性ガス雰囲気で乾燥する。■Dry in an inert gas atmosphere.

上記■〜■のいずれかの処理を単独もしくは組合せて行
うことにより酸素量の少ない管材とするものである。上
記の処理は繰り返し行ってもよく、また常温でも加熱し
て行ってもよい、加熱することにより処理時間が短縮さ
れる。上記のようにして処理した管材は、管材の内表面
をX線マイクロアナライザーを用いて測定したとき酸素
(O)と銅(Co )の強度比が1.0 Xl0−”以
下とすることにより、ヒートパイプの作動時における非
凝縮性ガスの発生を防止できる。
By performing any of the above treatments (1) to (2) alone or in combination, a pipe material with a low oxygen content can be obtained. The above treatment may be performed repeatedly, or may be performed at room temperature or by heating. Heating shortens the treatment time. The tube material treated as described above has an oxygen (O) to copper (Co) intensity ratio of 1.0 Xl0-'' or less when the inner surface of the tube material is measured using an X-ray microanalyzer. It is possible to prevent the generation of non-condensable gas during operation of the heat pipe.

これを越える強度比においては管内面の酸素の除去が不
十分でガス発生を防止できない。
If the strength ratio exceeds this, the removal of oxygen from the inner surface of the tube is insufficient and gas generation cannot be prevented.

長時間真空引きを行うことにより残っている空気と、前
処理工程で生じたガス成分を取り除(ことができる、ま
た、還元処理によっても管内表面の酸素を除くことがで
きる。さらに表面が酸化して表面の酸素含有を増やさぬ
よう不活性ガス雰囲気で乾燥するのである。
Remaining air and gas components generated during the pretreatment process can be removed by evacuation for a long time. Oxygen on the inner surface of the tube can also be removed by reduction treatment. Furthermore, the surface can be oxidized. It is then dried in an inert gas atmosphere to avoid increasing the oxygen content on the surface.

このようにして作製された管材によく脱気した作動液を
封入してヒートパイプとするものである。
A heat pipe is made by sealing a well-degassed working fluid into the tube material thus produced.

本発明のヒートパイプは、作動中のガス発生が従来のヒ
ートパイプに比べて極めて少なく、したがって径が細い
ヒートパイプや長さの短いヒートパイプなど内容積の小
さいヒートパイプに占める劣化部分の割合が大巾に減少
し、長期の作動において従来のヒートパイプより著しく
劣化が少ない。
The heat pipe of the present invention generates far less gas during operation than conventional heat pipes, and therefore the proportion of degraded parts that occupy a small internal volume of heat pipes such as small-diameter heat pipes and short-length heat pipes is small. and significantly less deterioration than conventional heat pipes during long-term operation.

なお本発明において作動液としては水、フロンなどの他
通常銅のヒートパイプに用いられる作動液が通用できる
In the present invention, as the working fluid, water, fluorocarbon, and other working fluids commonly used in copper heat pipes can be used.

〔実施例〕〔Example〕

以下に本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

ヒートパイプの管材として外径3.0閣φ、肉厚0、1
5m、長さ200■の鋼管を用い、これを0700°C
に加熱した真空容器に入れて真空引きを行い、次に■H
2ガスを供給し、植いて■真空引きとH。
As a tube material for heat pipes, the outer diameter is 3.0mm, and the wall thickness is 0.1mm.
A 5m long 200mm steel pipe was heated to 0700°C.
Put it in a vacuum container heated to , evacuate it, and then
2. Supply gas, plant, and vacuum.

ガスの供給とを交互に繰り返す0次いで■最後の真空引
きを終えた後で、不活性ガス(N、)を供給し常温で大
気圧になるまで冷却する。
After the final evacuation is completed, an inert gas (N, ) is supplied and the system is cooled down to atmospheric pressure at room temperature.

上記の処理の■の回数やH,ガス濃度などを調整するこ
とにより、酸素と銅の強度比が異なる管材を作製した。
By adjusting the number of times of the above treatment, H, gas concentration, etc., pipe materials with different strength ratios of oxygen and copper were produced.

また比較のため上記の処理を施さない従来の同寸法の管
材を用意した。
For comparison, we also prepared a conventional pipe material of the same dimensions that was not subjected to the above treatment.

この酸素と銅の強度比はX線マイクロアナライザーで下
記の条件により測定した。
This intensity ratio of oxygen and copper was measured using an X-ray microanalyzer under the following conditions.

■装置:日本電子製  JXA−8600■測定条件 
 加速電圧   15kV試料吸収電流 50nA 測定領域   10−φ 湾曲結晶 Cu −K a  1.5418人 LiF分光結晶0
−にα23.65A  d:60Aノ多層Mlカラなる
分光結晶 (バンクグラウンドは各々の強度から差し引く)上記の
管材を用いて、脱気した水を作動液として封入しヒート
パイプを作製した。これらのヒートパイプを作動温度1
50°Cで700時間作動させた後、上記の作動前の管
内の酸素と銅の強度比と、各ヒートパイプに生じる温度
差を調べた。この結果を第1図に示す。
■Equipment: JEOL JXA-8600■Measurement conditions
Accelerating voltage 15kV Sample absorption current 50nA Measurement area 10-φ Curved crystal Cu -K a 1.5418 people LiF spectroscopic crystal 0
-α23.65A d:60A multilayer Ml color spectroscopic crystal (bank ground is subtracted from each intensity) Using the above tube material, degassed water was sealed as a working fluid to produce a heat pipe. These heat pipes have an operating temperature of 1
After operating at 50°C for 700 hours, the strength ratio of oxygen and copper in the tube before the above operation and the temperature difference occurring in each heat pipe were investigated. The results are shown in FIG.

なおこの温度差は非凝縮ガスの発生などにより起こるも
ので通常1℃以内であることが求められる。
Note that this temperature difference is caused by the generation of non-condensable gas and is normally required to be within 1°C.

第1図から明らかなように、酸素と銅の強度比が1.O
Xl0−”以下のものはヒートパイプの温度差が1°C
以内の許容温度差を満たすことが判る。
As is clear from Figure 1, the strength ratio of oxygen and copper is 1. O
For those below Xl0-”, the temperature difference between the heat pipes is 1°C.
It can be seen that the allowable temperature difference within

なお従来のヒートパイプの管材は酸素と銅の強度比が4
.lX10−”であり、温度差は約4,0°Cで許容外
である。
In addition, the strength ratio of oxygen and copper in the tube material of conventional heat pipes is 4.
.. 1×10−”, and the temperature difference is approximately 4.0° C., which is unacceptable.

また上記の本発明のヒートパイプと従来のヒートパイプ
の作動温度50°Cにおける蒸発端部からの温度を調べ
た。この結果を第2図に示す。図から明らかなように従
来のヒートパイプは蒸発端部から0.85付近より温度
が低下するのに対し、本発明のヒートパイプは略全長に
わたって温度が均一であり、ガス発生による性能の劣化
が少ないことが判る。
Furthermore, the temperature from the evaporation end of the heat pipe of the present invention and the conventional heat pipe at an operating temperature of 50°C was investigated. The results are shown in FIG. As is clear from the figure, in the conventional heat pipe, the temperature drops from around 0.85% from the evaporation end, whereas in the heat pipe of the present invention, the temperature is uniform over almost the entire length, and performance deterioration due to gas generation is avoided. It turns out that there are few.

なお本実施例では表面に付着した酸素被膜を水素還元に
より取り除いたが不活性ガス中で酸洗し、乾燥させて取
り除いてもよい。
In this example, the oxygen film attached to the surface was removed by hydrogen reduction, but it may also be removed by pickling in an inert gas and drying.

〔効果〕〔effect〕

以上に説明したように本発明によれば、作動中の非凝縮
性ガスの発生が著しく少ないので、ヒートパイプの劣化
部分の縮小が可能であり、ヒートパイプのサイズをより
小さくすることができる。
As described above, according to the present invention, since the generation of non-condensable gas during operation is extremely small, the deteriorated portion of the heat pipe can be reduced, and the size of the heat pipe can be further reduced.

またガス発生による性能劣化が少ないので長期間安定し
た性能が保証されるなど工業上顕著な効果を奏するもの
である。
In addition, since there is little performance deterioration due to gas generation, stable performance is guaranteed for a long period of time, which is a significant industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るヒートパイプの酸素と
銅および温度差との関係を示すグラフ、第2図は本発明
の一実施例に係るヒートパイプの位置と温度との関係を
示すグラフ、第3図は従来のヒートパイプの作製方法を
示す断面図である。 l・・・ヒートパイプ、  2・・・非凝縮性ガス。 特許出願人   古河電気工業株式会社!’!l  I
!!  相 (ρ) 蒸発部端からの長ざ/全長 ヒートパイプ位置 第2図 第3図 手続補正書(自発) 平成3年3月は日
FIG. 1 is a graph showing the relationship between oxygen, copper, and temperature difference in a heat pipe according to an embodiment of the present invention, and FIG. 2 is a graph showing the relationship between the position and temperature of a heat pipe according to an embodiment of the present invention. The graph shown in FIG. 3 is a cross-sectional view showing a conventional method for manufacturing a heat pipe. l...heat pipe, 2...non-condensable gas. Patent applicant Furukawa Electric Co., Ltd.! '! l I
! ! Phase (ρ) Length from the end of the evaporator/full length heat pipe position Figure 2 Figure 3 Procedure amendment (voluntary) March 1991 is

Claims (1)

【特許請求の範囲】[Claims] 管材が銅からなるヒートパイプであってヒートパイプの
作動前の該管材の内表面をX線マイクロアナライザーを
用いて測定したとき酸素(O)と銅(Cu)の強度比が
1.0×10^−^2以下である管材を用いたことを特
徴とするヒートパイプ。
In a heat pipe whose tube material is made of copper, when the inner surface of the tube material is measured using an X-ray microanalyzer before the heat pipe is activated, the intensity ratio of oxygen (O) to copper (Cu) is 1.0 x 10. A heat pipe characterized by using a pipe material having a temperature of ^-^2 or less.
JP32043690A 1990-11-22 1990-11-22 Heat pipe Pending JPH04190092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32043690A JPH04190092A (en) 1990-11-22 1990-11-22 Heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32043690A JPH04190092A (en) 1990-11-22 1990-11-22 Heat pipe

Publications (1)

Publication Number Publication Date
JPH04190092A true JPH04190092A (en) 1992-07-08

Family

ID=18121428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32043690A Pending JPH04190092A (en) 1990-11-22 1990-11-22 Heat pipe

Country Status (1)

Country Link
JP (1) JPH04190092A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506009A (en) * 2015-12-16 2018-03-01 広州共鋳科技股▲フン▼有限公司 Planar vapor chamber, manufacturing method thereof, and vehicle headlight
JP2018506163A (en) * 2015-12-16 2018-03-01 広州共鋳科技股▲フン▼有限公司 Three-dimensional solid vapor chamber, manufacturing method thereof, and vehicle headlight

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506009A (en) * 2015-12-16 2018-03-01 広州共鋳科技股▲フン▼有限公司 Planar vapor chamber, manufacturing method thereof, and vehicle headlight
JP2018506163A (en) * 2015-12-16 2018-03-01 広州共鋳科技股▲フン▼有限公司 Three-dimensional solid vapor chamber, manufacturing method thereof, and vehicle headlight

Similar Documents

Publication Publication Date Title
JP4620187B2 (en) Non-evaporable getter pump device and use of this getter
US6451130B1 (en) Method for forming Cr2O3 film on stainless steel surface
FR2822851A1 (en) Formation of a chromium rich layer on the surface of a nickel based alloy component containing chromium by heating to chromium oxidising temperature and exposing it to a controlled oxidising gas mixture
JPH04190092A (en) Heat pipe
US3672020A (en) Method of making a heat pipe having an easily contaminated internal wetting surface
Suemitsu et al. Development of extremely high vacuums with mirror-polished Al-alloy chambers
JP2023021140A (en) Coating method
JP2783128B2 (en) Stainless steel member for clean room and method of manufacturing the same
US5863621A (en) Non-chromate sealant for porous anodized aluminum
JPS59133365A (en) Vacuum device
JPH03247778A (en) Vacuum vessel or vacuum equipment parts having multilayered film
JPS6086384A (en) Filling method of heat pipe with heat medium
JP3434857B2 (en) Ultra-vacuum material and manufacturing method thereof
JP3471077B2 (en) Vacuum vessel pressure control method
JPH0479347A (en) Wafer carrier
JPS6027790A (en) Cryopump
JPH10103234A (en) Evaporation type getter pump
US6042896A (en) Preventing radioactive contamination of porous surfaces
JPH04121466A (en) Evacuation method
JP2009084602A (en) Method for forming surface oxide film on stainless steel
JPS59197566A (en) Vacuum vessel for ultra-high vacuum apparatus
JP3018029B2 (en) Metal passivation treatment method
JPH04173962A (en) Vacuum vessel
JPH07300395A (en) Method for reducing amount of hydrogen adsorbed to diamond surface
JPH07106322A (en) Film forming equipment and forming method