JP2005203241A - Electrically-charged particle beam observation method and electrically-charged particle beam device - Google Patents

Electrically-charged particle beam observation method and electrically-charged particle beam device Download PDF

Info

Publication number
JP2005203241A
JP2005203241A JP2004008678A JP2004008678A JP2005203241A JP 2005203241 A JP2005203241 A JP 2005203241A JP 2004008678 A JP2004008678 A JP 2004008678A JP 2004008678 A JP2004008678 A JP 2004008678A JP 2005203241 A JP2005203241 A JP 2005203241A
Authority
JP
Japan
Prior art keywords
sample
particle beam
charged particle
charged
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004008678A
Other languages
Japanese (ja)
Inventor
Shigemasa Ota
田 繁 正 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2004008678A priority Critical patent/JP2005203241A/en
Publication of JP2005203241A publication Critical patent/JP2005203241A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrically charged particle beam observation method and an electrically charged particle beam device in which, even if an observed sample is or includes an insulator and its surface material is a sample composed of the insulator and a conductive material, a charged particle beam image of a high picture quality which is not influenced by electrostatic charge is obtained. <P>SOLUTION: The region on the sample 4 that should be observed is scanned two-dimensionally with an electron beam from an electron gun 1, and a secondary electron image in the observation is displayed in a display device 34 by a signal based on a secondary electron from the observation region inspected at a secondary electron inspection device 31 by this scanning. In this kind of observation, before the secondary electron beam image in the observation region is obtained, it is pre-irradiated with the electron beam at least to the region including the observation region so that the electrostatic charge does not occur. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、IC,LSI等の半導体デバイスの製造プロセスにおける試料の観察等を行うのに適した荷電粒子ビーム観察方法及び荷電粒子ビーム装置に関する。   The present invention relates to a charged particle beam observation method and a charged particle beam apparatus suitable for observing a sample in a manufacturing process of a semiconductor device such as an IC or LSI.

半導体デバイスは、例えば、シリコンウエハ(シリコン基板)の上に多層構造が形成されたものである。この多層構造において、特定の層と層の間には絶縁層が形成され、該絶縁層にコンタクトホール或いはビアホールが形成されている。そして、該コンタクトホール或いはビアホールに配線(導電性材料)を埋め込むことによって特定層間の電気的接続を行うようにしている。尚、以後コンタクトホールを例に上げて説明する。   A semiconductor device has, for example, a multilayer structure formed on a silicon wafer (silicon substrate). In this multilayer structure, an insulating layer is formed between specific layers, and a contact hole or a via hole is formed in the insulating layer. Then, electrical connection between specific layers is performed by embedding wiring (conductive material) in the contact hole or via hole. In the following description, contact holes are taken as an example.

この様なコンタクトホールは、半導体デバイスを製造する過程で、絶縁層にレジストを塗布し、その上にコンタクトホールのパターンを露光し、その後、現像処理、エッチング処理等を施すことによって形成される。   Such contact holes are formed by applying a resist to the insulating layer in the process of manufacturing a semiconductor device, exposing the contact hole pattern thereon, and then performing development processing, etching processing, and the like.

この様なコンタクトホールの形成において、所定の径のコンタクトホールが形成されなかったり、或いは、図1に示す様に、伝導層Dとの境に絶縁層Aの一部が残ったコンタクトホールCHが形成されたりすることがある。   In the formation of such a contact hole, a contact hole having a predetermined diameter is not formed, or a contact hole CH in which a part of the insulating layer A remains at the boundary with the conductive layer D as shown in FIG. It may be formed.

その為、コンタクトホールを形成した後、コンタクトホールの形成状態を検査することは、その後の製造プロセスを行うか否かの決定上で重要となる。又、この検査によって得られたコンタクトホールの形成状態によって、前の工程で行われた現像処理若しくはエッチング処理が適切であったか否かの判断を行うことが出来、且つ、コンタクトホールの形成プロセスの不良原因の解析も行うことが出来る。   Therefore, inspecting the formation state of the contact hole after forming the contact hole is important in determining whether or not to perform a subsequent manufacturing process. Also, depending on the contact hole formation state obtained by this inspection, it is possible to determine whether the development process or etching process performed in the previous process is appropriate, and the contact hole formation process is defective. Cause analysis can also be performed.

この様なコンタクトホールの形成状態の検査は、例えば、走査電子顕微鏡(SEM)の電子ビーム照射により、非破壊で行われている。即ち、コンタクトホール上を電子ビームで走査し、該走査によって検出された、例えば、二次電子に基づいてコンタクトホールの二次電子像を表示装置上の画面上に表示させ、該コンタクトホールの像を観察することにより、コンタクトホールの形成状態の検査を行っている。   Such a contact hole formation state inspection is performed non-destructively by, for example, electron beam irradiation of a scanning electron microscope (SEM). That is, the contact hole is scanned with an electron beam, and for example, a secondary electron image of the contact hole detected on the basis of the secondary electron is displayed on a screen on a display device, and the image of the contact hole is displayed. By observing the above, the contact hole formation state is inspected.

この様な電子ビーム走査によってコンタクトホールの二次電子像を得る場合、絶縁層の電子ビーム照射により帯電が発生する。   When a secondary electron image of a contact hole is obtained by such electron beam scanning, charging is generated by electron beam irradiation of the insulating layer.

即ち、絶縁物試料においては、ランディングエネルギー(一般に、電子ビームの加速電圧と試料にかかっている電圧から決まるエネルギー)Eに対して、入射電子量に対する二次電子の放出量の比δ(以後、二次電子放出率と称す)が変化し(図2の曲線参照)、或るエネルギー領域(図2では、δ=1であるEaとEbの間)でδ>1となり、それ以外のエネルギー領域ではδ<1となり、前者の場合には試料表面が正に、後者の場合には負に帯電する事が知られている(尚、δ=1になるエネルギー値Ea,Ebは物質により異なる)。   That is, in the insulator sample, the ratio δ of the emission amount of secondary electrons to the incident electron amount δ (hereinafter referred to as the energy determined from the acceleration voltage of the electron beam and the voltage applied to the sample) E (hereinafter, (Referred to as a curve in FIG. 2), δ> 1 in a certain energy region (between Ea and Eb where δ = 1 in FIG. 2), and other energy regions In this case, δ <1, and it is known that the sample surface is positively charged in the former case and negatively charged in the latter case (the energy values Ea and Eb at which δ = 1 differ depending on the substance). .

試料が正又は負に帯電すると、SEM観察時のS/N比の劣化及び帯電コントラスト(異常コントラスト)による観察画像の歪みを引き起こしたりする。   If the sample is charged positively or negatively, the S / N ratio during SEM observation may be deteriorated and the observed image may be distorted due to charged contrast (abnormal contrast).

そこで、この様な問題を解決する為に、例えば、次の様な画質改善方法が提案されている。   In order to solve such problems, for example, the following image quality improvement methods have been proposed.

画像の電位コントラストを改善するために、画像取得前に画像取得領域を含む領域に電子ビームを照射して該領域を正又は負に帯電させておく(特許文献1)。   In order to improve the potential contrast of the image, the region including the image acquisition region is irradiated with an electron beam before the image acquisition to charge the region positively or negatively (Patent Document 1).

ドライエッチング後のコンタクトホール底や側壁の如き凹凸の大きい試料に対し、画像取得前に画像取得領域を含む領域に電子ビームを照射して該領域を正に帯電させておく(特許文献2)。   An area including an image acquisition area is irradiated with an electron beam on a sample having large irregularities such as a contact hole bottom and a side wall after dry etching, and the area is positively charged (Patent Document 2).

画像取得前に画像取得領域を含む領域に電子ビームで走査して該領域を正又は負に帯電させ、正に帯電させた場合には該領域を負に帯電させる条件で画像を取得し、負に帯電させた場合には該領域を正に帯電させる条件で画像を取得する(特許文献3)。   Prior to image acquisition, the area including the image acquisition area is scanned with an electron beam to charge the area positively or negatively. When positively charged, an image is acquired under the condition that the area is negatively charged. In the case of charging the image, an image is acquired under the condition of positively charging the region (Patent Document 3).

特開2000−208085号公報Japanese Patent Laid-Open No. 2000-208085 特開2002−270665号公報JP 2002-270665 A 特表2002−524827号公報Japanese translation of PCT publication No. 2002-524827

しかし、何れの画質改善方法も、次の問題を有している。   However, any of the image quality improvement methods has the following problems.

観察すべき試料が絶縁体にプラグを埋め込んだ如き構造のもので、そのプラグが基板のグランドに接続されている場合(例.前記シリコン基板の上に形成された多層構造の絶縁層に形成されているコンタクトホールに配線(プラグに相当)を埋め込むことによって特定層間の電気的接続を行うように成した如き構造の半導体デバイス)、画像取得前のプリチャージ時、絶縁体部分は正又は負に帯電するが、プラグ部分は帯電しない。この様に、画像取得前のプリチャージ時に観察領域(画像取得領域)に帯電する部分と帯電しない部分が発生すると、画像取得の際、画像に歪みが発生してしまい、画質が改善されないことになる。   When the sample to be observed has a structure in which a plug is embedded in an insulator and the plug is connected to the ground of the substrate (eg, formed on an insulating layer having a multilayer structure formed on the silicon substrate). Semiconductor devices with a structure that allows electrical connection between specific layers by embedding wiring (corresponding to plugs) in the contact holes), the insulator part must be positive or negative during precharge before image acquisition It is charged, but the plug part is not charged. In this way, when a charged part and an uncharged part occur in the observation area (image acquisition area) during precharge before image acquisition, the image is distorted during image acquisition, and the image quality is not improved. Become.

又、前記特許文献3の方法はプリチャージを電子ビーム走査により行っていることから、プリチャージに時間がかかり、画像取得のスループットが低下する。   Further, since the method of Patent Document 3 performs precharging by electron beam scanning, it takes time for precharging, and the image acquisition throughput is reduced.

本発明は、この様な問題を解決する新規な荷電粒子ビーム観察方法及び荷電粒子ビーム装置を提供することを目的とする。   It is an object of the present invention to provide a novel charged particle beam observation method and charged particle beam apparatus that solve such problems.

本発明の荷電粒子ビーム観察方法は、荷電粒子ビームで試料上の観察すべき領域を二次元的に走査し、該走査により検出された観察領域からの荷電粒子ビームに基づく信号により表示装置に観察領域の荷電粒子ビーム像を表示させるように成した荷電粒子ビーム観察方法において、前記観察領域の荷電粒子ビーム像を得る前に、少なくとも前記観察領域を含む領域に対して帯電が起こらない様に荷電粒子ビームでプリ照射したしたことを特徴とする。   In the charged particle beam observation method of the present invention, a region to be observed on a sample is two-dimensionally scanned with a charged particle beam, and the display device observes the signal based on the charged particle beam from the observation region detected by the scanning. In a charged particle beam observation method configured to display a charged particle beam image of an area, before obtaining the charged particle beam image of the observation area, the charging is performed so that at least the area including the observation area is not charged. It is characterized by pre-irradiation with a particle beam.

本発明の荷電粒子ビーム装置は、荷電粒子ビーム発生手段、該荷電粒子ビーム発生手段からの荷電粒子ビームで試料上の観察すべき領域を二次元的に走査させる走査手段、該走査により観察すべき領域から発生する荷電粒子ビームを検出する手段、該検出された観察領域からの荷電粒子ビームに基づいて観察領域の荷電粒子ビーム像を表示する表示装置、前記荷電粒子ビーム発生手段からの荷電粒子ビームを試料方向に加速するための電圧を発生する加速電源等から成る加速手段、試料表面上に電界を形成するための電界形成手段、及び、試料に電圧を印加するための試料電圧印加手段を備えており、前記観察領域の荷電粒子ビーム像を得る前に、少なくとも前記観察領域を含む領域に対して帯電が起こらない様に荷電粒子ビームでプリ照射するように成した。   The charged particle beam apparatus according to the present invention comprises a charged particle beam generating means, a scanning means for two-dimensionally scanning an area to be observed on a sample with a charged particle beam from the charged particle beam generating means, and observation by the scanning. Means for detecting a charged particle beam generated from a region, a display device for displaying a charged particle beam image of the observation region based on the detected charged particle beam from the observation region, and a charged particle beam from the charged particle beam generation unit Accelerating means comprising an accelerating power source for generating a voltage for accelerating the sample in the direction of the sample, electric field forming means for forming an electric field on the sample surface, and sample voltage applying means for applying a voltage to the sample Before the charged particle beam image of the observation area is obtained, pre-irradiation with the charged particle beam is performed so that at least the area including the observation area is not charged. The form to so that.

本発明の荷電粒子ビーム観察方法によれば、観察すべき試料が絶縁物若しくは絶縁物を含み、その表面物質が絶縁物と導電物から成る試料であっても、帯電の影響のない画質の良い荷電粒子ビーム像が得られる。   According to the charged particle beam observation method of the present invention, even if the sample to be observed contains an insulator or an insulator, and the surface material is a sample made of an insulator and a conductor, the image quality is not affected by charging. A charged particle beam image is obtained.

本発明は試料の所定領域上での電子ビーム走査による走査領域の画像取得(画像化)前に、試料表面を帯電させないように電子ビームでプリ照射することにより、画像取得時(観察時)に画質の良い画像を取得出来るように成したもので、以下に説明する原理に基づいている。   In the present invention, before image acquisition (imaging) of a scanning region by electron beam scanning on a predetermined region of a sample, pre-irradiation with an electron beam is performed so that the surface of the sample is not charged. This is so that an image with good image quality can be acquired, and is based on the principle described below.

従来の方法を用いて試料表面材質が均一な試料(試料表面が絶縁物だけから成る試料)をプリチャージ(例えば、正にチャージ)した場合、試料Saの表面の電荷は図3の(a)で示したように均一となる。この様に試料表面の電荷分布が均一な場合、観察時に電子ビームで試料Sa上を走査しても試料表面から二次電子は均一に出射するので、取得した画像の画質はチャージアップの影響を受けず良好である。しかし、従来の方法を用いて試料表面材質が均一でない試料、例えば絶縁体に導電体(例えば、プラグ)を埋め込んだような試料で、且つ、プラグが基板のグラウンドに接続されている様な試料Sbをプリチャージ(例えば、正若しくは負にチャージ)した場合、図3の(b),(c)に示す様に、絶縁体部分は正または負に帯電するが、プラグ部分Pa,Pb,Pc,Pd,Pe,Pfは帯電せず、試料表面の電荷は不均一となる。その様な試料表面上を観察時に電子ビームで試料上を走査すると、試料表面の電荷分布が不均一な箇所では、試料表面から出射した電子のエネルギーは異なるので、二次電子像に輝度むらが発生する。又、試料表面上方部の電界が一様でなくなるので、試料表面の帯電状態が、出射した電子の試料表面への回帰により変化する。従って、取得した画像にチャージアップによる異常コントラストが発生し、画質の改善は不可能となる。   When a sample having a uniform sample surface material (sample whose sample surface is made only of an insulator) is precharged (eg, positively charged) using a conventional method, the surface charge of the sample Sa is as shown in FIG. As shown in FIG. In this way, when the charge distribution on the sample surface is uniform, secondary electrons are emitted uniformly from the sample surface even if the sample Sa is scanned on the sample Sa during observation, so the image quality of the acquired image is affected by the charge-up. It is good without receiving. However, a sample whose surface material is not uniform using a conventional method, for example, a sample in which a conductor (eg, a plug) is embedded in an insulator, and the plug is connected to the ground of the substrate. When Sb is precharged (for example, positively or negatively charged), as shown in FIGS. 3B and 3C, the insulator portion is charged positively or negatively, but the plug portions Pa, Pb, Pc are charged. , Pd, Pe, and Pf are not charged, and the charge on the sample surface is non-uniform. When such a sample surface is scanned with an electron beam at the time of observation, the energy of electrons emitted from the sample surface is different at locations where the charge distribution on the sample surface is non-uniform, so there is uneven brightness in the secondary electron image. Occur. In addition, since the electric field above the sample surface is not uniform, the charged state of the sample surface changes due to the return of emitted electrons to the sample surface. Therefore, abnormal contrast due to charge-up occurs in the acquired image, and image quality cannot be improved.

そこで、本発明は、観察時に画像取得の為に行う試料上での電子ビーム走査の前に、試料表面が帯電しないように電子ビームでプリ照射し、試料表面の電位を均一にした。これにより、試料表面材質が異なる試料(試料表面が絶縁物と導電物から成る試料)においても、画質改善出来ることを見出した。   Therefore, the present invention pre-irradiates with an electron beam so that the surface of the sample is not charged before the electron beam is scanned on the sample for image acquisition during observation, so that the potential of the sample surface is made uniform. As a result, it has been found that the image quality can be improved even in samples having different sample surface materials (samples whose surface is made of an insulator and a conductive material).

電子ビームでのプリ照射で試料表面が帯電しないようにするために、電子のランディングエネルギー、試料上方部電界、ビーム電流、ビーム径を制御するようにした。プリ照射により帯電していないかどうかの確認は、プリ照射実施直後にプリ照射領域よりも狭い領域を電子ビームで走査し、該走査領域の画像を取得し、該走査領域の画像の輝度と、プリ照射領域内における前記走査領域の周辺領域の輝度との比較により行う。即ち、前者と後者の領域の輝度が変わらなければ帯電していない、後者の領域に対し前者の領域が黒くなれば正帯電が進行している、白くなれば負帯電に進行していると判断する。   In order to prevent the sample surface from being charged by pre-irradiation with an electron beam, the electron landing energy, the electric field above the sample, the beam current, and the beam diameter were controlled. To confirm whether pre-irradiation is not charged, immediately after performing pre-irradiation, scan an area narrower than the pre-irradiation area with an electron beam, acquire an image of the scanning area, and brightness of the image of the scanning area, This is performed by comparison with the brightness of the peripheral area of the scanning area in the pre-irradiation area. That is, if the brightness of the former and the latter area does not change, the battery is not charged. If the former area is black with respect to the latter area, the positive charging is progressing. If the brightness is white, the charging is negative. To do.

本発明は、この様な帯電させないプリ照射をした後に、プリ照射領域の一部を荷電粒子ビームで走査し、該領域から得られた荷電粒子に基づきその領域の画像を観察すると、その画像にチャージの影響がないことを見出した。   In the present invention, after pre-irradiation that does not cause such charging, a part of the pre-irradiation area is scanned with a charged particle beam, and an image of the area is observed based on the charged particles obtained from the area. I found that there was no charge effect.

図4の(a)は、帯電しないようにプリ照射した試料Scの表面の電荷分布状態を模式的に示している。試料表面は帯電しない状態にセッティングされ、電荷が均一にデポジットされていると、試料表面には、負電荷が表面近傍の正電荷に非常に弱いエネルギーでトラッピングされていると考えられる。この負電荷は、正電荷のサイトを介して、容易に試料表面を移動することができる。   FIG. 4A schematically shows the charge distribution state on the surface of the sample Sc pre-irradiated so as not to be charged. If the sample surface is set in an uncharged state and charges are uniformly deposited, it is considered that negative charges are trapped on the sample surface with very weak energy to positive charges in the vicinity of the surface. This negative charge can easily move on the surface of the sample via positively charged sites.

この様に帯電しないようにプリ照射した試料に対し、画像取得時に(観察時に)画像取得領域Rpに電子ビーム走査に基づく電子線照射を行うと、試料表面から二次電子esが放出され、試料表面がランディングエネルギーに依存して正または負に帯電が進行する。例えば、図4の(b)に示す様に、画像取得領域Rpに負に帯電を進行させた場合、画像取得領域Rpの表面及び表面近傍は負電荷が過剰になるので、図4の(c)に示す様に、画像取得領域Rpの表面及びその表面の周辺部に負電荷が移動し、負電荷が移動した画像取得領域Rpの表面近傍にその周囲の正電荷が移動し、図4の(d)に示す様に、プリ照射した時の状態、即ち、試料表面は帯電していない状態に戻る。   When a sample pre-irradiated so as not to be charged in this way is irradiated with an electron beam based on electron beam scanning on the image acquisition region Rp at the time of image acquisition (during observation), secondary electrons es are emitted from the sample surface, and the sample The surface is charged positively or negatively depending on the landing energy. For example, as shown in FIG. 4B, when the image acquisition region Rp is charged negatively, the surface of the image acquisition region Rp and the vicinity of the surface have excessive negative charges. 4), the negative charge moves to the surface of the image acquisition region Rp and the peripheral portion of the surface, the positive charge around the surface of the image acquisition region Rp to which the negative charge has moved moves, As shown in (d), the state when pre-irradiation is returned, that is, the sample surface returns to an uncharged state.

一方、図4の(e)に示す様に、画像取得時(観察時)、画像取得領域Rpに正の帯電を進行させた場合、画像取得領域Rpの表面は、負電荷が不足するので、図4の(f)に示す様に、試料表面において、周辺部の表面に弱いエネルギーでトラッピングされた負電荷が画像取得領域Rpに移動し、図4の(g)に示す様に、プリ照射した時の状態、即ち、試料表面は帯電していない状態に戻る。   On the other hand, as shown in (e) of FIG. 4, when the image acquisition region Rp is positively charged at the time of image acquisition (observation), the surface of the image acquisition region Rp lacks negative charges. As shown in FIG. 4 (f), the negative charge trapped on the surface of the peripheral portion with weak energy moves to the image acquisition region Rp on the surface of the sample, and pre-irradiation as shown in FIG. 4 (g). The state at the time when the sample is taken, that is, the sample surface returns to the uncharged state.

この様に、観察時、画像取得の為に行う画像取得領域上での電子ビーム走査の前に、画像取得領域を含む試料表面が帯電しないように電子ビームでプリ照射し、試料表面の電位を均一にしておけば、画像取得時、画像取得領域を電子ビームで走査し、該領域から得られた二次電子に基づきその領域の画像を観察しても、その画像にチャージの影響がない。   In this way, prior to electron beam scanning on the image acquisition region for image acquisition during observation, pre-irradiation with an electron beam is performed so that the sample surface including the image acquisition region is not charged, and the potential of the sample surface is set. If uniform, even when an image is acquired by scanning the image acquisition area with an electron beam and observing the image of the area based on the secondary electrons obtained from the area, the image is not affected by charging.

実際に本発明の効果を検証すると、次の様になった。   The actual effect of the present invention was verified as follows.

先ず、プリ照射なしで、試料上を電子ビームで走査することにより画像化する。更に、その直後に前記走査領域よりも広い範囲を走査することにより、広い範囲を画像化する。第一の画像取得後から第二の画像取得までの時間は、0.5から5secの間に設定した。第一の画像取得領域と第二の画像取得領域の輝度差から第一の画像取得領域の帯電に関する情報を得ることが出来る。実験の結果、第一の画像取得領域は、周辺部と比較して輝度が白くなる傾向にあったので、負に帯電が進行していることがわかった。この際、第一の画像取得から第二の画像取得までの時間を変えても、第二の画像における第一の画像取得領域の帯電状態は変わらなかった。   First, an image is formed by scanning the sample with an electron beam without pre-irradiation. Further, immediately after that, a wider area is scanned than the scanning area, thereby imaging a wide area. The time from the first image acquisition to the second image acquisition was set between 0.5 and 5 sec. Information regarding charging of the first image acquisition region can be obtained from the luminance difference between the first image acquisition region and the second image acquisition region. As a result of the experiment, it was found that the first image acquisition region had a tendency of whiteness in brightness as compared with the peripheral portion, so that the charging progressed negatively. At this time, even if the time from the first image acquisition to the second image acquisition was changed, the charged state of the first image acquisition region in the second image did not change.

一方、本発明の様に、画像取得領域を含む試料表面を帯電させないようにプリ照射した後、プリ照射領域の一部を電子ビームで走査することにより画像化した場合は結果が異なる。プリ照射した後に、上記と同様に第一の領域での画像化の直後に第二の領域での画像化を行った。第二の画像における第一の領域とその周りの輝度差は、画像取得間隔が0.5secの場合においても、帯電のないプリ照射を行わない場合と比較して小さかった。これは、帯電のないプリ照射を行った場合、第一の画像取得における帯電が少ないことを意味する。又、帯電のないプリ照射を行った場合、画像取得間隔が長くなるにつれて、第二の画像における第一の領域とその周りの輝度差が小さくなることが分かった。これは、上記した様に表面にトラップされたチャージが簡単に移動出来る為に、第一の画像化によるチャージが緩和されるためである。   On the other hand, as in the present invention, after pre-irradiation of the sample surface including the image acquisition region so as not to be charged, an image is formed by scanning a part of the pre-irradiation region with an electron beam. After pre-irradiation, imaging in the second region was performed immediately after imaging in the first region in the same manner as described above. The luminance difference between the first region and the surrounding area in the second image was small even when the image acquisition interval was 0.5 sec compared to the case where pre-irradiation without charging was not performed. This means that when pre-irradiation without charging is performed, there is little charging in the first image acquisition. In addition, it was found that when pre-irradiation without charging was performed, the luminance difference between the first region in the second image and its surroundings became smaller as the image acquisition interval became longer. This is because, as described above, the charge trapped on the surface can be easily moved, so that the charge due to the first imaging is relaxed.

以上説明した様に、試料表面を帯電しないようにするプリ照射は、試料表面に負電荷をデポジットして電荷状態を均一とし、観察時に画像を取得する際の帯電を、デポジットした電荷の移動により抑制するのである。   As described above, the pre-irradiation for preventing the sample surface from being charged is a negative charge deposited on the sample surface to make the charge state uniform, and the charge at the time of observing the image is acquired by the movement of the deposited charge. It suppresses.

本発明は、この様に、試料表面材質が異なる試料(表面が絶縁物と導電物から成る試料)であっても、試料表面を帯電させないようにするプリ照射を行うことにより、画質改善を可能にしたものである。この結果、試料の細部まで精細に観察出来る様になった。   In this way, the present invention can improve image quality by performing pre-irradiation so that the surface of the sample is not charged even if it is a sample with a different sample surface material (sample consisting of an insulator and a conductor). It is a thing. As a result, fine details of the sample can be observed.

以下、図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図5は本発明の荷電粒子ビーム装置の1例である電子ビーム検査装置の1概略例を示したものである。   FIG. 5 shows one schematic example of an electron beam inspection apparatus which is an example of the charged particle beam apparatus of the present invention.

図中1は電子銃で、該電子銃からの電子ビームはコンデンサレンズ2と対物レンズ3により試料4上に適宜集束される。5X,5YはX方向,Y方向偏向コイルで、試料上を電子ビームで走査させるものである。前記試料4はステージ駆動機構6により移動制御されるステージ7上に載置されている。   In the figure, reference numeral 1 denotes an electron gun, and an electron beam from the electron gun is appropriately focused on a sample 4 by a condenser lens 2 and an objective lens 3. Reference numerals 5X and 5Y denote X-direction and Y-direction deflection coils for scanning the sample with an electron beam. The sample 4 is placed on a stage 7 whose movement is controlled by a stage drive mechanism 6.

8は電流制限絞り、9は開き角レンズ、10は試料4と対物レンズ3との間に配置された上方電極、11はステージ7上に絶縁して取り付けられ、試料を直接載置した基板電極である。   8 is a current limiting diaphragm, 9 is an open-angle lens, 10 is an upper electrode disposed between the sample 4 and the objective lens 3, and 11 is an insulating substrate mounted on the stage 7, and a substrate electrode on which the sample is directly placed It is.

12,13,14はそれぞれ前記コンデンサレンズ2,対物レンズ3,開き角レンズ9の励磁強度をコントロールするためのレンズ制御回路、15は前記偏向コイル5X,5Yに偏向信号を供給する偏向制御回路である。16は前記電子銃1に加速電圧を供給するための加速電圧制御回路、17はステージの移動制御信号をステージ駆動機構6に供給するステージ制御回路である。18,19はそれぞれ前記上方電極10,基板電極11に電圧を印加するための電圧源、20,21は各電圧源の制御回路である。   Reference numerals 12, 13, and 14 denote lens control circuits for controlling the excitation intensity of the condenser lens 2, objective lens 3, and aperture angle lens 9, respectively. Reference numeral 15 denotes a deflection control circuit that supplies a deflection signal to the deflection coils 5X and 5Y. is there. 16 is an acceleration voltage control circuit for supplying an acceleration voltage to the electron gun 1, and 17 is a stage control circuit for supplying a stage movement control signal to the stage drive mechanism 6. Reference numerals 18 and 19 denote voltage sources for applying a voltage to the upper electrode 10 and the substrate electrode 11, respectively. Reference numerals 20 and 21 denote control circuits for the respective voltage sources.

前記レンズ制御回路12,13,14、偏向制御回路15、加速電圧制御回路16、ステージ制御回路17、電圧源制御回路20,21には、それぞれ、DA変換器22,23,24,25,26,27,28,29を介して各種指令と各種データ処理を行う制御装置30からレンズ制御指令、偏向制御指令、加速電圧制御指令、ステージ移動指令、電圧制御指令が送られる。   The lens control circuits 12, 13, 14, the deflection control circuit 15, the acceleration voltage control circuit 16, the stage control circuit 17, and the voltage source control circuits 20, 21 have DA converters 22, 23, 24, 25, 26, respectively. 27, 28, and 29, a lens control command, a deflection control command, an acceleration voltage control command, a stage movement command, and a voltage control command are sent from the control device 30 that performs various commands and various data processing.

図中31は試料4からの二次電子を検出するための二次電子検出器で、検出された二次電子信号はアンプ32及びAD変換器33を介して前記制御装置30に送られる。34は表示装置(例えば、陰極線管や液晶表示装置等)、35は複数のフレームメモリからなる記憶装置である。   In the figure, reference numeral 31 denotes a secondary electron detector for detecting secondary electrons from the sample 4, and the detected secondary electron signal is sent to the control device 30 via an amplifier 32 and an AD converter 33. Reference numeral 34 denotes a display device (for example, a cathode ray tube or a liquid crystal display device), and reference numeral 35 denotes a storage device including a plurality of frame memories.

36は試料4に流れる吸収電流を検出する吸収電流検出器で、該吸収電流検出器36で検出された吸収電流はAD変換器37を介して前記制御装置30に送られる。   An absorption current detector 36 detects an absorption current flowing through the sample 4. The absorption current detected by the absorption current detector 36 is sent to the control device 30 via an AD converter 37.

尚、前記ステージ7はX,Yの水平二次元方向に移動可能に、X,Y何れかの軸の周りに傾斜可能に、且つ、電子光軸(Z軸)の周りに回転可能に成っている。   The stage 7 is movable in the two-dimensional horizontal direction of X and Y, can be tilted around either X or Y axis, and can be rotated around the electron optical axis (Z axis). Yes.

又、制御装置30には、試料の検査レシピが組み込まれている。検査レシピには、観察位置およびプリ照射条件および画像取得条件としてランディングエネルギー、試料基板電圧、試料上方部電界、ビーム電流およびビーム径が登録されている。   The control device 30 incorporates a sample inspection recipe. In the inspection recipe, landing energy, sample substrate voltage, sample upper part electric field, beam current, and beam diameter are registered as observation positions, pre-irradiation conditions, and image acquisition conditions.

又、ランディングエネルギーは、電子銃1の加速電圧と基板電極11の電圧(試料4にかかる電圧)の和に基づいて求まる。尚、プリ照射および画像取得の条件は、試料の表面材質情報からデータベース化された条件群から選択することも出来る様に成っている。   The landing energy is obtained based on the sum of the acceleration voltage of the electron gun 1 and the voltage of the substrate electrode 11 (voltage applied to the sample 4). The pre-irradiation and image acquisition conditions can be selected from a group of conditions stored in a database based on the surface material information of the sample.

この様な構成の装置において、観察すべき領域を電子ビームで走査し、該走査により検出された二次電子に基づいて観察すべき領域の画像を取得する前に、観察すべき領域を含む広い領域へのプリ照射を行う。   In the apparatus having such a configuration, an area to be observed is scanned with an electron beam, and an image of the area to be observed is acquired on the basis of the secondary electrons detected by the scanning. Pre-irradiate the area.

このプリ照射は次の様にして行われる。   This pre-irradiation is performed as follows.

ステージ制御回路17は制御装置30からのステージ移動指令に基づいてステージ駆動機構6に移動駆動信号を送り、検査レシピに登録されている試料4の観察すべき領域の中心が電子光軸上に来る様にステージ7を移動させる。この観察位置へ移動中、レンズ制御回路12,13,14、偏向制御回路15及び電圧源制御回路20,21はプリ照射条件に各種レンズを設定する
プリ照射は、電子線を走査せず、大きな断面の電子ビーム照射により行う様にする。図6に示す様に、プリ照射の電子ビームとしては、その断面Bdが観察時の画像取得領域Rpを含む大きさにビーム径Daを設定し、ビーム電流密度がブロードな領域を用いるようにした。尚、プリ照射の領域の広さは、電子ビームのプリ照射領域の直径をDa、観察時の画像取得領域Rpの大きい方の寸法をDbとすると、DA≧Dbになるように、行われる。
The stage control circuit 17 sends a movement drive signal to the stage drive mechanism 6 based on a stage movement command from the control device 30, and the center of the region to be observed of the sample 4 registered in the inspection recipe is on the electron optical axis. Move stage 7 in the same way. While moving to this observation position, the lens control circuits 12, 13, 14, the deflection control circuit 15 and the voltage source control circuits 20, 21 set various lenses as pre-irradiation conditions. Pre-irradiation is large without scanning the electron beam. This is done by electron beam irradiation of the cross section. As shown in FIG. 6, as the pre-irradiated electron beam, the beam diameter Da is set so that the cross section Bd includes the image acquisition region Rp at the time of observation, and a region where the beam current density is broad is used. . The area of the pre-irradiation area is set such that DA ≧ Db, where Da is the diameter of the pre-irradiation area of the electron beam and Db is the larger dimension of the image acquisition area Rp at the time of observation.

この様な電子ビームで試料表面を帯電させないようにプリ照射した試料表面は均一な密度のビームで照射されるので、試料表面の電荷は均一に分布できる。また、プリ照射は走査しないので、最低1フレーム走査分の時間を余分に必要しない。よって、スループットの低下を防ぐことが出来る。   Since the pre-irradiated sample surface is irradiated with a beam having a uniform density so as not to charge the sample surface with such an electron beam, the charge on the sample surface can be uniformly distributed. Further, since pre-irradiation is not scanned, an extra time for scanning at least one frame is not required. Therefore, a decrease in throughput can be prevented.

レンズ制御回路12は、コンデンサレンズ2の励磁を制御し、電子銃1からの電子ビームのビーム電流を設定する。又、レンズ制御回路14は、開き角制御レンズ19の励磁を制御し電子ビームのビーム径を設定する。尚、ビーム径の設定はレンズ制御回路13により対物レンズ3の励磁を制御することによって可能である。   The lens control circuit 12 controls the excitation of the condenser lens 2 and sets the beam current of the electron beam from the electron gun 1. The lens control circuit 14 controls the excitation of the opening angle control lens 19 and sets the beam diameter of the electron beam. The beam diameter can be set by controlling the excitation of the objective lens 3 by the lens control circuit 13.

又、コンデンサレンズ2,開き角制御レンズ9及び対物レンズ3の設定の組みあわで、電子ビームのビーム電流密度及びビーム径を決定するようにしても良い。プリ照射時には、偏向制御回路15は、X,Y偏向コイル5X,5Yの励磁を制御し、電子ビームが試料上を走査しないようにする。   Further, the beam current density and beam diameter of the electron beam may be determined by combining the settings of the condenser lens 2, the opening angle control lens 9, and the objective lens 3. During pre-irradiation, the deflection control circuit 15 controls the excitation of the X and Y deflection coils 5X and 5Y so that the electron beam does not scan the sample.

試料表面を帯電させないように電子ビームでプリ照射する方法として、例えば、次の4つの方法が考えられる。   As a method of pre-irradiating with an electron beam so as not to charge the sample surface, for example, the following four methods can be considered.

前述した様に、試料表面の帯電状態は、ランディングエネルギーに依存して変化する。図7の曲線Qaは、図2に示すランディングエネルギーと二次電子放出率の関係を一部拡大したものである。二次電子放出率δ=1となるランディングエネルギーEa,Ebでは、試料表面は入射電子量と放出量が等しいので帯電しない。一方、二次電子放出率δ>1となる(EaとEbの間のランディングエネルギーでは、入射電子量に対して放出量が多いので正に帯電する。又、二次電子放出率δ<1となるEa未満及びEbより大きいランディングエネルギーでは、入射電子量に対して放出量が少ないので負に帯電する。従って、試料表面を帯電させないためには、二次電子放出率δ=1となるランディングエネルギーで電子ビーム照射すればよい。さて、試料表面の帯電状態は、試料表面上方の電界にも依存して変化する。試料表面上方に、試料より放出された二次電子が試料に戻らない方向の電界を印加すると二次電子放出率曲線はQbの様になり、二次電子放出率δ=1となるEc及びEdのランディングエネルギーで電子ビーム照射すれば試料表面は帯電しない。   As described above, the charged state of the sample surface changes depending on the landing energy. A curve Qa in FIG. 7 is a partially enlarged view of the relationship between the landing energy and the secondary electron emission rate shown in FIG. At the landing energy Ea, Eb where the secondary electron emission rate δ = 1, the sample surface is not charged because the amount of incident electrons is equal to the amount of emitted electrons. On the other hand, the secondary electron emission rate δ> 1 (the landing energy between Ea and Eb is positively charged because the amount of emission is larger than the amount of incident electrons. Also, the secondary electron emission rate δ <1. If the landing energy is less than Ea and greater than Eb, the amount of emitted electrons is less than the amount of incident electrons, and thus the surface is negatively charged. Now, the charged state of the sample surface changes depending on the electric field above the sample surface, so that secondary electrons emitted from the sample do not return to the sample above the sample surface. When an electric field is applied, the secondary electron emission rate curve becomes Qb. When the electron beam is irradiated with the landing energy of Ec and Ed where the secondary electron emission rate δ = 1, the sample surface is not charged.

この様な理論に基づき、帯電させないようにプリ照射するために、ランディングエネルギー(電子加速電圧と試料印加電圧(基板電極電圧)により決まる)、試料表面上方電界及び基板電極電圧を制御する。   Based on such a theory, landing energy (determined by the electron acceleration voltage and the sample applied voltage (substrate electrode voltage)), the electric field above the sample surface, and the substrate electrode voltage are controlled in order to perform pre-irradiation without charging.

第1の方法は、二次電子が試料4に戻らない方向に電圧が印加されている場合の二次電子放出率曲線Qbにおいて放出率δ=1となるランディングエネルギーEc又はEdで試料表面を電子ビームでプリ照射する。この場合、試料表面上方電界が二次電子が試料に戻らない様に、上方電極10の電圧を設定する。又、ランディングエネルギーは電子銃1の加速電圧と基板電極11の電圧によってコントロールする。   In the first method, electrons are applied to the surface of the sample with landing energy Ec or Ed that gives an emission rate δ = 1 in the secondary electron emission rate curve Qb when a voltage is applied in a direction in which the secondary electrons do not return to the sample 4. Pre-irradiate with a beam. In this case, the voltage of the upper electrode 10 is set so that the electric field above the sample surface does not return secondary electrons to the sample. The landing energy is controlled by the acceleration voltage of the electron gun 1 and the voltage of the substrate electrode 11.

第2の方法は、放出された二次電子が試料に戻る方向に電圧を印加し(この場合の二次電子放出率曲線はQa)、二次電子放出率δ=1となるランディングエネルギーEa又はEbで電子ビームでプリ照射する。この場合、試料表面上方電界が二次電子が試料に戻る様に、上方電極10の電圧を設定する。又、ランディングエネルギーは電子銃1の加速電圧と基板電極11の電圧によってコントロールする。   In the second method, a voltage is applied in the direction in which the emitted secondary electrons return to the sample (the secondary electron emission rate curve in this case is Qa), and the landing energy Ea or the secondary electron emission rate δ = 1 or Eb is pre-irradiated with an electron beam. In this case, the voltage of the upper electrode 10 is set so that the electric field above the sample surface returns secondary electrons to the sample. The landing energy is controlled by the acceleration voltage of the electron gun 1 and the voltage of the substrate electrode 11.

第3の方法は、二次電子が試料に戻らない方向に電圧を印加し(この場合の二次電子放出率曲線はQb)、ランディングエネルギーを任意の値に設定し、その設定したランディングエネルギーに対する二次電子放出率δが1になる様に、上方電極10の電圧により試料表面上方電界をコントロールし、この状態で前記設定したランディングエネルギーの電子ビームでプリ照射する。   In the third method, a voltage is applied in a direction in which the secondary electrons do not return to the sample (in this case, the secondary electron emission rate curve is Qb), the landing energy is set to an arbitrary value, and the landing energy with respect to the set landing energy is set. The electric field above the sample surface is controlled by the voltage of the upper electrode 10 so that the secondary electron emission rate δ becomes 1, and in this state, pre-irradiation is performed with the electron beam having the set landing energy.

第4の方法は、放出された二次電子が試料に戻る方向に電圧を印加し(この場合の二次電子放出率曲線はQa)、ランディングエネルギーを任意の値に設定し、その設定したランディングエネルギーに対する二次電子放出率δが1になる様に、上方電極10の電圧によりコントロールして試料表面上方電界をコントロールし、この状態で前記設定したランディングエネルギーの電子ビームでプリ照射する。   In the fourth method, a voltage is applied in the direction in which the emitted secondary electrons return to the sample (the secondary electron emission rate curve in this case is Qa), the landing energy is set to an arbitrary value, and the set landing is set. The electric field above the sample surface is controlled by controlling the voltage of the upper electrode 10 so that the secondary electron emission rate δ with respect to energy becomes 1, and in this state, pre-irradiation is performed with the electron beam having the set landing energy.

試料表面材質が異なる場合(試料表面が絶縁物と導電物から成る試料)の帯電させないプリ照射は次の様にして行われる。   When the sample surface material is different (sample surface is made of an insulating material and a conductive material), pre-irradiation without charging is performed as follows.

図8に示す曲線QAa,QAbは、それぞれ、材料Aの放出された二次電子が試料に戻る場合、戻らない場合の二次電子放出率である。一方、二次電子放出率の曲線QBa,QBbは、それぞれ、材料Bの放出された二次電子が試料に戻る場合、戻らない場合の二次電子放出率である。この様に試料表面材質が異なる場合、ランディングエネルギーのみを調整しても、異なった物質に対して二次電子放出率σ=1とするのは困難で、次の様にして帯電させないプリ照射を行う。   Curves QAa and QAb shown in FIG. 8 are secondary electron emission rates when the secondary electrons emitted from the material A return to the sample and do not return, respectively. On the other hand, the secondary electron emission rate curves QBa and QBb are secondary electron emission rates when the secondary electrons emitted from the material B return to the sample and do not return, respectively. In this way, when the sample surface material is different, even if only the landing energy is adjusted, it is difficult to set the secondary electron emission rate σ = 1 for different substances. Do.

放出された二次電子が試料4に戻る様に基板電極11若しくは上方電極10に電圧を印加し(この時の二次電子放出率曲線はQAa,QAb)た場合についても、或いは、二次電子が試料4に戻らない様に基板電極11若しくは上方電極10に電圧を印加し(この時の二次電子放出率曲線はQBa,QBb)た場合についても、各々の交点C1,C2に対応するランディングエネルギー値になるように電子ビームを設定し、二次電子放出率δが1になる様に、基板電極11の電圧,電子ビームの加速電圧及び上方電極10に電圧をコントロールする。この状態で、前記設定したランディングエネルギー値の電子ビームでプリ照射する。   Even when a voltage is applied to the substrate electrode 11 or the upper electrode 10 so that the emitted secondary electrons return to the sample 4 (secondary electron emission rate curves at this time are QAa and QAb), or the secondary electrons Even when a voltage is applied to the substrate electrode 11 or the upper electrode 10 (secondary electron emission rate curves at this time are QBa and QBb) so as not to return to the sample 4, the landing corresponding to each of the intersections C1 and C2 The electron beam is set to have an energy value, and the voltage of the substrate electrode 11, the acceleration voltage of the electron beam, and the voltage of the upper electrode 10 are controlled so that the secondary electron emission rate δ becomes 1. In this state, pre-irradiation is performed with an electron beam having the set landing energy value.

以上のように、ランディングエネルギー、基板電極電圧および試料上部電界を制御することにより、二次電子放出率=1となる条件で帯電しないようにプリ照射する。   As described above, the pre-irradiation is performed so as not to be charged under the condition that the secondary electron emission rate = 1 by controlling the landing energy, the substrate electrode voltage, and the sample upper electric field.

尚、何れの方法であっても、試料に応じて、帯電しないプリ照射を行う為の、ランディングエネルギー(電子加速電圧と試料印加電圧(基板電極電圧)により決まる)、試料表面上方電界及び基板電極電圧は予め実験等により求められ、制御装置30の検査レシピに、プリ照射条件として記憶されており、プリ照射時に、プリ照射条件が読み出されて、プリ照射が行われる。即ち、プリ照射条件を成す電子加速電圧データがDA変換器26を介して加速電圧制御回路16に送られて電子銃1からの電子ビームの加速エネルギーがコントロールされ、プリ照射条件を成す試料印加電圧データがDA変換器28を介して電圧源制御回路20に送られて電圧源19からの基板電極11への印加電圧がコントロールされ、プリ照射条件を成す試料表面上方電界データがDA変換器29を介して電圧源制御回路21に送られて電圧源18からの上方電極14への印加電圧がコントロールされる。   In any method, landing energy (determined by electron acceleration voltage and sample applied voltage (substrate electrode voltage)), electric field above the sample surface, and substrate electrode for performing pre-irradiation that is not charged depending on the sample. The voltage is obtained in advance by experiments or the like, and is stored as a pre-irradiation condition in the inspection recipe of the control device 30. At the time of pre-irradiation, the pre-irradiation condition is read and pre-irradiation is performed. That is, the electron acceleration voltage data satisfying the pre-irradiation condition is sent to the acceleration voltage control circuit 16 via the DA converter 26 to control the acceleration energy of the electron beam from the electron gun 1, and the sample applied voltage satisfying the pre-irradiation condition. Data is sent to the voltage source control circuit 20 via the DA converter 28 to control the voltage applied from the voltage source 19 to the substrate electrode 11, and the electric field data above the sample surface that constitutes pre-irradiation conditions passes through the DA converter 29. To the voltage source control circuit 21 to control the voltage applied from the voltage source 18 to the upper electrode 14.

尚、プリ照射条件の抽出は、例えば、次の様にして行われる。   The extraction of the pre-irradiation conditions is performed as follows, for example.

試料表面の帯電状態は、試料表面上方電界と電子ビームのランディングエネルギー及びビーム径により制御されるが、電子ビーム照射と同期して吸収電流を検出し、吸収電流値が0Aの時、試料表面が帯電されてないと判断できる。すなわち、入射電流をIp、二次電子電流をIse、吸収電流をIaeとすると、Ip=Ise+Iaeの関係が成り立つ。入射電流Ipを固定してプリ照射するので、吸収電流Iaeを計測すれば二次電子電流Iseが算出できる。Iae=0となる条件では、Ip=Iseが成り立つので、入射と出射の電子流が平衡、すなわち二次電子放出率δ=1となるので、その場合に、試料表面は帯電していないと判断できる。   The charged state of the sample surface is controlled by the electric field above the sample surface, the landing energy and beam diameter of the electron beam, and the absorption current is detected in synchronization with the electron beam irradiation. It can be judged that it is not charged. That is, when the incident current is Ip, the secondary electron current is Ise, and the absorption current is Iae, the relationship of Ip = Ise + Iae is established. Since the incident current Ip is fixed and pre-irradiation is performed, the secondary electron current Ise can be calculated by measuring the absorption current Iae. Since Ip = Ise is satisfied under the condition of Iae = 0, the incident and outgoing electron flows are balanced, that is, the secondary electron emission rate δ = 1. In this case, it is determined that the sample surface is not charged. it can.

この様な理論に基づき、プリ照射条件抽出を行う。   Based on such a theory, pre-irradiation condition extraction is performed.

ランディングエネルギー、試料表面上部電界、試料基板電圧を種々制御し前記の如きプリ照射を行い、Iae=0となる条件を探索する。その条件が求まると画像を取得し、制御装置30の画像信号処理部で前記した如き輝度比較による画質判断を行う。その結果、正常と判断された場合、その時のランディングエネルギー、試料表面上部電界、試料基板電圧がプリ照射条件として決定される。   The landing energy, the upper electric field on the sample surface, and the sample substrate voltage are controlled in various ways, the pre-irradiation as described above is performed, and a condition for Iae = 0 is searched. When the condition is determined, an image is acquired, and the image signal processing unit of the control device 30 performs image quality determination by luminance comparison as described above. As a result, when it is determined as normal, the landing energy, the sample surface upper field, and the sample substrate voltage at that time are determined as pre-irradiation conditions.

このプリ照射条件の処理手順は、制御装置30に組み込まれており、自動的に探索しても良いし、マニュアルで条件を決定してもよい。   The processing procedure for the pre-irradiation conditions is incorporated in the control device 30 and may be automatically searched or the conditions may be determined manually.

尚、このようなプリ照射条件の抽出は、異なった種類の試料毎に行われ、決定されたプリ照射条件は、制御装置30の記憶装置にテーブル化して記憶される。   Such extraction of pre-irradiation conditions is performed for each of different types of samples, and the determined pre-irradiation conditions are stored in a table in the storage device of the control device 30.

以上説明した如きプリ照射後、制御装置30から検査開始指令に基づき、観察画像取得の為の動作が始まる。   After pre-irradiation as described above, an operation for acquiring an observation image starts based on an inspection start command from the control device 30.

電子銃1からの電子ビームは、コンデンサレンズ2及び対物レンズ3により試料上にスポット状にフォーカスを結ぶ。同時に、電子ビームはX方向偏向コイル5X及びY方向偏向コイル5Yにより観察領域を走査する。尚、前記した様にこの観察領域はプリ照射領域中の一部である。
この様な走査により、観察領域から発生したに二次電子は二次電子検出器31に検出され、該二次電子検出器の出力はアンプ32及びAD変換器33を介して制御装置30に送られる。該制御装置は一旦、記憶装置35に保存し、その後呼び出して、表示装置34の画面に観察領域の二次電子像として表示させる。
The electron beam from the electron gun 1 is focused in a spot shape on the sample by the condenser lens 2 and the objective lens 3. At the same time, the electron beam scans the observation region by the X direction deflection coil 5X and the Y direction deflection coil 5Y. As described above, this observation region is a part of the pre-irradiation region.
By such scanning, secondary electrons generated from the observation region are detected by the secondary electron detector 31, and the output of the secondary electron detector is sent to the control device 30 via the amplifier 32 and the AD converter 33. It is done. The control device temporarily stores it in the storage device 35 and then calls it to display it as a secondary electron image of the observation region on the screen of the display device 34.

次に、別の領域の検査(観察)動作に移るが、その際、その検査領域が先に行ったプリ照射領域外の場合には、該検査領域の走査の前に、前記の様にしてプリ照射を行う。   Next, the operation moves to an inspection (observation) operation for another region. At that time, if the inspection region is outside the pre-irradiation region previously performed, the scanning region is scanned as described above. Perform pre-irradiation.

尚、検査領域の電子ビーム走査による画像取得の前にプリ照射を行っているが、このプリ照射を、検査領域(観察すべき領域)の中心が電子ビーム光軸上を来る様にステージ移動を行っている最中に行うことにより、スループットを上げるようにしても良い。この際、プリ照射は、検査領域の中心が電子ビーム光軸に出来るだけ近くなったところで行う方が正確に行われる。従って、例えば、プリ照射領域を100μm×100μm、検査領域を10μm×10μmとすると、検査領域の中心が電子ビーム光軸80μm程度になった時にプリ照射を開始する。   In addition, pre-irradiation is performed before image acquisition by electron beam scanning in the inspection area. This pre-irradiation is performed by moving the stage so that the center of the inspection area (area to be observed) is on the electron beam optical axis. It may be possible to increase the throughput by performing it while it is being performed. At this time, the pre-irradiation is more accurately performed when the center of the inspection region is as close as possible to the electron beam optical axis. Therefore, for example, if the pre-irradiation area is 100 μm × 100 μm and the inspection area is 10 μm × 10 μm, the pre-irradiation is started when the center of the inspection area reaches about 80 μm of the electron beam optical axis.

又、前記例では、スループット向上のために、プリ照射は電子ビーム走査で行わずに、電子ビームの断面を大きくして1回の照射で行っているが、スループットを向上させなくても良ければ、電子ビーム走査で行っても良い。   In the above example, in order to improve the throughput, the pre-irradiation is not performed by the electron beam scanning but is performed by one irradiation with the electron beam cross section enlarged. However, if the throughput does not need to be improved, Alternatively, electron beam scanning may be performed.

本発明によれば、帯電のないプリ照射を行うことにより、観察時(検査時)に得られる画像取得領域の画像の画質が改善されるので、この発明を種々の検出や補正等にも適用(例えば、振動変位を検出して振動補正するものや温度補正するもの等において、振動補正や温度補正の前に帯電の生じないプリ照射を行う)して新たな効果を上げることが出来る。   According to the present invention, by performing pre-irradiation without charging, the image quality of the image acquisition region obtained at the time of observation (inspection) is improved. Therefore, the present invention is also applied to various detections and corrections. (For example, pre-irradiation in which charging is not generated is performed before vibration correction or temperature correction in vibration correction or temperature correction by detecting vibration displacement, etc.), and a new effect can be obtained.

又、例えば、欠陥を含む画像と欠陥を含まない画像からそれぞれ形状を抽出し、一致度から自動的に欠陥を検出する際に、プリ照射した欠陥を含まない画像を使用すれば、プリ照射による画像は、画質改善され微小な欠陥を認識できるので、自動欠陥検出精度向上に寄与する。   Also, for example, when extracting a shape from an image including a defect and an image not including a defect and automatically detecting a defect from the degree of coincidence, if an image not including a pre-irradiated defect is used, Since the image quality is improved and minute defects can be recognized, it contributes to the improvement of automatic defect detection accuracy.

又、自動欠陥検出ではノイズを欠陥と認識させないためにSN比が良くなければならず、その為に、画像積算回数を多くして画像信号を平均化していたが、スループットが低下した。そこで、本発明の帯電させないプリ照射方法を適用して画質を改善すれば、従来の約5倍の入射電流、ビーム照射量で1/100000〜1/1000000クーロン/平方センチメートル程度まで正常動作した。従って、積算回数を従来の1/4程度に低減でき、スループットを約4倍向上させることが出来る。   In addition, in the automatic defect detection, the S / N ratio must be good so that noise is not recognized as a defect. For this reason, the image signal is averaged by increasing the number of times of image integration, but the throughput is reduced. Therefore, if the pre-irradiation method without charging of the present invention is applied to improve the image quality, the normal operation has been performed up to about 1/100000 to 1/1000000 coulomb / square centimeter with an incident current and beam irradiation amount approximately five times that of the conventional method. Therefore, the number of integrations can be reduced to about 1/4 of the conventional number, and the throughput can be improved by about 4 times.

又、自動欠陥検出において抽出された欠陥を、自動欠陥分類用コンピュータに転送し、そこで、欠陥の種類を判別する自動欠陥分類において、従来では画質が悪いため、微細な欠陥分類は不可能だったが、本発明による帯電無しプリ照射により改善された画像を用いて自動欠陥分類が出来る様にしたので、微細な欠陥も精細に示されるため、自動欠陥分類精度が向上した。   Moreover, the defect extracted in the automatic defect detection is transferred to the automatic defect classification computer, and therefore, in the automatic defect classification for discriminating the type of defect, since the image quality is poor in the past, the fine defect classification is impossible. However, since the automatic defect classification can be performed using the image improved by the pre-irradiation without charging according to the present invention, the fine defect is shown in detail, so that the automatic defect classification accuracy is improved.

尚、本発明は、これまで述べてきた実施例に限定されるものではない。たとえば、電子顕微鏡を含んだ複数のカラムで構成されたような半導体検査装置にも適用してもよい。   The present invention is not limited to the embodiments described so far. For example, the present invention may be applied to a semiconductor inspection apparatus configured with a plurality of columns including an electron microscope.

又、前記例において、電子を加速するための電圧を発生する電源,試料表面上方に電界を形成するための電圧を発生する電源、及び試料に印加する電圧を発生する電源として、プリ照射時用と、観察領域の観察のための走査時用とを別々に設け、各々の時に高速に切り換えるように成しても良い。   In the above example, as a power source for generating a voltage for accelerating electrons, a power source for generating a voltage for forming an electric field above the sample surface, and a power source for generating a voltage to be applied to the sample, the pre-irradiation is used. And scanning for observing the observation area may be provided separately and switched at high speed at each time.

又、前記例では、電子ビームの走査により絶縁試料を観察する例を説明したが、イオンビームの走査により絶縁試料を観察する場合にも、本願発明は有効である。   In the above example, an example in which an insulating sample is observed by scanning with an electron beam has been described. However, the present invention is also effective when an insulating sample is observed by scanning with an ion beam.

又、前記例では試料の二次電子像を観察するものを説明したが、試料からの反射電子等を検出して、反射電子像等を観察するものにも本発明は有効である。   In the above example, the observation of the secondary electron image of the sample has been described. However, the present invention is also effective for detecting the reflected electron from the sample and observing the reflected electron image.

コンタクトホールの形成状態の例を示したものである。The example of the formation state of a contact hole is shown. ランディングエネルギーと二次電子放出比との関係を示している。The relationship between landing energy and secondary electron emission ratio is shown. 従来のプリチャージ法による試料表面の帯電状態を表している。The charged state of the sample surface by the conventional precharge method is represented. 本発明の原理の説明に使用した試料表面の帯電状態を表している。The charged state of the sample surface used for explanation of the principle of the present invention is shown. 本発明の荷電粒子ビーム装置の一概略例を示している。1 shows a schematic example of a charged particle beam apparatus according to the present invention. 図5に示す装置で使用されている電子ビーム断面と画像取得領域の関係を示している。FIG. 6 shows a relationship between an electron beam cross section used in the apparatus shown in FIG. 5 and an image acquisition region. 試料表面物質が一様な場合のランディングエネルギーと二次電子放出比との関係を示している。The relationship between the landing energy and the secondary electron emission ratio when the sample surface material is uniform is shown. 試料表面物質が異なる場合(試料表面が絶縁物と導電物からなる試料)のランディングエネルギーと二次電子放出比との関係を示している。This shows the relationship between the landing energy and the secondary electron emission ratio when the sample surface materials are different (samples whose surface is made of an insulator and a conductive material).

符号の説明Explanation of symbols

A…絶縁層
D…伝導層
CH…コンタクトホール
Sa,Sb,Sc…試料
Pa,Pb,Pc,Pd,Pe,Pf…プラグ部分
Rp…画像取得領域
1…電子銃
2…コンデンサレンズ
3…対物レンズ
4…試料
5X…X方向偏向コイル
5Y…Y方向偏向コイル
6…ステージ駆動機構
7…ステージ
8…電流制限絞り
9…開き角レンズ
10…上方電極
11…基板電極
12,13,14…レンズ制御回路
15…偏向制御回路
16…加速電圧制御回路
17…ステージ制御回路
18,19…電圧源
20,21…電圧源制御回路
22,23,24,25,26,27,28,29…DA変換器
30…制御装置
31…二次電子検出器
32…アンプ
33…AD変換器
34…表示装置
35…記憶装置
36…吸収電流検出器
37…AD変換器
A ... Insulating layer D ... Conductive layer CH ... Contact hole Sa, Sb, Sc ... Sample Pa, Pb, Pc, Pd, Pe, Pf ... Plug part Rp ... Image acquisition region 1 ... Electron gun 2 ... Condenser lens 3 ... Objective lens DESCRIPTION OF SYMBOLS 4 ... Sample 5X ... X direction deflection coil 5Y ... Y direction deflection coil 6 ... Stage drive mechanism 7 ... Stage 8 ... Current limiting aperture 9 ... Opening angle lens 10 ... Upper electrode 11 ... Substrate electrode 12, 13, 14 ... Lens control circuit DESCRIPTION OF SYMBOLS 15 ... Deflection control circuit 16 ... Acceleration voltage control circuit 17 ... Stage control circuit 18, 19 ... Voltage source 20, 21 ... Voltage source control circuit 22, 23, 24, 25, 26, 27, 28, 29 ... DA converter 30 ... Control device 31 ... Secondary electron detector 32 ... Amplifier 33 ... AD converter 34 ... Display device 35 ... Storage device 36 ... Absorption current detector 37 ... AD converter

Claims (23)

荷電粒子ビームで試料上の観察すべき領域を二次元的に走査し、該走査により検出された観察領域からの荷電粒子ビームに基づく信号により表示装置に観察領域の荷電粒子ビーム像を表示させるように成した荷電粒子ビーム観察方法において、前記観察領域の荷電粒子ビーム像を得る前に、少なくとも前記観察領域を含む領域に対して帯電が起こらない様に荷電粒子ビームでプリ照射した荷電粒子ビーム観察方法。   The region to be observed on the sample is two-dimensionally scanned with the charged particle beam, and the charged particle beam image of the observation region is displayed on the display device by a signal based on the charged particle beam from the observation region detected by the scanning. In the charged particle beam observation method, the charged particle beam observation in which the charged particle beam is pre-irradiated so that at least the region including the observation region is not charged before the charged particle beam image of the observation region is obtained. Method. 試料表面における入射電子量に対する二次電子の放出量の比が1になるランディングエネルギーで電子ビーム照射してプリ照射を行う様にした請求項1記載の荷電粒子ビーム観察方法。   2. The charged particle beam observation method according to claim 1, wherein the pre-irradiation is performed by irradiating the electron beam with a landing energy at which the ratio of the amount of emitted secondary electrons to the amount of incident electrons on the sample surface is 1. 試料から放出された荷電粒子が試料に戻らない状態でプリ照射を行う様にした請求項2記載の荷電粒子ビーム観察方法。   3. The charged particle beam observation method according to claim 2, wherein the pre-irradiation is performed in a state where the charged particles emitted from the sample do not return to the sample. 試料から放出された荷電粒子が試料に戻る状態でプリ照射を行う様にした請求項2記載の荷電粒子ビーム観察方法。   3. The charged particle beam observation method according to claim 2, wherein the pre-irradiation is performed in a state where the charged particles released from the sample return to the sample. ランディングエネルギーを任意に設定し、その設定したエネルギー値に対する試料表面における入射電子量に対する二次電子の放出量の比が1になる様にし、その状態でプリ照射を行う様にした請求項2記載の荷電粒子ビーム観察方法。   3. The landing energy is arbitrarily set, the ratio of the amount of secondary electrons emitted to the amount of incident electrons on the sample surface with respect to the set energy value is set to 1, and pre-irradiation is performed in that state. Charged particle beam observation method. 試料から放出された荷電粒子が試料に戻らない状態でプリ照射を行う様にした請求項5記載の荷電粒子ビーム観察方法。   6. The charged particle beam observation method according to claim 5, wherein the pre-irradiation is performed in a state where the charged particles emitted from the sample do not return to the sample. 試料から放出された荷電粒子が試料に戻る状態でプリ照射を行う様にした請求項5記載の荷電粒子ビーム観察方法。   6. The charged particle beam observation method according to claim 5, wherein the pre-irradiation is performed in a state where the charged particles emitted from the sample return to the sample. 前記試料が絶縁物と導電物からなる場合、絶縁物に対して求められているランディングエネルギー値に対する試料表面における入射電子量に対する二次電子の放出量の比の曲線と、導電物に対して求められているランディングエネルギー値に対する試料表面における入射電子量に対する二次電子の放出量の比の曲線との交点に対応するランディングエネルギー値に設定し、その設定したエネルギー値に対する試料表面における入射電子量に対する二次電子の放出量の比が1になる様にし、その状態でプリ照射を行う様にした請求項1記載の荷電粒子ビーム観察方法。   When the sample is made of an insulator and a conductor, a curve of the ratio of the amount of secondary electrons emitted to the amount of incident electrons on the sample surface with respect to the landing energy value required for the insulator and the conductor is obtained. The landing energy value corresponding to the intersection of the curve of the ratio of the amount of secondary electrons emitted to the amount of incident electrons on the sample surface with respect to the landing energy value and the amount of incident electrons on the sample surface corresponding to the set energy value is set. The charged particle beam observation method according to claim 1, wherein the ratio of secondary electron emission amounts is set to 1, and pre-irradiation is performed in that state. 前記プリ照射を、断面の大きさが観察領域より大きい荷電粒子ビームを照射することにより前記プリ照射を行う様にした請求項1記載の荷電粒子ビーム観察方法。   The charged particle beam observation method according to claim 1, wherein the pre-irradiation is performed by irradiating a charged particle beam having a cross section larger than an observation region. 前記観察領域を荷電子光軸上に持って来るために試料を移動させている最中に、プリ照射を行う様にした請求項1記載の荷電粒子ビーム観察方法。   The charged particle beam observation method according to claim 1, wherein pre-irradiation is performed while the sample is moved in order to bring the observation region onto the valence electron optical axis. 荷電子ビーム加速電圧と試料にかかる電圧に基づいてランディングエネルギーをコントロールするようにした請求項2記載の荷電粒子ビーム観察方法。   3. The charged particle beam observation method according to claim 2, wherein the landing energy is controlled based on the valence electron beam acceleration voltage and the voltage applied to the sample. 試料表面上方に形成される電界をコントロールすることにより試料から放出される荷電粒子を試料に戻さないようにした請求項3若しくは6記載の荷電粒子ビーム観察方法。   The charged particle beam observation method according to claim 3 or 6, wherein the charged particles emitted from the sample are not returned to the sample by controlling an electric field formed above the sample surface. 試料表面上方に形成される電界をコントロールすることにより試料から放出される荷電粒子を試料に戻すようにした請求項4若しくは7記載の荷電粒子ビーム観察方法。   The charged particle beam observation method according to claim 4 or 7, wherein the charged particles emitted from the sample are returned to the sample by controlling an electric field formed above the sample surface. 試料に印加される電圧をコントロールすることにより試料から放出される荷電粒子を試料に戻さないようにした請求項3若しくは6記載の荷電粒子ビーム観察方法。   The charged particle beam observation method according to claim 3 or 6, wherein the charged particles emitted from the sample are not returned to the sample by controlling the voltage applied to the sample. 試料に印加される電圧をコントロールすることにより試料から放出される荷電粒子を試料に戻すようにした請求項4若しくは7記載の荷電粒子ビーム観察方法。   The charged particle beam observation method according to claim 4 or 7, wherein the charged particles emitted from the sample are returned to the sample by controlling a voltage applied to the sample. 試料に流れる吸収電流を検出し、その値に基づいてプリ照射による試料の帯電状態を判断するようにした請求項1記載の荷電粒子ビーム観察方法。   The charged particle beam observation method according to claim 1, wherein an absorption current flowing through the sample is detected, and a charged state of the sample by pre-irradiation is determined based on the detected value. 荷電子ビームを加速するための電圧を発生する電源,試料表面上方に電界を形成するための電圧を発生する電源、及び試料に印加する電圧を発生する電源として、プリ照射時用と、観察領域の観察のための走査時用とを設け、各々の時に切り換えるようにした請求項1記載の荷電粒子ビーム観察方法。   As a power source for generating a voltage for accelerating the valence electron beam, a power source for generating a voltage to form an electric field above the sample surface, and a power source for generating a voltage to be applied to the sample, the pre-irradiation time and the observation region The charged particle beam observation method according to claim 1, wherein a scanning time for observation is provided, and switching is performed at each time. 荷電粒子ビーム発生手段、該荷電粒子ビーム発生手段からの荷電粒子ビームで試料上の観察すべき領域を二次元的に走査させる走査手段、該走査により観察すべき領域から発生する荷電粒子ビームを検出する手段、該検出された観察領域からの荷電粒子ビームに基づいて観察領域の荷電粒子ビーム像を表示する表示装置、前記荷電粒子ビーム発生手段からの荷電粒子ビームを試料方向に加速するための電圧を発生する加速電源等から成る加速手段、試料表面上に電界を形成するための電界形成手段、及び、試料に電圧を印加するための試料電圧印加手段を備えており、前記観察領域の荷電粒子ビーム像を得る前に、少なくとも前記観察領域を含む領域に対して帯電が起こらない様に荷電粒子ビームでプリ照射するように成した荷電粒子ビーム装置。   Charged particle beam generating means, scanning means for two-dimensionally scanning the area to be observed on the sample with the charged particle beam from the charged particle beam generating means, and detecting the charged particle beam generated from the area to be observed by the scanning Means for displaying a charged particle beam image of the observation region based on the detected charged particle beam from the observation region, and a voltage for accelerating the charged particle beam from the charged particle beam generation unit in the sample direction Accelerating means including an accelerating power source for generating electric field, electric field forming means for forming an electric field on the sample surface, and sample voltage applying means for applying a voltage to the sample, and charged particles in the observation region Prior to obtaining a beam image, a charged particle beam that is pre-irradiated with a charged particle beam so that at least the region including the observation region is not charged. Location. 荷電子粒子を加速するための電圧と試料印加電圧とに基づいてランディングエネルギーをコントロールするように成した請求項19記載の荷電粒子ビーム装置。   The charged particle beam apparatus according to claim 19, wherein the landing energy is controlled based on a voltage for accelerating the charged electron particles and a sample applied voltage. 試料表面上方に電極を設け、該電極に印加される電圧に基づいて試料表面上方に形成される電界をコントロールするように成した請求項19記載の荷電粒子ビーム装置。   The charged particle beam apparatus according to claim 19, wherein an electrode is provided above the sample surface, and an electric field formed above the sample surface is controlled based on a voltage applied to the electrode. 試料印加電圧に基づいて試料表面上方に形成される電界をコントロールするように成した請求項19記載の荷電粒子ビーム装置。   20. The charged particle beam apparatus according to claim 19, wherein an electric field formed above the sample surface is controlled based on a sample applied voltage. 試料表面上方に設けられた電極に印加される電圧と試料印加電圧とに基づいて試料表面上方に形成される電界をコントロールするように成した請求項19記載の荷電粒子ビーム装置。   20. The charged particle beam apparatus according to claim 19, wherein an electric field formed above the sample surface is controlled based on a voltage applied to an electrode provided above the sample surface and a sample applied voltage. 前記電子を加速するための電圧を発生する電源,試料表面上方に電界を形成するための電圧を発生する電源、及び試料に印加する電圧を発生する電源として、プリ照射時用と、観察領域の観察のための走査時用とを設け、各々の時に切り換えられる様に成した請求項19記載の荷電粒子ビーム装置。   As a power source for generating a voltage for accelerating the electrons, a power source for generating a voltage for forming an electric field above the sample surface, and a power source for generating a voltage to be applied to the sample, pre-irradiation and observation region 20. The charged particle beam apparatus according to claim 19, wherein a scanning unit for observation is provided, and switching is performed at each time.
JP2004008678A 2004-01-16 2004-01-16 Electrically-charged particle beam observation method and electrically-charged particle beam device Withdrawn JP2005203241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008678A JP2005203241A (en) 2004-01-16 2004-01-16 Electrically-charged particle beam observation method and electrically-charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008678A JP2005203241A (en) 2004-01-16 2004-01-16 Electrically-charged particle beam observation method and electrically-charged particle beam device

Publications (1)

Publication Number Publication Date
JP2005203241A true JP2005203241A (en) 2005-07-28

Family

ID=34821927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008678A Withdrawn JP2005203241A (en) 2004-01-16 2004-01-16 Electrically-charged particle beam observation method and electrically-charged particle beam device

Country Status (1)

Country Link
JP (1) JP2005203241A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234789A (en) * 2005-01-26 2006-09-07 Hitachi High-Technologies Corp Charge control device and measuring device including the charge control device
JP2007157575A (en) * 2005-12-07 2007-06-21 Hitachi High-Technologies Corp Method and system of pattern defect inspection by using electron beam inspection device and mirror electron projection type or multiple beam type electron beam inspection device
JP2007194060A (en) * 2006-01-19 2007-08-02 Jeol Ltd Method and device for adjusting automatic axis of electron lens of scanning electron microscope
JP2007329337A (en) * 2006-06-08 2007-12-20 Hitachi High-Technologies Corp Apparatus and method for inspecting semiconductor wafer
JP2008034750A (en) * 2006-07-31 2008-02-14 Toshiba Corp Charged particle beam irradiation method and method for manufacturing semiconductor device
JP2008282630A (en) * 2007-05-09 2008-11-20 Hitachi High-Technologies Corp Charged particle beam device
JP2014038864A (en) * 2007-09-27 2014-02-27 Hitachi High-Technologies Corp Sample inspection and measurement method and scanning electron microscope

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234789A (en) * 2005-01-26 2006-09-07 Hitachi High-Technologies Corp Charge control device and measuring device including the charge control device
JP2007157575A (en) * 2005-12-07 2007-06-21 Hitachi High-Technologies Corp Method and system of pattern defect inspection by using electron beam inspection device and mirror electron projection type or multiple beam type electron beam inspection device
JP2007194060A (en) * 2006-01-19 2007-08-02 Jeol Ltd Method and device for adjusting automatic axis of electron lens of scanning electron microscope
JP2007329337A (en) * 2006-06-08 2007-12-20 Hitachi High-Technologies Corp Apparatus and method for inspecting semiconductor wafer
JP2008034750A (en) * 2006-07-31 2008-02-14 Toshiba Corp Charged particle beam irradiation method and method for manufacturing semiconductor device
JP2008282630A (en) * 2007-05-09 2008-11-20 Hitachi High-Technologies Corp Charged particle beam device
JP2014038864A (en) * 2007-09-27 2014-02-27 Hitachi High-Technologies Corp Sample inspection and measurement method and scanning electron microscope

Similar Documents

Publication Publication Date Title
US10840060B2 (en) Scanning electron microscope and sample observation method
JP5539294B2 (en) Voltage contrast method and apparatus for semiconductor inspection using low voltage particle beam
US6700122B2 (en) Wafer inspection system and wafer inspection process using charged particle beam
US7276693B2 (en) Inspection method and apparatus using charged particle beam
US7521679B2 (en) Inspection method and inspection system using charged particle beam
US20080017797A1 (en) Pattern inspection and measurement apparatus
JP2003202217A (en) Inspection method and apparatus for pattern defects
JP2000208579A (en) Detection of fine structure defects
JP2007265931A (en) Inspection device and inspection method
JP2006338881A (en) Electron microscope application device, and testpiece inspection method
US7218126B2 (en) Inspection method and apparatus for circuit pattern
JP2005181246A (en) Pattern defect inspecting method and inspecting apparatus
US8507857B2 (en) Charged particle beam inspection apparatus and inspection method using charged particle beam
JP2005203241A (en) Electrically-charged particle beam observation method and electrically-charged particle beam device
US7335879B2 (en) System and method for sample charge control
US6297503B1 (en) Method of detecting semiconductor defects
JP3711244B2 (en) Wafer inspection system
US7560693B2 (en) Electron-beam size measuring apparatus and size measuring method with electron beams
JP4178003B2 (en) Semiconductor circuit pattern inspection system
JP2007088493A (en) Pattern defect inspecting method and inspecting device
JP2006003370A (en) Substrate inspection device and substrate inspection method using charged particle beam
TWI747269B (en) Method for determining observation conditions in charged particle beam system and charged particle beam device
JP2024116389A (en) Multi-beam inspection equipment
JP2005024564A (en) Test method and test apparatus using electron beam
JP2008166635A (en) Inspection instrument and inspection method of circuit pattern

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403