JPH04188621A - Optical surface treatment method and device - Google Patents
Optical surface treatment method and deviceInfo
- Publication number
- JPH04188621A JPH04188621A JP31495490A JP31495490A JPH04188621A JP H04188621 A JPH04188621 A JP H04188621A JP 31495490 A JP31495490 A JP 31495490A JP 31495490 A JP31495490 A JP 31495490A JP H04188621 A JPH04188621 A JP H04188621A
- Authority
- JP
- Japan
- Prior art keywords
- film
- modified layer
- light
- heating
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000003287 optical effect Effects 0.000 title claims description 29
- 238000004381 surface treatment Methods 0.000 title claims description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 238000012986 modification Methods 0.000 claims abstract description 14
- 230000004048 modification Effects 0.000 claims abstract description 14
- 238000005530 etching Methods 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 18
- 238000000151 deposition Methods 0.000 claims description 11
- 230000001681 protective effect Effects 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000012495 reaction gas Substances 0.000 claims description 2
- 238000006552 photochemical reaction Methods 0.000 abstract description 11
- 239000000126 substance Substances 0.000 abstract description 10
- 239000010408 film Substances 0.000 description 58
- 239000010410 layer Substances 0.000 description 29
- 230000008021 deposition Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000010453 quartz Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 241000270281 Coluber constrictor Species 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- OQZCSNDVOWYALR-UHFFFAOYSA-N flurochloridone Chemical compound FC(F)(F)C1=CC=CC(N2C(C(Cl)C(CCl)C2)=O)=C1 OQZCSNDVOWYALR-UHFFFAOYSA-N 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000270272 Coluber Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は光表面改質を用いて被加工面の所望領域にパタ
ーン形成を行う光表面処理方法及び該方法の実施に用い
られる処理装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical surface treatment method for forming a pattern on a desired area of a processed surface using optical surface modification, and a processing apparatus used to carry out the method. .
薄膜デバイスの主な製造工程は主として基板上の薄膜を
所望のパターンに微細加工する工程である。近年、半導
体記憶素子に代表される様に、素子の大容量化、機能の
高性能化が急速に進み、それに伴って、回路パターンが
より微細化し、また回路構造もより複雑化してきている
。一方、液晶デイスプレィ、プラズマデイスプレィ等の
表示素子は、ますます大型化し、素子機能も複雑化しつ
つある。そのために、成膜工程や微細加工を行うエツチ
ング工程は、溶液を用いたものから真窒中又は減圧ガス
中でプラズマや励起ガスを用いるといったいわゆるドラ
イプロセスが主になっている。The main manufacturing process for thin film devices is mainly a process of finely processing a thin film on a substrate into a desired pattern. BACKGROUND ART In recent years, as typified by semiconductor memory devices, the capacity and performance of devices have rapidly increased, and as a result, circuit patterns have become finer and circuit structures have become more complex. On the other hand, display elements such as liquid crystal displays and plasma displays are becoming increasingly larger and their functions are becoming more complex. For this reason, the film forming process and the etching process for microfabrication mainly involve so-called dry processes, ranging from those using solutions to those using plasma or excitation gas in nitrogen or reduced pressure gas.
しかし所望の微細加工を行うために一般に用いられるフ
ォトリソグラフィープロセスでは、レジスト塗布、パタ
ーン露光、現像、エツチング、レジスト剥離等の複雑で
煩雑なプロセスが用いられる。However, in the photolithography process generally used to perform desired microfabrication, complicated and complicated processes such as resist coating, pattern exposure, development, etching, and resist peeling are used.
このプロセス中でレジスト塗布、現像、レジスト剥離工
程では溶液を使うため完全にドライなプロセスにするこ
とはできない。またレジストを用いるため、このレジス
トが剥離し、ごみの発生源となり歩留りを低下させる。In this process, solutions are used in resist coating, development, and resist stripping steps, so it cannot be a completely dry process. Furthermore, since a resist is used, this resist peels off, becomes a source of dust, and reduces yield.
従って、前述のデバイスをフォトリソグラフィープロセ
スで製造する場合、プロセスが複雑化して、コストが上
昇するばかりでなく、ごみの発生、増加等によって歩留
りが低下して全体のコストも上昇してしまうという問題
があった。Therefore, when manufacturing the above-mentioned devices using a photolithography process, the process becomes complicated and the cost not only increases, but also the yield decreases due to the generation and increase of dust, which increases the overall cost. was there.
この様な問題を解決するために、改質カス中ての選択照
射光により、被処理膜表面にパターン構造を有する表面
改質層を形成する工程と、前記表面改質層を保護膜(エ
ツチングマスク)として、表面非改質層をドライエツチ
ングする行程を行う微細加工プロセスの方法が提案され
ている。この方法によればフォトリソクラフィープロセ
スを用いることなく、微細加工が可能となり、低コスト
で歩留まりの向上を図ることができる。しかしながら上
記方法では表面改質時に長時間を要したり、強い光パワ
ーを必要とする場合があり、短時間の処理または光パワ
ーの弱い場合には、表面改質によって形成される保護膜
が化学的に強く結合していない場合や膜厚が不足する場
合が生じ、保護膜の耐性が不充分で所望のエツチング深
さが得られないことがあった。In order to solve these problems, we have developed a process of forming a surface-modified layer with a pattern structure on the surface of the film to be processed using selective irradiation light in the modified scum, and a process of forming a protective film (etching) on the surface-modified layer. A microfabrication process method has been proposed in which a surface unmodified layer is dry-etched as a mask. According to this method, fine processing can be performed without using a photolithography process, and yield can be improved at low cost. However, the above methods may take a long time or require strong optical power for surface modification, and if the treatment is short or the optical power is weak, the protective film formed by surface modification may be chemically damaged. In some cases, the bonding strength is not strong or the film thickness is insufficient, and the resistance of the protective film is insufficient and the desired etching depth cannot be obtained.
また上記選択照射光による表面改質による表面改質層と
非改質層との電子供与性等の性質の違いを利用して、表
面改質層もしくは非改質層上に膜を選択堆積する際にも
、表面改質層が化学的に強く結合していない場合や膜厚
が不足する場合には前記電子供与性等の性質の違いが充
分でなく、その後の堆積の選択性が十分でないことがあ
った。In addition, a film is selectively deposited on the surface-modified layer or the non-modified layer by utilizing the difference in properties such as electron donating property between the surface-modified layer and the non-modified layer due to the surface modification by the selective irradiation light. In some cases, if the surface modified layer is not strongly chemically bonded or the film thickness is insufficient, the difference in properties such as electron donating properties is not sufficient, and the selectivity of subsequent deposition is not sufficient. Something happened.
本発明者らは、上記の如き従来技術の問題点に鑑み鋭意
研究の結果、従来技術と比較して、化学的に充分強い結
合や膜厚の充分厚いエツチング耐性の強い保護膜を形成
できる方法を見いだし、本発明を完成した。The inventors of the present invention have conducted extensive research in view of the problems of the prior art as described above, and have found a method that can form a protective film with sufficiently strong chemical bonding, a sufficiently thick film thickness, and strong etching resistance compared to the prior art. They discovered this and completed the present invention.
すなわち、本発明の光表面処理方法は所望のカス雰囲気
中で被加工面に選択的に光を照射することによって所望
領域に表面改質層を形成本辱し、該表面改質層もしくは
非改質層に選択的処理を施す光表面処理方法であって、
前記表面改質層を形成する工程において、前記被加工面
を加熱することを特徴とする。That is, the optical surface treatment method of the present invention forms a surface-modified layer in a desired area by selectively irradiating the surface to be processed with light in a desired dust atmosphere, and forms a surface-modified layer or an unmodified surface layer in a desired area. An optical surface treatment method for selectively treating a surface layer, the method comprising:
In the step of forming the surface-modified layer, the surface to be processed is heated.
本発明の光表面処理装置は反応容器と、該反応容器内に
反応ガスを導入するガス導入手段と、該反応容器内に処
理光を導入する光導入手段と、を備え、前記処理光の照
射により前記反応容器内に配された基体の被加工面を処
理する光表面処理装置において、前記被加工面を選択的
に加熱する手段を備えたことを特徴とする。The optical surface treatment apparatus of the present invention includes a reaction vessel, a gas introduction means for introducing a reaction gas into the reaction vessel, and a light introduction means for introducing processing light into the reaction vessel, and includes irradiation of the processing light. The optical surface treatment apparatus for treating the surface to be processed of a substrate placed in the reaction vessel is characterized by comprising means for selectively heating the surface to be processed.
本発明によれば表面改質層を形成する工程において表面
改質を施す膜を加熱することによって、光が照射された
表面における光化学反応が促進されるため、表面改質層
が化学的により強い結合を持ち、膜厚も厚くなる。これ
により0表面改質膜のエツチング耐性が向上する、■非
改質層との電子供与性等の差を大きくてきる。又、表面
改質層を形成後頁に加熱を行うことで表面改質層を安定
な耐性のある領域とすることもできる、ためパターン形
成を容易に行うことができる。According to the present invention, by heating the film to be surface-modified in the process of forming the surface-modified layer, the photochemical reaction on the surface irradiated with light is promoted, so that the surface-modified layer becomes chemically stronger. It has bonds and the film thickness becomes thicker. This improves the etching resistance of the surface-modified film, and (2) increases the difference in electron donating properties, etc., with the non-modified layer. Further, by heating the page after forming the surface-modified layer, the surface-modified layer can be made into a stable and durable region, so that pattern formation can be easily performed.
次に好ましい実施態様を模式的に示す添付図面を参照し
て、本発明を具体的に説明する。第1図は本発明による
光処理方法の工程の好適な一例を示す模式図である。The present invention will now be described in detail with reference to the accompanying drawings, which schematically show preferred embodiments. FIG. 1 is a schematic diagram showing a preferred example of the steps of the optical processing method according to the present invention.
第1図(a)は基板1上の表面改質を施す膜2の加熱を
示している。3はヒーター等を用いた基板加熱による前
記膜2の加熱、4はレーザーランプ等を用いた照射によ
る前記膜2の加熱を模式的に示しており、4の加熱は表
面改質領域のみに選択的に行うことも可能である。FIG. 1(a) shows heating of a film 2 on a substrate 1 for surface modification. 3 schematically shows the heating of the film 2 by heating the substrate using a heater or the like, and 4 schematically shows the heating of the film 2 by irradiation using a laser lamp or the like, and the heating in 4 is selected only for the surface-modified region. It is also possible to do so.
以下に本発明の光処理方法の一例としてエツチングによ
るパターニングプロセスを示す。第1図(b)は、予め
(a)に示した加熱状態にある被加工膜2上への改質ガ
ス中での選択光5の照射を表す、(c)は(a)、(b
)の結果、加熱により促進された光化学反応によって、
表面改質層6が形成されたことを示す。この表面改質層
6は第11図(a)に示した被加工膜2を加熱しないで
光化学反応のみで形成した表面改質層7よりも化学的な
結合が強く、また膜厚も厚い。従ってこの表面改質層6
を保護膜(マクス)として被加工膜2をエツチングする
場合には、加熱を行わない第11図(a)の表面改質層
7を保護膜とした場合と比較して、より深いエツチング
量を得ることができる。A patterning process by etching will be shown below as an example of the optical processing method of the present invention. FIG. 1(b) shows the irradiation of the selective light 5 in the reformed gas onto the processed film 2 which is in the heated state previously shown in FIG. 1(a), and FIG.
), as a result of photochemical reactions promoted by heating,
This shows that the surface modified layer 6 has been formed. This surface modified layer 6 has stronger chemical bonds and is thicker than the surface modified layer 7 shown in FIG. 11(a), which is formed only by photochemical reaction without heating the processed film 2. Therefore, this surface modified layer 6
When etching the film 2 to be processed using a protective film (max), a deeper etching amount can be achieved compared to the case where the surface modified layer 7 of FIG. 11(a) is used as a protective film without heating. Obtainable.
第1図(d)に第1図(c)の保護膜6が消失するまで
エツチングを行った状態を示す。又、第11図(e)に
、第11図(a)の保護膜7が消失するまでエツチング
を行った状態を示す。第1図(d)及び第11図(e)
の比較かられかるように被加工膜を加熱することによっ
てそれだけ深いエツチング量を得ることができる。FIG. 1(d) shows a state in which etching has been performed until the protective film 6 of FIG. 1(c) disappears. Further, FIG. 11(e) shows a state in which etching is performed until the protective film 7 of FIG. 11(a) disappears. Figure 1(d) and Figure 11(e)
As can be seen from the comparison, a deeper etching amount can be obtained by heating the film to be processed.
次に実施例を挙げて本発明を更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.
〔実施例1〕
透明電極ITO付石英基板上に絶縁層a−5iN、:H
膜のパターンをエツチングにより形成した。[Example 1] Insulating layer a-5iN, :H on quartz substrate with transparent electrode ITO
The film pattern was formed by etching.
第2図及び第3図を用いて説明する。This will be explained using FIGS. 2 and 3.
まず第2図(a)に示すようにITO21’付基板21
上基板21上CVD法によりa−3iN、:H膜22を
5,000人の膜厚で形成した。これを試料として続い
て図3に示す表面改質装置の基板ホルダー32にこの試
料31を設置し、ヒーター33を用いた基板加熱により
400℃に加熱した。First, as shown in FIG. 2(a), the substrate 21 with ITO 21' is
An a-3iN, :H film 22 was formed to a thickness of 5,000 on the upper substrate 21 by CVD. Using this sample as a sample, this sample 31 was subsequently placed in the substrate holder 32 of the surface modification apparatus shown in FIG. 3, and the substrate was heated to 400° C. using the heater 33.
この状態で、ガス導入口34より02ガスを導入し、内
部の圧力が1tOrrとなる様に、真空排気装置30を
制御した。低圧水銀ランプ36からのUV光を照明光学
系37によってマスク38に照射し、投影光学系39に
よって、a−3iNx:H膜表面にマスク38のパター
ン像を窓35を通して結像させた。In this state, 02 gas was introduced from the gas inlet 34, and the evacuation device 30 was controlled so that the internal pressure was 1 tOrr. The mask 38 was irradiated with UV light from the low-pressure mercury lamp 36 by the illumination optical system 37, and the pattern image of the mask 38 was formed through the window 35 on the surface of the a-3iNx:H film by the projection optical system 39.
UV光が照射された表面では、02とa−3iN工:H
が熱により促進された光化学反応を起こし20分間の露
光で厚さ20人のS:O,膜(第2図(b)図26)が
形成された。On the surface irradiated with UV light, 02 and a-3iN:H
caused a heat-promoted photochemical reaction, and a 20-thick S:O film (FIG. 2(b), FIG. 26) was formed by exposure for 20 minutes.
この様にして得られたSho、膜26をマスクにして、
CF4+02ガスを用いたケミカルドライエツチングを
マスクが消失するまで行った結果、第2図(C)に示す
様に所望のパターンが得られた。比較のために、被加工
膜の加熱を行わずに同一条件で行った場合について第1
1図(b)及び(f)に示す。第11図(b)及び(f
)かられかるように、酸化の程度及び膜厚が不充分な保
護膜27からは(f)に示すパターンが得られ第2図(
C)に示したようなパターンを得ることはできなかった
。Using the Sho film 26 obtained in this way as a mask,
As a result of chemical dry etching using CF4+02 gas until the mask disappeared, a desired pattern was obtained as shown in FIG. 2(C). For comparison, the first example shows the case where processing was performed under the same conditions without heating the film to be processed.
1 (b) and (f). Figures 11(b) and (f)
), the pattern shown in (f) is obtained from the protective film 27 with an insufficient degree of oxidation and insufficient film thickness.
It was not possible to obtain a pattern as shown in C).
本実施例では、加熱温度を400℃としたが、他の温度
でも、それに応じた光化学反応の促進効果が得られるこ
とは言うまでもない。これを示す例として加熱温度を変
えた以外同一の条件でa −3iN工:H膜の表面改質
により得られたSiO。In this example, the heating temperature was set to 400° C., but it goes without saying that other temperatures can also provide a corresponding effect of promoting the photochemical reaction. As an example of this, SiO was obtained by surface modification of an a-3iN:H film under the same conditions except that the heating temperature was changed.
膜のエツチング耐性を表す値として、ケミカルトライエ
ツチング時のデッドタイム(エツチング開始時からa−
3iO,膜が消失するまでの時間)を図4に示した。The dead time during chemical tri-etching (a-
3iO, time until the film disappears) is shown in FIG.
さらに前記SiOx膜のエツチング耐性を表す他の例と
して、XPS(X線光電子分光)による表面文折から求
めたS l!Fからのケミカルシフトを図5に示す。同
図よりケミカルシフトの値が5iO2(4,5e v)
に近づくほど、酸化が進みエツチング耐性が高くなるこ
とがわかる。Furthermore, as another example expressing the etching resistance of the SiOx film, S l! was determined from surface pattern analysis by XPS (X-ray photoelectron spectroscopy). The chemical shift from F is shown in FIG. From the same figure, the value of chemical shift is 5iO2 (4,5e v)
It can be seen that the closer it gets to , the more oxidation progresses and the higher the etching resistance becomes.
〔実施例2〕
石英基板上にAl電極パターンをエツチングにより形成
した。第6図、第7図を用いて説明する。[Example 2] An Al electrode pattern was formed on a quartz substrate by etching. This will be explained using FIGS. 6 and 7.
第6図(a)に示すように石英基板61上にスパッタ法
によりAI膜62を】μn〕形成した。これを試料71
として続いて第7図に示す表面改質装置の基板ホルダー
72にこの試料7Jを設置し。As shown in FIG. 6(a), an AI film 62 was formed on a quartz substrate 61 by sputtering. Sample 71
Subsequently, this sample 7J was placed in the substrate holder 72 of the surface modification apparatus shown in FIG.
ハロゲンランプ73a及び反射板73bによるランプ加
熱により試料71を500℃に加熱した。Sample 71 was heated to 500° C. by lamp heating using halogen lamp 73a and reflection plate 73b.
この状態で、ガス導入ロア4よりNO2ガスを導入し、
内部の圧力が1. t Or rとなる様に、真空排気
装置70を制御した。KrFレーサー76からの発振光
(24,8nrn)を照明光学系77によって、マスク
78に照射し、投影光学系79によってA、1膜表面に
マスク78のパターン像を窓75を通して結像させた。In this state, NO2 gas is introduced from the gas introduction lower 4,
The internal pressure is 1. The evacuation device 70 was controlled so that t Or r. The illumination optical system 77 irradiated the mask 78 with oscillation light (24.8 nrn) from the KrF racer 76, and the projection optical system 79 formed a pattern image of the mask 78 on the surface of the film A1 through the window 75.
光が照射された表面ではNO7とAfが熱により促進さ
れた光化学反応を起こし、10分間の露光でA[膜の表
面に厚さ30人のAftl膜(第6図(b)図66)が
形成された。On the surface irradiated with light, NO7 and Af undergo a heat-promoted photochemical reaction, and after 10 minutes of exposure, an Aftl film with a thickness of 30 mm (Fig. 6(b), Fig. 66) is formed on the surface of the A[film]. Been formed.
この様にして得られたAIO,膜66をマスクにして、
C7!2ガスを用いたエツチングをマスクが消失するま
で行った結果、第6図(c)に示す様に所望のパターン
が得られた。Using the AIO film 66 obtained in this way as a mask,
As a result of etching using C7!2 gas until the mask disappeared, a desired pattern was obtained as shown in FIG. 6(c).
比較のために被加工膜の加熱を行わずに同一条件で行っ
た場合について第11図(C)及び(g)に示す。第1
1図(e)、(g)かられかるように酸化の程度、膜厚
ともに不充分な保護膜67からは(g)に示すパターン
が得られ第6図(C)に示したような所望のパターンを
得ることができなかった。For comparison, FIGS. 11(C) and 11(g) show the case where processing was performed under the same conditions without heating the film to be processed. 1st
As shown in FIGS. 1(e) and 1(g), the pattern shown in FIG. 6(g) is obtained from the protective film 67 which is insufficient in both the degree of oxidation and the film thickness, and the desired pattern shown in FIG. 6(C) is obtained. I couldn't get a pattern.
〔実施例3〕
透明電極ITO付石英基板上にa−3i膜゛↑も導体層
を形成した後Arパターンを形成した。本実施例では加
熱を選択的に行った。第8図、第9図及び第10図を用
いて説明する。[Example 3] After forming a conductor layer of the a-3i film ↑ on a quartz substrate with a transparent electrode ITO, an Ar pattern was formed. In this example, heating was performed selectively. This will be explained using FIG. 8, FIG. 9, and FIG. 10.
まず第8図(a)に示したようにI ’I’ 08 ]
’付基板基板81プラズマCVD法によりa−3i膜
82を6,000人の膜厚で形成した。これを試料91
として続いて第9図に示される表面改質装置の基板ホル
ダー92に設置した。第9図において基板ホルダー92
はコンピータ−(不図示)で制御され2次元的に移動可
能なXYステージ93に設置されている。カス導入1−
194よりN02カスを導入し、内部の圧力が10to
rrとなる様に真空排気装置90を制御した。First, as shown in FIG. 8(a), I 'I' 08 ]
An a-3i film 82 was formed on a substrate 81 with a thickness of 6,000 by plasma CVD. Sample 91
Subsequently, it was placed in a substrate holder 92 of a surface modification apparatus shown in FIG. In FIG. 9, the substrate holder 92
is installed on an XY stage 93 which is controlled by a computer (not shown) and is two-dimensionally movable. Waste introduction 1-
N02 scum is introduced from 194, and the internal pressure is 10 to
The evacuation device 90 was controlled so that rr was achieved.
不図示のレーザー制御装置によって加熱用の002レー
ザー96bと光化学反応のKrFエキシマレーサー96
aを制御し両レーサーのピークパワーとなる時間が一致
するように同期させて発振させた。A 002 laser 96b for heating and a KrF excimer laser 96 for photochemical reaction are controlled by a laser control device (not shown).
a was controlled and oscillated in synchronization so that the times at which the peak power of both racers reached coincided.
CO2レーサー96bで発振させた赤外光は、投影光学
系97bによって試料91上で所望のスポットサイズ(
本実施例では3μm)になるように調整した。投影光学
系を出た赤外光は、透過反射板98によって反射され、
窓95を通して試料9]に照射される。ここで透過反射
板は厚さ2m01合成石英板でできており、更に遠赤外
反射表面には、波長1 ]、、 7〜12. 5μm
を反射させKrFエキシマレーサー】5の発振光(24
,8nrn)を透過する高反射膜をコーティングしであ
る。The infrared light oscillated by the CO2 racer 96b is projected onto the sample 91 by the projection optical system 97b to a desired spot size (
In this example, the thickness was adjusted to 3 μm). The infrared light exiting the projection optical system is reflected by the transmissive reflection plate 98,
The sample 9] is irradiated through the window 95. Here, the transmission-reflection plate is made of a synthetic quartz plate with a thickness of 2m01, and the far-infrared reflection surface has wavelengths of 1], 7 to 12. 5 μm
The oscillation light of KrF excimer laser] 5 (24
, 8nrn) is coated with a highly reflective film that transmits light.
一方策2の光源であるKrFエキシマレーサー96aの
発振光(248nm)は、投影光学系97aによって、
透過反射板98と窓95を通して試料91ヒに第一の光
源で発振させた赤外光と同様に所望のスポットサイズ(
本実施例では3μm)で照射さゼた。The oscillation light (248 nm) of the KrF excimer laser 96a, which is the light source of the second option, is transmitted by the projection optical system 97a.
Similar to the infrared light oscillated by the first light source, the desired spot size (
In this example, irradiation was performed at a wavelength of 3 μm).
光が照射された表面は、前記赤外光によって加熱され温
度が350℃に」−昇して、前記遠赤外光による光化学
反応が促進された。The surface irradiated with light was heated by the infrared light and the temperature rose to 350° C., thereby promoting the photochemical reaction by the far infrared light.
XYスデージ93に載ゼた基板ホルダー92を2次元的
に動かすことによって、第8図(1))の86に示す様
な表面改質層S i 08(70人)のパターンが形成
された。By two-dimensionally moving the substrate holder 92 placed on the XY stage 93, a pattern of surface modified layers S i 08 (70 people) as shown at 86 in FIG. 8(1)) was formed.
この表面改質層Sin、86は酸化が充分に進んでおり
、膜厚も70人あるので、非電r供与体であ っ プこ
。This surface modified layer Sin, 86 is sufficiently oxidized and has a thickness of 70 mm, so it is a non-electronic r donor.
続いてこの試料91を第10図に示すΔ1選択堆積用の
C〜7D装置の基板ホルダー12に設置し7試料l】と
した。以下の方法により、電子−供与体表面のみにA1
が堆積され、非電子供与体表面にはAlは堆積されず1
.Mの選択堆積が111能となった。Subsequently, this sample 91 was placed in the substrate holder 12 of the apparatus C to 7D for selective deposition of Δ1 shown in FIG. 10 to obtain 7 samples. By the following method, A1 is applied only to the electron-donor surface.
is deposited, and no Al is deposited on the non-electron donor surface.
.. The selective deposition of M was 111 times more efficient.
まず堆積室17内部を1.0’torrJff−ドに真
空排気系10によって排気した後、ヒーター13によっ
て試料11を300℃に加熱した。原料気化装置15通
して得られるDMAH(CH3) 2A(!Hをガス混
合器14の第一のガスラインからキャリアガスとしてH
2を用いて供給し、第2のカスラインからH2を供給す
る。First, the inside of the deposition chamber 17 was evacuated to a pressure of 1.0'torrJff by the vacuum exhaust system 10, and then the sample 11 was heated to 300° C. by the heater 13. DMAH(CH3) 2A(!H obtained through the raw material vaporizer 15 is supplied as a carrier gas from the first gas line of the gas mixer 14.
H2 is supplied from the second waste line.
カス導入口16よりDMAHとH2を堆積室17内に導
入し、堆積室17内の全圧力が1.5torr。DMAH and H2 are introduced into the deposition chamber 17 through the waste introduction port 16, and the total pressure inside the deposition chamber 17 is 1.5 torr.
DMAHの分圧が1.5X10−’torrとなるよう
にガス混合器14と真空排気系10を調整し、10分間
堆積を行った。The gas mixer 14 and evacuation system 10 were adjusted so that the partial pressure of DMAH was 1.5×10 −'torr, and deposition was performed for 10 minutes.
その結果、第8図(c)に示す様に、表面改質を施した
非電子供与体S10、膜86表面には、AIはまったく
堆積しなかった。又該表面をAuger電子分光を用い
て表面分析したところAIは検出されなかった。一方電
子供与体であるa−3i膜表面82上には、炭素がまっ
たく含まれず(検出限界以下)抵抗率2.7μΩcm、
平均配線寿命I X 103〜104時間、ヒロック密
度0〜10コ/Cm2、かつスパイクの発生がない良質
のAl膜が選択的に堆積され、良質な電極を形成できた
(第8図(c’)の88)。As a result, as shown in FIG. 8(c), no AI was deposited on the surface of the surface-modified non-electron donor S10 and the film 86. Furthermore, when the surface was analyzed using Auger electron spectroscopy, no AI was detected. On the other hand, the a-3i film surface 82, which is an electron donor, contains no carbon at all (below the detection limit) and has a resistivity of 2.7 μΩcm.
A high-quality Al film with an average wiring life of 103 to 104 hours, a hillock density of 0 to 10 cm/cm2, and no spikes was selectively deposited, and a high-quality electrode could be formed (Fig. 8 (c' ) of 88).
比較のために002レーサーによる加熱を行わずに同一
条件で表面改質及びA1堆積を行った例について第11
図(d)及び(h)に示す。第11図(d)の表面改質
膜87は酸化の程度及び膜厚ともに不充分であるために
、非電子供与体たり得す、従って第11図(h)の89
に示される様にAIが全面に堆積し、所望のパターンを
得ることができなかった。For comparison, the 11th example shows an example in which surface modification and A1 deposition were performed under the same conditions without heating with the 002 racer.
Shown in Figures (d) and (h). Since the surface modified film 87 in FIG. 11(d) is insufficient in both the degree of oxidation and the film thickness, it can become a non-electron donor.
As shown in the figure, AI was deposited on the entire surface, making it impossible to obtain the desired pattern.
上述の通り表面改質層を形成する工程において表面改質
を施す膜を加熱することによって、光が照射された表面
における光化学反応が促進されるため、表面改質層が化
学的により強い結合を持ち、膜厚も厚くなる。これによ
り0表面改質膜のエツチング耐性が向上する■非数質層
との電子供与性等の差を大きくできる、ため薄膜パター
ン形成を容易に行うことができる。As mentioned above, by heating the film to be surface modified in the process of forming the surface modified layer, the photochemical reaction on the surface irradiated with light is promoted, so the surface modified layer forms stronger chemical bonds. It lasts longer and has a thicker film. This improves the etching resistance of the surface-modified film. (1) It is possible to increase the difference in electron donating properties, etc. with the non-substance layer, making it easier to form a thin film pattern.
第1図(a)及至第1図(d)、第2図(a)及至第2
図(C)、第6図(a)及至第6図(C)、及び第8図
(a)及至第8図(c)は夫々本発明の光表面処理方法
の代表例を説明するための模式第3図、第7図、第9図
は夫々本発明の光表面処理装置の代表例を説明するため
の模式図、第4図は表面改質膜形成時の基体温度とデッ
ドタイムの関係を示す模式図、
第5図は表面改質膜形成時の基体温度とケミカルシフト
の関係を示す模式図、
第10図はA1選択堆積用のCVD装置の模式%式%(
)
(f)、(g)、(h)は従来の光表面処理工程を示す
模式図である。
1.21.61.81・・・基板
2.21.61.81・・・被エツチング(パターニン
グ)膜
3.4.23.63.83・・・加熱
5.25.65.85・・・表面改質に用いる選択照射
光
6.7.26.27.
66.67.86.87・・・表面改質層88.89・
・・Al膜
10.30.70.90・・真空排気装置11.31.
71.91・・・試料
12.32.72.92・・・基板ホルダー13.33
・・・ヒーター
73a、73b・・・ハロゲンランプ、反射板93・・
・XYステージ
16.34.74.94・・・ガス導入口35.75.
95・・・窓
36.76.96a、96b=・・光源37.77・・
・照明光学系
39.79.97a、97b・・−投影光学系38.7
8・・・マスク
98・・・透過反射板
14・・・ガス混合器
15・・原料ガス気化器
17・・堆積室
第1 図
ttutttut↑−3
O! 腐 許 3ρθ 4ρθ加熱なし
基七d乙隻(’C)
基叛遁&(−〇)Figure 1 (a) to Figure 1 (d), Figure 2 (a) to Figure 2
Figure (C), Figures 6 (a) to 6 (C), and Figures 8 (a) to 8 (c) are for explaining representative examples of the optical surface treatment method of the present invention, respectively. Schematic diagrams 3, 7, and 9 are schematic diagrams for explaining representative examples of the optical surface treatment apparatus of the present invention, respectively, and Figure 4 shows the relationship between substrate temperature and dead time during surface modification film formation. FIG. 5 is a schematic diagram showing the relationship between substrate temperature and chemical shift during surface-modified film formation. FIG. 10 is a schematic diagram of the CVD apparatus for A1 selective deposition.
) (f), (g), and (h) are schematic diagrams showing conventional optical surface treatment steps. 1.21.61.81... Substrate 2.21.61.81... Film to be etched (patterned) 3.4.23.63.83... Heating 5.25.65.85... Selective irradiation light used for surface modification 6.7.26.27. 66.67.86.87...Surface modified layer 88.89.
...Al film 10.30.70.90...Vacuum exhaust device 11.31.
71.91...Sample 12.32.72.92...Substrate holder 13.33
...Heaters 73a, 73b...Halogen lamp, reflector 93...
・XY stage 16.34.74.94...Gas inlet 35.75.
95...Window 36.76.96a, 96b=...Light source 37.77...
・Illumination optical system 39.79.97a, 97b...-Projection optical system 38.7
8...Mask 98...Transmission/reflection plate 14...Gas mixer 15...Source gas vaporizer 17...Deposition chamber 1 Fig.ttttt↑-3 O! Rot allowed 3ρθ 4ρθ No heating base 7 d otsusen ('C) Kireiton & (-〇)
Claims (6)
射することによって所望領域に表面改質層を形成し、該
表面改質層もしくは非改質層に選択的処理を施す光表面
処理法であって前記表面改質層を形成する工程において
、前記被加工面を加熱することを特徴とする光表面処理
方法。(1) Light that forms a surface-modified layer in a desired area by selectively irradiating the surface to be processed with light in a desired gas atmosphere, and selectively processes the surface-modified layer or non-modified layer. An optical surface treatment method characterized in that the surface to be processed is heated in the step of forming the surface modified layer.
ッチングマスク)として、表面非改質部をエッチングす
る請求項1に記載の光表面処理方法。(2) The optical surface treatment method according to claim 1, wherein the selective treatment etches the unmodified surface portion using the surface modification layer as a protective film (etching mask).
質部上に膜を選択的に堆積させる工程から成る請求項1
に記載の光表面処理方法。(3) Claim 1, wherein the selective treatment comprises a step of selectively depositing a film on the surface modified portion or unmodified portion.
The optical surface treatment method described in .
みに行う請求項1に記載の光表面処理方法。(4) The optical surface treatment method according to claim 1, wherein the heating is performed only on the surface-modified region by selective irradiation with light.
、レーザー又はランプによる前記被加工面の光照射から
選ばれる請求項1に記載の光表面処理方法。(5) The optical surface treatment method according to claim 1, wherein the heating is selected from heating the surface to be processed using a heater, and irradiating the surface to be processed with light using a laser or a lamp.
ガス導入手段と、該反応容器内に処理光を導入する光導
入手段と、を備え、前記処理光の照射により前記反応容
器内に配された基体の被加工面を表面を処理する光表面
処理装置において、前記被加工面を選択的に加熱する手
段を備えたことを特徴とする光表面処理装置。(6) A reaction vessel, a gas introduction means for introducing a reaction gas into the reaction vessel, and a light introduction means for introducing processing light into the reaction vessel, and the interior of the reaction vessel is irradiated with the processing light. What is claimed is: 1. An optical surface treatment apparatus for treating a surface to be processed of a substrate placed on a substrate, the apparatus comprising: means for selectively heating the surface to be processed;
Priority Applications (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2314954A JP2756364B2 (en) | 1990-11-19 | 1990-11-19 | Optical surface treatment method and treatment device |
DE69132587T DE69132587T2 (en) | 1990-09-26 | 1991-09-25 | Photolithographic processing method and device |
EP98124753A EP0909988A1 (en) | 1990-09-26 | 1991-09-25 | Photolithographic processing method |
EP98124749A EP0909987A1 (en) | 1990-09-26 | 1991-09-25 | Photolithographic processing method and apparatus |
EP98124750A EP0909985A1 (en) | 1990-09-26 | 1991-09-25 | Photolithographic processing method and apparatus |
EP98124754A EP0908782A1 (en) | 1990-09-26 | 1991-09-25 | Photolithographic processing method |
EP98124755A EP0909989A1 (en) | 1990-09-26 | 1991-09-25 | Photolithographic processing method and apparatus |
AT91116309T ATE200829T1 (en) | 1990-09-26 | 1991-09-25 | PHOTOLITHOGRAPHIC PROCESSING METHOD AND APPARATUS |
EP98124751A EP0908781A3 (en) | 1990-09-26 | 1991-09-25 | Photolithographic processing method and apparatus |
EP98124748A EP0909986A1 (en) | 1990-09-26 | 1991-09-25 | Photolithographic processing method and apparatus |
EP91116309A EP0477890B1 (en) | 1990-09-26 | 1991-09-25 | Processing method and apparatus |
US08/251,666 US5962194A (en) | 1990-09-26 | 1994-05-31 | Processing method and apparatus |
US08/429,289 US5981001A (en) | 1990-09-26 | 1995-04-25 | Processing method for selectively irradiating a surface in presence of a reactive gas to cause etching |
US08/429,288 US6025115A (en) | 1990-09-26 | 1995-04-25 | Processing method for etching a substrate |
US08/428,431 US5714306A (en) | 1990-09-26 | 1995-04-25 | Processing method and apparatus |
US08/428,518 US5824455A (en) | 1990-09-26 | 1995-04-25 | Processing method and apparatus |
US08/429,287 US5863706A (en) | 1990-09-26 | 1995-04-25 | Processing method for patterning a film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2314954A JP2756364B2 (en) | 1990-11-19 | 1990-11-19 | Optical surface treatment method and treatment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04188621A true JPH04188621A (en) | 1992-07-07 |
JP2756364B2 JP2756364B2 (en) | 1998-05-25 |
Family
ID=18059663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2314954A Expired - Fee Related JP2756364B2 (en) | 1990-09-26 | 1990-11-19 | Optical surface treatment method and treatment device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2756364B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56105479A (en) * | 1980-01-25 | 1981-08-21 | Mitsubishi Electric Corp | Pattern formation method |
JPS57208142A (en) * | 1981-06-17 | 1982-12-21 | Toshiba Corp | Method for forming fine pattern |
JPS59194439A (en) * | 1983-04-20 | 1984-11-05 | Oki Electric Ind Co Ltd | Method for forming pattern of semiconductor device |
JPS6154632A (en) * | 1984-08-24 | 1986-03-18 | Jeol Ltd | Formation of insulating film |
JPS61280621A (en) * | 1985-04-10 | 1986-12-11 | テキサス インスツルメンツ インコーポレイテツド | Optochemical patterning system |
-
1990
- 1990-11-19 JP JP2314954A patent/JP2756364B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56105479A (en) * | 1980-01-25 | 1981-08-21 | Mitsubishi Electric Corp | Pattern formation method |
JPS57208142A (en) * | 1981-06-17 | 1982-12-21 | Toshiba Corp | Method for forming fine pattern |
JPS59194439A (en) * | 1983-04-20 | 1984-11-05 | Oki Electric Ind Co Ltd | Method for forming pattern of semiconductor device |
JPS6154632A (en) * | 1984-08-24 | 1986-03-18 | Jeol Ltd | Formation of insulating film |
JPS61280621A (en) * | 1985-04-10 | 1986-12-11 | テキサス インスツルメンツ インコーポレイテツド | Optochemical patterning system |
Also Published As
Publication number | Publication date |
---|---|
JP2756364B2 (en) | 1998-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024045257A (en) | Methods for making euv patternable hard masks | |
US4612085A (en) | Photochemical patterning | |
JP2004304097A (en) | Pattern forming method, and manufacturing method for semiconductor device | |
JP3222660B2 (en) | Substrate surface treatment method | |
US5925578A (en) | Method for forming fine patterns of a semiconductor device | |
JP4782010B2 (en) | Method for forming TEOS cap layer at low temperature and low deposition rate | |
JPH04188621A (en) | Optical surface treatment method and device | |
JPS6219051B2 (en) | ||
US5356758A (en) | Method and apparatus for positively patterning a surface-sensitive resist on a semiconductor wafer | |
US5104481A (en) | Method for fabricating laser generated I.C. masks | |
JPS61228633A (en) | Formation of thin film | |
JPH0613356A (en) | Method of forming thin film pattern | |
JP2001052979A (en) | Formation method for resist, working method for substrate, and filter structure | |
JPH07254556A (en) | Pattern forming method and equipment therefor | |
JP3198302B2 (en) | Method of forming fine structure pattern | |
JP2670465B2 (en) | Fine processing method | |
JPS62136025A (en) | Ultrafine pattern working carbon film and working method for ultrafine pattern | |
KR100258803B1 (en) | Method of patterning of semiconductor device | |
US5316895A (en) | Photolithographic method using non-photoactive resins | |
RU2017191C1 (en) | Method of forming of mask masking layer | |
JP3387034B2 (en) | Metal film surface treatment process and semiconductor metallization manufacturing process | |
JP2586700B2 (en) | Wiring formation method | |
JP3110472B2 (en) | Selective metal deposition method | |
JPH09311461A (en) | Pattern forming method | |
JPH08181091A (en) | Pattern forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |