JPH04188553A - Section observing device - Google Patents

Section observing device

Info

Publication number
JPH04188553A
JPH04188553A JP31385390A JP31385390A JPH04188553A JP H04188553 A JPH04188553 A JP H04188553A JP 31385390 A JP31385390 A JP 31385390A JP 31385390 A JP31385390 A JP 31385390A JP H04188553 A JPH04188553 A JP H04188553A
Authority
JP
Japan
Prior art keywords
cross
ion beam
sectional observation
image data
dimensional image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31385390A
Other languages
Japanese (ja)
Other versions
JP3174316B2 (en
Inventor
Tadatetsu Hattori
服部 忠鐵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31385390A priority Critical patent/JP3174316B2/en
Publication of JPH04188553A publication Critical patent/JPH04188553A/en
Application granted granted Critical
Publication of JP3174316B2 publication Critical patent/JP3174316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To store three-dimensional image data in memory and provide possibil ity of reproducing a section image by sensing charged particles sputtered from a specimen at the same time as processing of a certain desired part with a converging ion beam. CONSTITUTION:With a condenser lens 3 and an objective lens 6, an ion beam is converged on the surface of a specimen 7, and a deflecting electrode 5 deflects this ion beam to scan the specimen surface in the X- and Y-directions. In this maner the converging ion beam makes scanning in steps in the X-and Y- directions in certain periods, and all sensing signals are stored in a memory device 12 in correspondence to the scan to build the data of one picture field for the specimen surface. The sputtered amount of the specimen surface per scan is decided, and the image data of internal layers are stored with proceeding with the number of scanning passes. Thereby the section image of the desired inclined surface can be reproduced by setting the cross-section with a desired function in the X- and Y directions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、LSI等の不良解析に使用される微側断面観
察装置の三次元画像データ収集およびその可成に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the collection of three-dimensional image data of a micro-side cross-section observation device used for failure analysis of LSIs and the like.

[従来の技術] 集束イオンビームの半導体分野での応用は、上記資料に
も記載されているごとく周知のことである。集束イオン
ビームの機能としては、(1)試料表向をスキャンして
得られる表面の拡大像、(2)スパッタリングによる微
細加工、即ち配線パターンの修正、穴あけ、配線切断な
ど、(3)タングステンなどの金属膜デポジションによ
り配線追加などがあげられる。近年のLSIはデバイス
の微細化が進み、サブミクロン・オーダの加工手段とし
集束、イオンビームが注目されている。例えばり、 S
 I内のセルのサイズが0.6μmXl、04m、パタ
ーンが0.3μm幅層間接続穴径0.3μmφ、絶縁膜
厚さ0,0171mなどすべてサブミクロンのオーダど
なる。これらの1、SIの開発時のパターン修正や、不
良解析には当然のこと上記オーダの加工手段が要求され
る。一方ガリウムなどの液体金属をニードルに濡らして
強電界を印し2てイオンビームを発生させ、数十μmφ
のアパーチャと静電レンズで得られる集束イオンビーム
のビーム径は0.03μmφ程度で、−1−記L S 
Tの事象を明確に表示するには不充分であるが、表面の
加工手段としては極めて有効なものである。なぜならば
、LSI内の配線パターンが多層になっているので表面
の像のみでは不良解析の助けとはならず、部分的にエツ
チングを行なって不良部位と思われる部分を掘出す必要
があり、この点で集束イオンビームは極めて有効である
[Prior Art] The application of focused ion beams in the semiconductor field is well known as described in the above-mentioned documents. The functions of a focused ion beam include (1) an enlarged image of the surface obtained by scanning the sample surface, (2) microfabrication by sputtering, i.e., wiring pattern correction, drilling, wiring cutting, etc., and (3) tungsten, etc. Additional wiring can be added by metal film deposition. In recent years, LSI devices have become increasingly miniaturized, and focused ion beams and ion beams are attracting attention as processing methods on the submicron order. For example, S
The size of the cell in I is 0.6 μmXl, 04 m, the pattern is 0.3 μm wide, the interlayer connection hole diameter is 0.3 μmφ, and the insulation film thickness is 0.0171 m, all on the submicron order. 1. For pattern correction and failure analysis during SI development, processing means of the above order are naturally required. On the other hand, a needle is wetted with liquid metal such as gallium and a strong electric field is applied2 to generate an ion beam with a diameter of several tens of μm.
The beam diameter of the focused ion beam obtained with the aperture and electrostatic lens is about 0.03 μmφ, and -1-L S
Although it is not sufficient to clearly display the phenomenon of T, it is extremely effective as a surface processing means. This is because the wiring pattern inside an LSI is multi-layered, so surface images alone are not helpful in defect analysis, and it is necessary to perform partial etching to excavate the parts that are thought to be defective. Focused ion beams are extremely effective at this point.

[発明が解決しようとする課題] 」−記従来の集束イオンビーム技術は、試料の表面にイ
オンビームを照射して所望の部分の加工を行い、試料を
傾斜させてその断面像を得るという点においては問題な
いが、しかし、集束イオンビームで加工するということ
は、目的の試料をスパッタして破壊してしまうことで、
誤って加工することが許されない操作である。特に、加
工する試料のパータンが大きく、更に、集束イオンビー
ムのビーム径がそれに比べてはるかに小さく安定に動作
する場合は問題ないが、加工する試料のパターンか微細
になり、集束イオンビームのビーム径、安定度が無視で
きないオーダになると誤って加工してしまう可能性が大
きくなり、重大な問題となる。
[Problems to be Solved by the Invention] - Conventional focused ion beam technology involves irradiating the surface of a sample with an ion beam to process a desired portion, and then tilting the sample to obtain a cross-sectional image. However, processing with a focused ion beam means sputtering and destroying the target sample.
This is an operation that cannot be processed incorrectly. In particular, if the pattern of the sample to be processed is large and the beam diameter of the focused ion beam is much smaller than that and operates stably, there is no problem. When the diameter and stability become too large to ignore, the possibility of machining errors increases, which becomes a serious problem.

又、所望の部位の断面を観察しているうちに時々刻々試
料面をエツチングするので、最もよく観察したい部位を
やり過ぎてしまうこともある。
Furthermore, since the sample surface is etched from time to time while observing the cross section of a desired region, the region most desired to be observed may be etched too much.

本発明の目的は、上記問題を解決することにある。An object of the present invention is to solve the above problems.

[課題を解決するための手段] 上記目的を達成するために、三次元の画像データを記憶
することのできる大容量記憶装置を具備し、集束イオン
ビームで所望部位の加工と同時に、試料からスパッタさ
れる荷電粒子を検出し、その信号を上記記憶装置に記憶
させる。そして、その記憶した画像データを並べ変える
ことにより所望の断面像を得る。又、更に、画像処理に
よって画質向上を計ることによって装置の性能向上を計
る。
[Means for solving the problem] In order to achieve the above object, a large-capacity storage device capable of storing three-dimensional image data is provided, and at the same time a desired part is processed with a focused ion beam, sputtering is performed from a sample. charged particles are detected, and the signal thereof is stored in the storage device. A desired cross-sectional image is then obtained by rearranging the stored image data. Furthermore, the performance of the apparatus is improved by improving image quality through image processing.

ぞして更に複数の三次元画像データを時分割で収集する
ことによって、装置の集束イオンビームのドリフトの補
正してより精度の高いデータを得る。
Then, by collecting a plurality of three-dimensional image data in a time-division manner, the drift of the focused ion beam of the apparatus is corrected to obtain more accurate data.

[作用1 集束イオンビームをX、Y方向にステップ状に−・定周
期でスキャンし、そのスキャンに対応して検出信号を全
て記憶装置に記憶し、試料表面の一画面のデータを得る
。一方試料表面は一回のスキャンによって、試料表面の
物質、イオンビームの種類やエネルギーモしてドース量
などによりスパッタされる量が決まる。スキャン回数を
重ねることによって内部の層の画像データが記憶される
[Operation 1] The focused ion beam is scanned stepwise in the X and Y directions at regular intervals, and all detection signals corresponding to the scans are stored in a storage device to obtain data for one screen of the sample surface. On the other hand, the amount of sputtering on the sample surface determined by one scan is determined by the material on the sample surface, the type of ion beam, the energy level, and the dose. By repeating the number of scans, the image data of the inner layer is stored.

すなわち、深さ方向のステップはスキャンの回数に比例
した量となる。
That is, the step in the depth direction is proportional to the number of scans.

この様にして、X、Y方向及び深さ方向の三次元の画像
データとして記憶することができる。
In this way, it can be stored as three-dimensional image data in the X, Y directions, and depth direction.

次に、この記憶された三次元の画像データを、例えばX
方向のアドレスが一定であるY方向と深さ方向のデータ
を表示するとY方向に平行な断面像が得られる。又、X
、Y、深さ方向の所望の関数で断面を設定すれば所望の
傾斜した面の断面像を再成することができる。
Next, this stored three-dimensional image data is
When data in the Y direction and depth direction, where the directional address is constant, is displayed, a cross-sectional image parallel to the Y direction is obtained. Also, X
, Y, and the depth direction, it is possible to recreate a cross-sectional image of a desired inclined surface.

[実施例〕 以下、本発明の一実施例を第1図により説明する。イオ
ン源材料となる液体金属がニードルに濡されたイオン源
1に高電圧を印加し、引出電極2との間に強電界を発住
させ、ニードルの先端から精度の高いイオンビームを生
成する。コンデンサーレンズ3と対物レン”ス6の二つ
は静電レンズで前記イオンビームを試料7の表面で集束
させる。
[Example] Hereinafter, an example of the present invention will be described with reference to FIG. A high voltage is applied to the ion source 1 whose needle is wetted with liquid metal serving as the ion source material, and a strong electric field is generated between it and the extraction electrode 2 to generate a highly accurate ion beam from the tip of the needle. The condenser lens 3 and the objective lens 6 are electrostatic lenses that focus the ion beam on the surface of the sample 7.

アパーチャー4はイオンビームの径を可変する。The aperture 4 changes the diameter of the ion beam.

偏向電極5はイオンビームを試料表面でX、Y方向にス
キャンする。試料7はステージ8の上に載せ、x、y、
z方向、回転、傾斜など試料表面の任意のところをイオ
ンビームの照射位置に移動できる。試料表面にイオンビ
ームを照射して放出される荷電粒子検出器9は、荷電粒
子が電子の場合はシンチレータホトマル等であり、荷電
粒子がイオンの場合はマルチダイノードや、四重極質量
分離器等である。制御系はコントローラ14はスキャン
信号発生器15の周期やX、Y方向偏向量イオンビーム
の照射位置などを設定する。スキャン信号発生器15か
らのスキャン信号はD/A変換器16でアナログ量に変
換し増幅器17で電圧増幅して鏡体の偏向電極5に印加
される。荷電粒子検出器9からの画像信号は増幅器10
で増幅されA/D変換器でディジタル量に変換し、記憶
装置12にスキャン信号と同期して記憶される。記憶装
置12に記憶された画像データは表示装置13に再成し
て求める断面像を得る。
The deflection electrode 5 scans the ion beam on the sample surface in the X and Y directions. Sample 7 is placed on stage 8, and x, y,
Any part of the sample surface can be moved to the ion beam irradiation position in the z direction, rotation, tilt, etc. The charged particle detector 9 emitted by irradiating the sample surface with an ion beam is a scintillator photomultiplier when the charged particles are electrons, and a multi-dynode, quadrupole mass separator, etc. when the charged particles are ions. It is. In the control system, a controller 14 sets the period of the scan signal generator 15, the amount of deflection in the X and Y directions, and the irradiation position of the ion beam. A scan signal from the scan signal generator 15 is converted into an analog quantity by a D/A converter 16, voltage amplified by an amplifier 17, and applied to the deflection electrode 5 of the mirror body. The image signal from the charged particle detector 9 is sent to an amplifier 10.
The signal is amplified by the A/D converter, converted into a digital quantity by the A/D converter, and stored in the storage device 12 in synchronization with the scan signal. The image data stored in the storage device 12 is reproduced on the display device 13 to obtain the desired cross-sectional image.

第2図は、集束イオンビームで加工した試料を示す。試
料表面にX、Y方向にイオンビームを一定周期でスキャ
ンを繰り返すと試料の表面を四角に掘ることができる。
FIG. 2 shows a sample processed with a focused ion beam. By repeatedly scanning the sample surface with an ion beam in the X and Y directions at regular intervals, the surface of the sample can be carved into squares.

そして斜めから見れば特定の断面が観察することができ
る。これは従来の集束イオンビームによる断面観察装置
である。この方法の欠点は、観察対象が微細となり、イ
オンビームの大きさ、変動が影響する程度になると所望
の部位の断面を正確に得ることができず又、断面観察す
る時に試料を傾斜し再度加工するために元の位置に戻す
とステージのバラクラシュや、イオンビームの変動など
のため位置合せが極めて煩雑となる。
When viewed from an angle, a specific cross section can be observed. This is a conventional cross-sectional observation device using a focused ion beam. The disadvantage of this method is that when the object to be observed becomes minute and the size and fluctuations of the ion beam affect it, it is not possible to accurately obtain the cross section of the desired part, and when observing the cross section, the sample must be tilted and reprocessed. If they are returned to their original positions, alignment becomes extremely complicated due to stage bala crashes and ion beam fluctuations.

第3図は、本発明の三次元の画像データの例を示す。X
方向にイオンビームをスキャンしなからY方向にもスキ
ャンするとXY平面の画像データが得られる。このスキ
ャンを繰り返すと、試料表面ではスキャンの毎に相当量
スパッタされるので、深さ方向とスキャンの回数に相関
があり三次元の画像データが得られる。その三次元の画
像データのX方向の値を一定にして再成すると図中点線
の断面の像が得られる。又X、Y、深さ方向の任意の位
置で、任意の角度で断面像を再成することも可能である
FIG. 3 shows an example of three-dimensional image data of the present invention. X
If the ion beam is scanned not only in this direction but also in the Y direction, image data on the XY plane can be obtained. When this scan is repeated, a considerable amount of sputtering is generated on the sample surface with each scan, so there is a correlation between the depth direction and the number of scans, and three-dimensional image data can be obtained. When the three-dimensional image data is regenerated with a constant value in the X direction, an image of the cross section indicated by the dotted line in the figure is obtained. It is also possible to recreate the cross-sectional image at any position in the X, Y, and depth directions and at any angle.

第4図は、加工エッチの影響を軽減するために集束イオ
ンビームの偏向範囲を広く設定し、画像データの取込み
範囲を狭くしてデータの質の向上を計った例である。
FIG. 4 is an example in which the deflection range of the focused ion beam is set wide to reduce the influence of processing etching, and the image data capture range is narrowed to improve the quality of the data.

第5図は、測定中に集束イオンビームの変動によりデー
タの取込み位置がドリフトした様子を示したものでこれ
らの装置の変動は既知の部位の構造により補正すること
ができる。
FIG. 5 shows how the data acquisition position drifts due to fluctuations in the focused ion beam during measurement, and these fluctuations in the device can be corrected by the known structure of the part.

[発明の効果] 本発明によれば、三次元の画像データを記憶するので、
任意の位置、任意の角度の断面像を再成することができ
るので、微細部位の断面観察には極めて効果がある。又
、三次元の画像処理によって像質の向上することもでき
るので性能向上にも効果がある。そして又、集束イオン
ビームなどの装置の変動もデータ処理で容易に補正でき
る。
[Effects of the Invention] According to the present invention, since three-dimensional image data is stored,
Since it is possible to recreate a cross-sectional image at any position and at any angle, it is extremely effective for cross-sectional observation of minute parts. In addition, image quality can be improved through three-dimensional image processing, which is also effective in improving performance. Furthermore, fluctuations in devices such as focused ion beams can be easily corrected by data processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図は従来
の集束イオンビームの断面観察を説明する試料表面上の
加工例を示す図、第3図は本発明の記憶装置に記憶され
る三次元の画像データおよび断面像可成を説明する一実
施例を示す図、第4図は集束イオンビームの偏向範囲と
データ取込み範囲の関係を示す図、第5図は集束イオン
ビームの測定中のドリフトによりデータ厳込位置が変動
した三次元画像データの一実施例を示す図である。 1・・・イオン源、2・・・引出電極、3・・・コンデ
ンサ・レンズ、4・・・アパーチャ、5・・・偏向電極
、6・・・対物レンズ、7・・・試料、8・・・ステー
ジ、9・・・荷電粒子検出器、10・・・前置増幅器、
11・・・A/D変換器、12・・・記憶装置、13・
・・表示装置、14・・・コントローラ、15・・・ス
キャン信号発生器、16・・・D/A変換器、17・・
・電圧増幅器。 $1rlA ? 第2図
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a diagram showing an example of processing on a sample surface to explain cross-sectional observation of a conventional focused ion beam, and FIG. 3 is a diagram stored in the storage device of the present invention. FIG. 4 is a diagram showing the relationship between the deflection range of the focused ion beam and the data acquisition range, and FIG. 5 is a diagram showing the relationship between the deflection range of the focused ion beam and the data acquisition range. FIG. 4 is a diagram showing an example of three-dimensional image data in which the data tightness position has changed due to drift during measurement. DESCRIPTION OF SYMBOLS 1... Ion source, 2... Extraction electrode, 3... Condenser lens, 4... Aperture, 5... Deflection electrode, 6... Objective lens, 7... Sample, 8... ... Stage, 9... Charged particle detector, 10... Preamplifier,
11... A/D converter, 12... Storage device, 13.
...Display device, 14...Controller, 15...Scan signal generator, 16...D/A converter, 17...
・Voltage amplifier. $1rlA? Figure 2

Claims (1)

【特許請求の範囲】 1、試料の表面で微細に集束したイオンビームを一定周
期でXY方向に偏向し、試料表面から放出される荷電粒
子を検出し、その信号を記憶装置に三次元画像データと
して蓄積し、任意の断面の画像を表示装置に再生できる
ことを特徴とする断面観察装置。 2、液体のイオン材料をニードルに濡らし、強電界を印
加してイオンビームを発生させ、静電レンズ等でそのイ
オンビームを試料表面に集束させて、イオンビーム径を
0.1μmφ以下にすることを特徴とする請求項1記載
の断面観察装置。 3、周期、X方向、Y方向のイオンビーム偏向量をあら
かじめ設定できることを特徴とする請求項1記載の断面
観察装置。 4、イオンビームのX、Y方向の偏向量とは独立に、X
、Y方向のデータ取込範囲をあらかじめ設定できること
を特徴とする請求項3記載の断面観察装置。 5、試料表面から放出される荷電粒子として、二次電子
、又は、2次イオン、又は、二次電子と二次イオン双方
を検出することを特徴とする請求項1記載の断面観察装
置。 6、三次元画像データは同時に複数収集することができ
ることを特徴とする請求項1記載の断面観察装置。 7、既知の断面構造部位と未知の断面構造部位の三次元
画像データを時分割でデータ収集することを特徴とする
請求項6項記載の断面観察装置。 8、既知の断面構造の三次元画像データによつて、集束
イオンビームの測定時中のドリフトを校正するとを特徴
とする請求項1記載の断面観察装置。
[Claims] 1. The ion beam finely focused on the surface of the sample is deflected in the X and Y directions at regular intervals, the charged particles emitted from the sample surface are detected, and the signals are stored in a storage device as three-dimensional image data. A cross-sectional observation device characterized by being able to accumulate images of any cross-section and reproduce them on a display device. 2. Wetting a needle with liquid ionic material, applying a strong electric field to generate an ion beam, and focusing the ion beam on the sample surface using an electrostatic lens, etc. to reduce the ion beam diameter to 0.1 μmφ or less. The cross-sectional observation device according to claim 1, characterized in that: 3. The cross-sectional observation apparatus according to claim 1, wherein the period and the amount of ion beam deflection in the X direction and the Y direction can be set in advance. 4.Independently of the amount of deflection of the ion beam in the X and Y directions,
4. The cross-sectional observation apparatus according to claim 3, wherein the data acquisition range in the Y direction can be set in advance. 5. The cross-sectional observation device according to claim 1, wherein the cross-sectional observation device detects secondary electrons, secondary ions, or both secondary electrons and secondary ions as the charged particles emitted from the sample surface. 6. The cross-sectional observation device according to claim 1, wherein a plurality of three-dimensional image data can be acquired simultaneously. 7. The cross-sectional observation apparatus according to claim 6, wherein three-dimensional image data of a known cross-sectional structure site and an unknown cross-sectional structure site are collected in a time-sharing manner. 8. The cross-sectional observation device according to claim 1, wherein drift during measurement of the focused ion beam is calibrated using three-dimensional image data of a known cross-sectional structure.
JP31385390A 1990-11-21 1990-11-21 Focused ion beam apparatus and sample image display method using the same Expired - Lifetime JP3174316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31385390A JP3174316B2 (en) 1990-11-21 1990-11-21 Focused ion beam apparatus and sample image display method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31385390A JP3174316B2 (en) 1990-11-21 1990-11-21 Focused ion beam apparatus and sample image display method using the same

Publications (2)

Publication Number Publication Date
JPH04188553A true JPH04188553A (en) 1992-07-07
JP3174316B2 JP3174316B2 (en) 2001-06-11

Family

ID=18046294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31385390A Expired - Lifetime JP3174316B2 (en) 1990-11-21 1990-11-21 Focused ion beam apparatus and sample image display method using the same

Country Status (1)

Country Link
JP (1) JP3174316B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045172A (en) * 2002-07-11 2004-02-12 Fujitsu Ltd Method for evaluating three-dimensional structure
JP2009277536A (en) * 2008-05-15 2009-11-26 Sii Nanotechnology Inc Cross section image acquiring method using combined charged particle beam device, and combined charged particle beam device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045172A (en) * 2002-07-11 2004-02-12 Fujitsu Ltd Method for evaluating three-dimensional structure
JP2009277536A (en) * 2008-05-15 2009-11-26 Sii Nanotechnology Inc Cross section image acquiring method using combined charged particle beam device, and combined charged particle beam device

Also Published As

Publication number Publication date
JP3174316B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
EP1209737B1 (en) Method for specimen fabrication
JP3996774B2 (en) Pattern defect inspection method and pattern defect inspection apparatus
JP5241168B2 (en) electronic microscope
JPH0552721A (en) Sample separating method and method for analyzing separated sample obtained by the separating method
US5770861A (en) Apparatus for working a specimen
JP2004014485A (en) Wafer defect inspection method and wafer defect inspection device
JP3101114B2 (en) Scanning electron microscope
JPH11213934A (en) Method for observing secondary ion image formed by focused ion beam
JP3401426B2 (en) Sample processing method in FIB-SEM device and FIB-SEM device
JPH0737538A (en) Compound charged particle beam device
JP2001210263A (en) Scanning electron microscope, its dynamic focus control method and shape identifying method for semiconductor device surface and cross section
JP3235681B2 (en) Ion beam analyzer
JPH07230784A (en) Composite charge particle beam device
JPH04188553A (en) Section observing device
JP2003229462A (en) Circuit pattern testing apparatus
TW202215480A (en) Charged particle beam apparatus and control method
JP3950891B2 (en) Pattern defect inspection method and pattern defect inspection apparatus
JP3266718B2 (en) Complex charged particle beam device
JPS60126834A (en) Ion beam processing method and device thereof
JP2005203241A (en) Electrically-charged particle beam observation method and electrically-charged particle beam device
JP2000188075A (en) Inspection method and inspection device for circuit pattern
JP2002245960A (en) Charged particle beam device and device manufacturing method using the same
JPH04373125A (en) Converged ion beam device and processing method using that
JPH1167138A (en) Micro-area observation device
US6093512A (en) Method and apparatus for dimension measurement and inspection of structures utilizing corpuscular beam

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10