JPH04187721A - Production of grain-oriented silicon steel sheet having superior magnetic property - Google Patents

Production of grain-oriented silicon steel sheet having superior magnetic property

Info

Publication number
JPH04187721A
JPH04187721A JP31603690A JP31603690A JPH04187721A JP H04187721 A JPH04187721 A JP H04187721A JP 31603690 A JP31603690 A JP 31603690A JP 31603690 A JP31603690 A JP 31603690A JP H04187721 A JPH04187721 A JP H04187721A
Authority
JP
Japan
Prior art keywords
annealing
temperature
temp
silicon steel
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31603690A
Other languages
Japanese (ja)
Inventor
Yasuyuki Hayakawa
康之 早川
Katsuo Iwamoto
岩本 勝生
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31603690A priority Critical patent/JPH04187721A/en
Publication of JPH04187721A publication Critical patent/JPH04187721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain superior magnetic properties by controlling temp. rise rate and annealing atmosphere, respectively, at the time of applying final finish annealing to a cold rolled sheet of grain-oriented silicon steel containing Al and Se. CONSTITUTION:A hot rolled plate of a grain-oriented silicon steel where Al and Se are incorporated as inhibitor forming elements for superiorly exerting secondary recrystallization is cold-rolled by the conventional method, and, at the time of final finish annealing, temp. rise rate is regulated to >=20 deg.C/hr until an arbitrary prescribed temp. between 700 and 875 deg.C is reached. Subsequently, temp. rise rate is regulated to 5 deg.C/hr to <15 deg.C/hr from the above prescribed temp. until a temp. in the region of 1100-1300 deg.C is reached, and further, the partial pressure of N2 in an H2, N2 annealing atmosphere in the course of temp. rise 15 regulated to >=80% until an arbitrary temp. between 700 and 875 deg.C is reached and also to >=50% from the above temp. until an arbitrary temp. between 920 and 980 deg.C is reached. Then, annealing is performed while further regulating the partial pressure of N2 to <=50% from the arbitrary temp. between 920 and 980 deg.C until a temp. in the region of 1100-1300 deg.C is reached.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は磁気特性の良好な方向性珪素鋼板の製造方法に
関し、特にその最終仕上焼鈍工程に工夫を加えることに
より磁気特性の一層の改善を図ったものである。
[Detailed Description of the Invention] Industrial Application Fields The present invention relates to a method for producing grain-oriented silicon steel sheets with good magnetic properties, and in particular, to further improve the magnetic properties by adding innovation to the final annealing process. It was planned.

〈従来の技術〉 方向性珪素鋼板は軟磁性材料として主にトランスその他
の電気機器の鉄芯用材料として使用されており、エネル
ギーロスの低減、さらには小型化のために低鉄損でかつ
高磁束密度のものが求められている。
<Conventional technology> Grain-oriented silicon steel sheets are soft magnetic materials that are mainly used as iron core materials for transformers and other electrical equipment. A magnetic flux density is required.

磁気的に優れた方向性珪素鋼板を得るには、最終仕上焼
鈍工程において二次再結晶を完全に行わせ(110) 
(001)方位を優先成長させることが必要である。二
次再結晶を安定して行わせるためには一次再結晶粒の成
長を抑制するMnS 、 MnSe、 IP!Nなどの
一次再結晶粒成長抑制剤(インヒビター)が必要である
In order to obtain a grain-oriented silicon steel sheet with excellent magnetic properties, secondary recrystallization must be completely performed in the final annealing process (110).
It is necessary to preferentially grow the (001) orientation. In order to stably perform secondary recrystallization, MnS, MnSe, and IP! which suppress the growth of primary recrystallized grains are required. A primary recrystallized grain growth inhibitor such as N is required.

従って、仕上焼鈍において二次再結晶を良好に行わせる
ためには、二次再結晶が起きる温度においてインヒビタ
ーを正常に機能させ、ゴス方位粒以外の結晶粒の成長を
抑える必要がある。そのためにはインヒビターの分散を
微細に保たねばならない。従来の仕上焼鈍では昇温途中
でインヒビクーが成長して抑制効果を失わないように8
00〜1150℃の温度範囲までの加熱時間を35時間
以下とする方法が特開昭50=134917号公報に、
あるいは700〜900”cの温度区間を平均15〜1
00℃/hrで急熱し、かつ900〜1000℃間の任
意の温度から二次再結晶が少なくとも50%進行する温
度までは2〜10℃/hrで除加熱する方法が特開昭5
4−40227号公報で提案されている。
Therefore, in order to perform secondary recrystallization well in final annealing, it is necessary to allow the inhibitor to function normally at the temperature at which secondary recrystallization occurs and to suppress the growth of crystal grains other than Goss-oriented grains. To achieve this, it is necessary to maintain fine dispersion of the inhibitor. In conventional finish annealing, inhibitors grow during temperature rise and prevent loss of inhibitory effect8.
Japanese Patent Laid-Open No. 134917 discloses a method in which the heating time to a temperature range of 00 to 1150°C is 35 hours or less.
Alternatively, the temperature range from 700 to 900"c is averaged 15 to 1
A method of rapidly heating at 00°C/hr and removing heat at 2-10°C/hr from an arbitrary temperature between 900 to 1000°C to a temperature at which at least 50% of secondary recrystallization progresses is disclosed in JP-A No. 5.
This method is proposed in Japanese Patent No. 4-40227.

しかし、これらの方法で実際Qこ製造した場合には、最
終仕上焼鈍前の工程条件や最終仕上焼鈍時の微妙な工程
条件の影響を受けて磁気特性が不安定で、かつ劣化する
という問題点を含み、高磁束密度の製品を安定して得る
ことが困難であった。
However, when these methods are used to actually manufacture Q-shaped magnets, the problem is that the magnetic properties are unstable and deteriorate due to the influence of the process conditions before the final annealing and the delicate process conditions during the final annealing. It has been difficult to stably obtain products with high magnetic flux density.

このような状況に鑑み、本発明者らは、最終仕上焼鈍の
昇熱速度を工夫し、含有するインヒビターの機能を十分
発揮できるようにして、極めて高い磁束密度を付与でき
る方法を特願平1−148313号で提案じた。
In view of this situation, the present inventors proposed a method for imparting an extremely high magnetic flux density by devising the heating rate of final annealing to fully demonstrate the function of the inhibitor contained in the patent application No. 1999. - Proposed in No. 148313.

しかし、AffiNを主要インヒビターとする方向性珪
素鋼板においては、焼鈍雰囲気が微妙に影響し、安定し
た磁気特性が得にくいという問題点があった。
However, grain-oriented silicon steel sheets containing AffiN as the main inhibitor have a problem in that stable magnetic properties are difficult to obtain due to the subtle influence of the annealing atmosphere.

ずなわち、AffiNが仕上焼鈍雰囲気の影響で分解或
は粗大化するために雰囲気のコントロール特にN2分圧
の制御が重要になっている。例えば特開昭52−786
15号公報には窒素含有量20〜70νo1.%の窒素
−水素雰囲気中にて700〜1000℃で二次再結晶さ
す、ついで水素雰囲気中にて1000〜1200℃の/
温度で2時間以上加・均熱して脱窒処理を行う方法が、
また特開昭55−47324号公報には、昇温中850
〜950”Cまでのいずれかの温度の焼鈍雰囲気のN2
分圧を20%以下とし、二次再結晶が開始し、終了する
までの温度領域ではN2分圧を3%以上とする方法が、
また特開昭59−185726号公報には、仕上焼鈍雰
囲気ガスとしてlhとArの混合雰囲気を用し\る方法
が開示されている。
That is, since AffiN decomposes or becomes coarse due to the influence of the final annealing atmosphere, it is important to control the atmosphere, particularly the N2 partial pressure. For example, JP-A-52-786
No. 15 discloses a nitrogen content of 20 to 70 νo1. % nitrogen-hydrogen atmosphere at 700-1000°C, then recrystallization at 1000-1200°C in a hydrogen atmosphere.
Denitrification treatment is performed by heating and soaking at a temperature of 2 hours or more.
In addition, Japanese Patent Application Laid-Open No. 55-47324 discloses that 850
N2 in an annealing atmosphere at any temperature up to ~950”C
A method in which the partial pressure is set to 20% or less and the N2 partial pressure is set to 3% or more in the temperature range from the start to the end of secondary recrystallization is
Furthermore, Japanese Patent Application Laid-Open No. 185726/1983 discloses a method using a mixed atmosphere of lh and Ar as the final annealing atmosphere gas.

〈発明が解決しようとする課題〉 これら従来技術においては、仕上焼鈍雰囲気を制御して
二次再結晶開始時のAINの分散を適正乙こ保つことに
主眼におかれている。しかし、u2Nの分散状態を焼鈍
雰囲気のみで制御することは困難であり、素材成分、熱
延条件および焼鈍条件により大きく変動する。従って、
従来の雰囲気制御のみでは対応しきれず磁気特性の向上
は十分に達成されていなかった。
<Problems to be Solved by the Invention> In these conventional techniques, the main focus is on controlling the final annealing atmosphere to maintain an appropriate dispersion of AIN at the start of secondary recrystallization. However, it is difficult to control the dispersion state of u2N only by the annealing atmosphere, and it varies greatly depending on the material components, hot rolling conditions, and annealing conditions. Therefore,
Conventional atmosphere control alone was insufficient to achieve sufficient improvement in magnetic properties.

そこで本発明はこのようなAlNの初期分散状態の不安
定さに起因する磁気特性の変動を極力抑制し、良好な磁
気特性を得る方向性珪素鋼板の製造方法を提供すること
を目的とするものである。
Therefore, it is an object of the present invention to provide a method for manufacturing grain-oriented silicon steel sheets that suppresses fluctuations in magnetic properties caused by instability of the initial dispersed state of AlN as much as possible and obtains good magnetic properties. It is.

〈課題を解決するための手段〉 本発明は、方向性珪素鋼スラブを熱間圧延後、1回ない
し中間焼鈍を含む2回以上の冷間圧延を施して最終板厚
とし、次いで脱炭焼鈍を経て焼鈍分離材を塗布し最終仕
上焼鈍を施す一連の工程からなる方向性珪素鋼板の製造
方法において、該熱延板にインヒビター構成元素として
Al及びSeを含有させ、かつ該最終仕上焼鈍時の昇温
速度を700〜875℃間の任意の所定の温度までは2
0℃/hr以上とし、次いで該所定の温度から1100
℃〜1300℃の温度域までを5℃/hr以上15℃/
hr未満とし、かつ昇温中11□、N2焼鈍雰囲気中の
N2分圧を700〜875”C間の任意の温度までは8
0%以上、次いでその温度から920〜980℃間の任
意の温度までを50%以上、次いで920〜980℃間
の該任意の温度から1100〜1300℃の温度域まで
を50%以下とすることを特徴とする特許 造方法であり、望ましくは最終仕上焼鈍時の昇温途中の
700〜840゜Cの温度域で20時間以上保持するこ
とができる。
<Means for Solving the Problems> The present invention provides a method of hot rolling a grain-oriented silicon steel slab, subjecting it to cold rolling once or twice or more including intermediate annealing to obtain the final plate thickness, and then decarburizing the slab. In the method for producing a grain-oriented silicon steel sheet, which comprises a series of steps of applying an annealing separator and final annealing, the hot-rolled sheet contains Al and Se as inhibitor constituent elements, and during the final annealing. 2 to increase the heating rate to any predetermined temperature between 700 and 875°C.
0°C/hr or higher, and then 1100°C from the predetermined temperature.
5℃/hr or more 15℃/in the temperature range from ℃ to 1300℃
hr, and during heating up to 11 □, the N2 partial pressure in the N2 annealing atmosphere to any temperature between 700 and 875"C is 8
0% or more, then 50% or more from that temperature to any temperature between 920 to 980°C, then 50% or less from the arbitrary temperature between 920 to 980°C to a temperature range of 1100 to 1300°C. This is a patented manufacturing method characterized by the following: Desirably, the temperature can be maintained at a temperature of 700 to 840°C during final annealing for 20 hours or more.

〈作用〉 本発明者等はへPを含有する方向性珪素鋼板を製造する
際の適正な最終仕上焼鈍方法を得るため以下の実験を行
い本発明に至る知見を得た。
<Function> In order to obtain an appropriate final annealing method for producing a grain-oriented silicon steel sheet containing HeP, the present inventors conducted the following experiments and obtained knowledge that led to the present invention.

以下実験結果について説明する。The experimental results will be explained below.

APとSeを含む素材としてSi : 3.23wt%
(以下単ニ%テ示す) C:  0.069%、 5o
j2.Aff :0.025%、   N  :0.0
085%、  Mn:   0.075%、  Se:
   0.021%を含み残部実質的にFeの組成にな
る鋼塊AとiとSを含む素材としでSi : 3.19
%、  C:  0.067%。
Si as a material containing AP and Se: 3.23wt%
(Hereinafter, single % indicates) C: 0.069%, 5o
j2. Aff: 0.025%, N: 0.0
085%, Mn: 0.075%, Se:
A steel ingot containing 0.021% and the remainder substantially having a composition of Fe.Si: 3.19
%, C: 0.067%.

sol、AP、+  0.026%、 N :0.00
88%、 Mn: 0.076%、  S :  0.
022%を含み残部実質的Feの組成になる鋼塊Bを用
意した。これらの鋼塊を1360℃に加熱した後、2.
4肛厚の熱延板とし、次(1で冷間圧延を行い1.5髄
厚に仕上げた。
sol, AP, +0.026%, N: 0.00
88%, Mn: 0.076%, S: 0.
A steel ingot B having a composition of 0.022% and the remainder being essentially Fe was prepared. After heating these steel ingots to 1360°C, 2.
It was made into a hot-rolled plate with a thickness of 4 mm, and then cold-rolled in Step 1 to finish it with a thickness of 1.5 mm.

次いでさらに1075℃l2O秒の中間焼鈍後ゑ冷し、
0.23mmの厚さまで冷間圧延し、850゛Cで脱炭
焼鈍を行った。仕上焼鈍は800℃まで50℃/hrで
で熱し、次いで800℃からは10℃/hrで除熱して
1200℃まで昇温しな。仕−F−焼鈍雰囲気をN2.
112の混合雰囲気とし常温〜800℃まで、soo’
c〜950℃まで、950℃〜1200℃までの3区分
に分け、第1表乙こ示されるように14□分圧を変更1
−2な。
Then, after further intermediate annealing at 1075°C 12O seconds, it was cooled.
It was cold rolled to a thickness of 0.23 mm and decarburized annealed at 850°C. For final annealing, heat up to 800°C at a rate of 50°C/hr, then remove heat from 800°C at a rate of 10°C/hr and raise the temperature to 1200°C. The annealing atmosphere was set to N2.
112 in a mixed atmosphere from room temperature to 800℃
Divide into three categories: c to 950℃ and 950℃ to 1200℃, and change the partial pressure in 14□ as shown in Table 1.1
-2.

第1表に得られた製品の磁気特性を示ず。AnとSeを
含む鋼塊Aでは昇温するに従って雰囲気中の窒素分圧を
減小させる条件の特性が非常に良好であった。一方AP
とSを含む@塊Bでは昇温するに従って雰囲気中の窒素
分圧を増加さセる条件の特性が良好であったが、鋼塊A
で得られている磁束密度の値よりは低い値であった。
Table 1 does not show the magnetic properties of the obtained products. Steel ingot A containing An and Se had very good characteristics under the condition that the partial pressure of nitrogen in the atmosphere was reduced as the temperature rose. On the other hand, AP
Ingot B containing S and S had good characteristics under the condition that the nitrogen partial pressure in the atmosphere was increased as the temperature rose, but steel ingot A
This value was lower than the magnetic flux density value obtained in .

これらの実験事実より本発明者等はAffと5(!を含
む組成で、仕上焼鈍時に700〜875℃の温度範囲で
浪、熱から除熱乙こ切り換え、かつ仕上焼鈍雰囲気中の
窒素分圧を昇温するに従って増加させることにより、高
磁束密度の製品を得るごとができることを新規に見出し
た。
Based on these experimental facts, the present inventors determined that with a composition containing Aff and 5(!), during final annealing, the temperature range from 700 to 875°C was changed from heat to heat removal, and the nitrogen partial pressure in the final annealing atmosphere was We have newly discovered that products with high magnetic flux density can be obtained by increasing the magnetic flux density as the temperature rises.

また、本発明者等は鋼塊A、鋼塊Bの脱炭焼鈍板中のイ
ンヒビター組成について調査した。
In addition, the present inventors investigated the inhibitor composition in the decarburized annealed plates of steel ingots A and B.

その結果A1.Seを含む鋼塊AではMnSe析出物を
核とし、それを覆い包むようにAnが析出している形態
のMnSe+ へNN複合析出物が多く認められた。一
方Af、Sを含む鋼塊BではMnSとA ff +1が
別々に析出していることが多(MnS とΔlの複自析
出物の割合は極めて少なかった。このようにAiとSe
を含む鋼塊AとAN、Sを含む鋼塊BではMnSeとM
nSという析出物の種類の違いのみならず析出形態にま
で差異があることが認められた。
As a result, A1. In the steel ingot A containing Se, many MnSe+ to NN composite precipitates were observed in the form of a MnSe precipitate as a core and An overlying it. On the other hand, in steel ingot B containing Af and S, MnS and A ff +1 often precipitate separately (the ratio of double autoprecipitates of MnS and Δl was extremely small. In this way, Ai and Se
Steel ingots A and AN contain S, and steel ingot B contains MnSe and M.
It was observed that there were differences not only in the type of precipitate called nS but also in the form of the precipitation.

以下本発明者等の推定であるが4EとSeを含む鋼塊A
におけるMnSeとIllの複合析出物は、MnSeが
AI!、Hに覆われているためiとSを含む鋼塊Bにお
けるMnS 、 ArNの析出物に比べて安定であると
言える。MnS、AfNをインヒビターとする素材の場
合、MnS単独のインヒビターが多く、良好な方位を二
次再結晶により発生させるためには、特開昭55−47
324号公報明細書中に記述があるように二次再結晶の
前半では雰囲気中のN2が鋼板中に吸収しA1.Nが粗
大化して粒成長抑制力が失われないように焼鈍前半の窒
素分圧は低いほうが望ましい。
As estimated by the inventors below, steel ingot A containing 4E and Se
The composite precipitate of MnSe and Ill in MnSe is AI! , H, it can be said to be more stable than the MnS and ArN precipitates in steel ingot B containing i and S. In the case of materials with MnS and AfN as inhibitors, there are many inhibitors of MnS alone, and in order to generate good orientation by secondary recrystallization, Japanese Patent Application Laid-Open No. 55-47
As described in the specification of the No. 324 publication, in the first half of the secondary recrystallization, N2 in the atmosphere is absorbed into the steel sheet and A1. It is desirable that the nitrogen partial pressure in the first half of annealing be low so that N does not become coarse and lose its ability to suppress grain growth.

本発明者等の実験結果においてもAiとSを含む鋼塊B
においては二次再結晶初期にあたる、950℃までの焼
鈍雰囲気中のN2分圧が低いほど磁束密度が高くなって
いる。
In the experimental results of the present inventors, steel ingot B containing Ai and S
In this case, the lower the N2 partial pressure in the annealing atmosphere up to 950° C., which corresponds to the initial stage of secondary recrystallization, the higher the magnetic flux density becomes.

これに対し、iとSeを含む鋼塊の場合には950℃ま
での焼鈍雰囲気中のN2分圧が高いほど磁束密度は高く
なる。これは、MnSe、 A I Nは複合析出物の
割合が高<、AfN単独の析出物は少ないために、二次
再結晶初期に窒素力徹収された場合、AfN単独の析出
物が新たに往しることはあるが、複合化合物の粗大化は
起こりにくく、むしろ焼鈍雰囲気中のN2分圧を下げた
場合に八〇が分解し、AINに包まれていたMnSeが
露出するようになり、MnSeの成長が促進してしまう
という悪影響があるものと思われる。二次再結晶後期に
あたる950℃からの焼鈍雰囲気は特開昭55−47.
324号公報明細書によればN2分圧の高い雰囲気を用
い、表面結晶粒の粗大化を阻止する必要があるとしてい
る。
On the other hand, in the case of a steel ingot containing i and Se, the higher the N2 partial pressure in the annealing atmosphere up to 950°C, the higher the magnetic flux density. This is because the ratio of composite precipitates is high in MnSe and AIN, and the precipitates of AfN alone are small, so when the nitrogen force is exhausted in the early stage of secondary recrystallization, precipitates of AfN alone are newly formed. Although this often happens, it is difficult for the composite compound to become coarse.In fact, when the N2 partial pressure in the annealing atmosphere is lowered, the 80 decomposes, and the MnSe wrapped in AIN becomes exposed. This seems to have the negative effect of accelerating the growth of MnSe. The annealing atmosphere from 950°C, which is the latter stage of secondary recrystallization, is as described in JP-A-55-47.
According to the specification of Japanese Patent No. 324, it is necessary to use an atmosphere with a high N2 partial pressure to prevent coarsening of surface crystal grains.

これに対しAN、Seを含む鋼塊の場合には焼鈍後半の
N2分圧を下げたほうが、磁束密度は高くなるが、これ
は、AnとMnSeの複合化合物は安定でありN2分圧
を高めたまま温度を上昇させた場合、二次再結晶の発生
する位置は良好なゴス方位の存在する板厚表層付近でな
く、板厚中心部がら発注するようになる。そのため二次
再結晶後期のN2分圧は低く抑えて表面より八〇とMn
Seの複合折合物の分解を促し表層より二次再結晶粒が
成長させたほうが磁束密度は高くなるものと思われる。
On the other hand, in the case of steel ingots containing AN and Se, lowering the N2 partial pressure in the latter half of annealing increases the magnetic flux density, but this is because the composite compound of An and MnSe is stable and the N2 partial pressure is increased. If the temperature continues to rise, secondary recrystallization will occur at the center of the plate thickness, rather than near the surface layer where a good Goss orientation exists. Therefore, the N2 partial pressure in the latter stage of secondary recrystallization is kept low, and 80% and Mn
It is thought that the magnetic flux density will be higher if the decomposition of the Se complex is promoted and secondary recrystallized grains grow from the surface layer.

以上詳説したように本発明はAAとSeを含む鋼塊のイ
ンヒビターの析出形態の全く新規な知見を仕上焼鈍雰囲
気の設定に応用し磁束密度の向上を実現したものである
As explained in detail above, the present invention achieves an improvement in magnetic flux density by applying completely new knowledge of the precipitation form of an inhibitor in a steel ingot containing AA and Se to the setting of a final annealing atmosphere.

さらに以下本発明の詳細な説明する。Further, the present invention will be explained in detail below.

本発明の対象どしている一方向性itmi板の製造に於
いては従来用いられている製鋼法で得れた溶鋼を連続鋳
造法或いは造塊法で鋳造し、必要に応じて分塊工程を挟
んでスラブを得、引き続き熱間圧延し、必要に応じて熱
延板焼鈍を行った後、1回ないしは中間焼鈍を挟む2回
以上の冷間圧延により最終板厚の冷延板を得る。最終冷
延圧下率は80%未満であると二次再結晶粒の方位が悪
<95%を超えると二次再結晶が困難であるため、8o
超〜95%が好ましい。次いで脱炭焼鈍を従来の方法で
行う。熱延板の化学成分は重置%でsi:2.5〜4.
0%、  C: 0.03−0.10%、m可溶性Af
:0.010〜0.065%、  N :0.0010
−0.0150%、門n : 0.02〜0.30%、
 Se : 0.005〜0.040%を含有ずルコと
が好ましく、その他インヒビター構成元素として公知で
あるsb : 0.01〜0.20%、 Cu : 0
.02〜0.20%、 Sn: 0.02〜0.30%
、 Ge : 0.01〜0.30%、 Ni : 0
.02−0、20%及びMo : 0.0I−0,05
%を単独または複合して添加させてもよい。Siは4.
0%を超すと冷間圧延が困難であり、2.5%未満では
電気抵抗が低く良好な鉄損を得られないので2.5〜4
.0%が好ましい。Cは0.03未満では良好な一次再
結晶組織が得られず、0.10%を超えると脱炭不良と
なり磁気特性が悪化するので0.03〜0.10%が好
ましい。
In manufacturing the unidirectional itmi plate which is the object of the present invention, molten steel obtained by conventional steel manufacturing methods is cast by continuous casting method or ingot making method, and if necessary, a blooming step is performed. A slab is obtained by sandwiching the slab, followed by hot rolling and, if necessary, hot-rolled plate annealing, followed by cold rolling once or twice or more with intermediate annealing in between to obtain a cold-rolled plate of the final thickness. . If the final cold rolling reduction is less than 80%, the orientation of the secondary recrystallized grains is bad. If it exceeds 95%, secondary recrystallization is difficult;
More than 95% is preferred. Decarburization annealing is then performed in a conventional manner. The chemical composition of the hot rolled sheet is si: 2.5 to 4.
0%, C: 0.03-0.10%, m Soluble Af
:0.010~0.065%, N:0.0010
-0.0150%, gate n: 0.02-0.30%,
Se: 0.005 to 0.040% is preferably contained, and other elements known as inhibitor constituent elements include sb: 0.01 to 0.20%, Cu: 0
.. 02-0.20%, Sn: 0.02-0.30%
, Ge: 0.01-0.30%, Ni: 0
.. 02-0, 20% and Mo: 0.0I-0,05
% may be added singly or in combination. Si is 4.
If it exceeds 0%, cold rolling is difficult, and if it is less than 2.5%, the electric resistance is low and good iron loss cannot be obtained, so it is 2.5 to 4.
.. 0% is preferred. If C is less than 0.03, a good primary recrystallized structure cannot be obtained, and if it exceeds 0.10%, decarburization will be insufficient and the magnetic properties will deteriorate, so 0.03 to 0.10% is preferable.

酸可溶性AI NはAI!、Nを形成する基本成分であ
り、良好な磁気特性を得るためには八!は0.010〜
0.065%、Nは0.0010−0.0150%必要
テアル。
Acid-soluble AI N is AI! , is the basic component forming N, and in order to obtain good magnetic properties, 8! is 0.010~
0.065%, N is 0.0010-0.0150% required.

これを超える量では、Allの粗大化を招き抑制力とし
ての効果を失い、これ未満ではINの足として不十分で
ある。
If the amount exceeds this, All will become coarse and lose its effect as a suppressive force, and if it is less than this, it will be insufficient as an IN foot.

Mn、 Seハ結結合子MnSeを形成しインヒビフー
トして機能するが、Mnとして0.30%、Seとして
0.040%を超えるとMnSeを溶体化するだめのス
ラブ加熱温度が高過ぎ実用的でなく、Mnとして0.0
2%未満、Seとして0.005%未満ではMnSeの
量が不足してインヒビターとして機能させるには不十分
である。従ってMnは0.02〜0.30%、Seは0
.005〜0.040%の範囲が好ましい。
Mn and Se function by forming and inhibiting the binding bond MnSe, but if the Mn content exceeds 0.30% and the Se content exceeds 0.040%, the slab heating temperature required to dissolve MnSe is too high for practical use. 0.0 as Mn
If it is less than 2%, or less than 0.005% as Se, the amount of MnSe is insufficient to function as an inhibitor. Therefore, Mn is 0.02-0.30% and Se is 0.
.. The range of 0.005% to 0.040% is preferable.

さらに磁束密度を向上させるためにSb、 Cuを添加
することは可能である。Sbは0.20%を超えると脱
炭性が悪くなり、0.01%未満では効果が無いので0
.01〜0.20%が好ましい、 Cuは0.20%を
超えると酸洗性が悪化し0.01%未満では効果が無い
ので0、O1〜0.20%が好ましい。
Furthermore, it is possible to add Sb and Cu to improve the magnetic flux density. If Sb exceeds 0.20%, the decarburization property will deteriorate, and if it is less than 0.01%, there will be no effect, so 0.
.. If Cu exceeds 0.20%, the pickling properties will deteriorate, and if it is less than 0.01%, there will be no effect, so Cu is preferably 0 and O1 to 0.20%.

鉄損を向上さセるためにSn、 Ge、 Niを添加す
ることができる。 Snは0.30%を超えると脆化し
、0゜01%未満では効果が無いので0.01〜0.3
0%が好ましい。Geは0.30%を超えると良好な一
次再結晶組織が得られず、0.01%未満では効果が無
いので0゜O1〜0.30%が好ましい、Niは0.2
0%を超えると熱間強度が低下し、0.01%未満では
効果が無いので0.01〜0.20%が好ましい。
Sn, Ge, and Ni can be added to improve core loss. If Sn exceeds 0.30%, it becomes brittle, and if it is less than 0.01%, it is ineffective, so 0.01 to 0.3
0% is preferred. If Ge exceeds 0.30%, a good primary recrystallized structure cannot be obtained, and if it is less than 0.01%, there is no effect, so 0°O1 to 0.30% is preferable, and Ni is 0.2%.
If it exceeds 0%, the hot strength decreases, and if it is less than 0.01%, there is no effect, so 0.01 to 0.20% is preferable.

表面性状を改善するためにMoを添加できる。0゜05
%を超えると脱炭性が悪くなり、0.01%未満では効
果が無いので0.01〜0.05%が好ましい。
Mo can be added to improve surface properties. 0゜05
If it exceeds 0.0%, the decarburization property deteriorates, and if it is less than 0.01%, there is no effect, so 0.01 to 0.05% is preferable.

なおSは不可避的に混入する不純物であり、完全に低減
するにはコストアップになるので上限をo、oio%と
する。
Note that S is an impurity that is unavoidably mixed in, and to completely reduce it would increase the cost, so the upper limit is set to o, oio%.

脱炭焼鈍後にMgOを主成分とする焼鈍分離剤を塗布し
最終仕上焼鈍を行う。
After decarburization annealing, an annealing separator containing MgO as a main component is applied and final annealing is performed.

この際、焼鈍分離剤中にTioz等公知の添加物を混入
することは有効である0本発明の特徴はこの最終仕上焼
鈍にあるが、最終仕上焼鈍を行う際に700〜875℃
間の任意の所定の温度(Tsi)までは20℃/hr以
上の速度で昇温し、次いで該所定の温度(Tsi)から
1100〜1300℃の温度までを5℃/hr以上15
℃/hr未病の速度で昇温することである。Tsiが8
75℃を超えると二次再結晶が不完全になり、Tsiが
700℃未満では二次再結晶しても磁束密度が低下する
のでTsi は700〜875℃とする。またTsiま
での昇温速度は20℃/hr未満では磁束密度が低下す
るのでTsiまでの昇温速度は20℃/hr以上とする
At this time, it is effective to mix a known additive such as Tioz into the annealing separator.The feature of the present invention is this final annealing, but when performing the final annealing, the temperature is 700 to 875°C.
The temperature is raised at a rate of 20°C/hr or more to any predetermined temperature (Tsi) between 1,100 and 1,300°C, and then raised at a rate of 5°C/hr or more from the predetermined temperature (Tsi) to a temperature of 1,100 to 1,300°C.
It is to raise the temperature at a rate of ℃/hr that is suitable for pre-symptomatic patients. Tsi is 8
If Tsi exceeds 75°C, secondary recrystallization will be incomplete, and if Tsi is less than 700°C, the magnetic flux density will decrease even if secondary recrystallization is performed, so Tsi is set at 700 to 875°C. Furthermore, if the temperature increase rate up to Tsi is less than 20° C./hr, the magnetic flux density will decrease, so the temperature increase rate up to Tsi should be 20° C./hr or more.

Tsiから1100〜1300℃までの昇温速度は15
℃/hr以上となると二次再結晶が不完全になり、5℃
/hr未満では二次再結晶しても磁束密度は低下するの
で5℃/hr以上15℃/hr未満とする。
The temperature increase rate from Tsi to 1100-1300℃ is 15
If the temperature exceeds ℃/hr, secondary recrystallization will be incomplete, and if the temperature exceeds 5℃
If it is less than /hr, the magnetic flux density will decrease even after secondary recrystallization, so it is set to be 5°C/hr or more and less than 15°C/hr.

また、二次再結晶核の生成処理としてTsiまでの昇温
途中700〜840℃の温度で20hr以上保定するこ
とができる。この場合保定温度が700℃未満では核生
成の効果がなく、840℃を超えるとインヒビターが変
質するので700〜840℃とする。
Further, as a process for generating secondary recrystallized nuclei, the temperature can be maintained at 700 to 840° C. for 20 hours or more during heating up to Tsi. In this case, if the holding temperature is less than 700°C, there will be no nucleation effect, and if it exceeds 840°C, the inhibitor will deteriorate, so it is set at 700 to 840°C.

最終仕上焼鈍の雰囲気は、常温から700〜875℃間
の任意の所定の温度まではN2雰囲気の分圧を80%以
上、次いでその温度から920〜980”C間の任意の
温度(Tsc)までのN2分圧を50%以上、次いで9
20〜840℃間の該任意の温度から1100から13
00℃の温度域までのN2分圧を50%以下で行う、7
00〜840℃間の任意の温度までのN2分圧が80%
未満であると、MnSeとAnの複合析出物の分解が起
き磁束密度が低下するので80%以上とする。またその
温度から920〜980℃間の任意の温度(Tsc)ま
でのN0分圧は50%未満であると、やはりMnSeと
71!、Nの複合析出物の分解が進行しすぎ磁束密度が
低下するので50%以上とする。また920〜980℃
間の任意の温度(Tsc)から1100〜1300℃の
温度域までのN2分圧は50%を超えると、二次再結晶
粒の発生位置が板厚中心部となり磁束密度が低下するの
で50%以下とする。
The final annealing atmosphere is a N2 atmosphere with a partial pressure of 80% or more from room temperature to any predetermined temperature between 700 and 875 degrees Celsius, and then from that temperature to any temperature (Tsc) between 920 and 980"C. N2 partial pressure of 50% or more, then 9
1100 to 13 from said any temperature between 20 and 840°C
N2 partial pressure up to 00℃ temperature range is 50% or less, 7
N2 partial pressure up to any temperature between 00 and 840℃ is 80%
If it is less than 80%, the composite precipitates of MnSe and An will decompose and the magnetic flux density will decrease, so it should be set to 80% or more. Also, if the N0 partial pressure from that temperature to any temperature (Tsc) between 920 and 980°C is less than 50%, it is still MnSe and 71! The decomposition of composite precipitates of N and N progresses too much and the magnetic flux density decreases, so it is set to 50% or more. Also 920~980℃
If the N2 partial pressure exceeds 50% from an arbitrary temperature (Tsc) between The following shall apply.

とする。shall be.

なお最終仕上焼鈍後に鋼板に張力を付加するコーティン
グを行うと鉄損が低下することは公知であるが、本発明
によって製造された製品にその磁区細分化技術を適用す
ると、極めて磁束密度が高いうえにさらに低鉄損の製品
を得ることができる。
It is well known that applying a coating that adds tension to a steel plate after final annealing reduces iron loss, but if the magnetic domain refining technology is applied to products manufactured according to the present invention, it will result in extremely high magnetic flux density and It is possible to obtain products with even lower iron loss.

〈実施例〉 実施例I Si : 3.35wt%、  C: 0.068賀t
%、酸可溶性A!: 0.022wt%、 N : 0
.0098wt%、 Mn : 0.071wt%。
<Example> Example I Si: 3.35wt%, C: 0.068gt
%, acid soluble A! : 0.022wt%, N: 0
.. 0098wt%, Mn: 0.071wt%.

Se : 0.020wt%、 Sb : 0.028
wt%を含み残部実質的にFeの組成となる板厚2.2
mの熱延板を1000℃2分間焼鈍後急冷した後、1.
80+m++厚まで冷間圧延し、次いで1100℃2分
間の中間焼鈍後急冷し、0.23mの最終板厚まで冷間
圧延し、次いで840”C2分間の脱炭焼鈍を行い、引
き続きTiO2を10%添加した?IgOを焼鈍分離剤
として塗布し、第1図に表わされるヒートパターンを用
い、第2表で示される条件によって仕上焼鈍を行った。
Se: 0.020wt%, Sb: 0.028
Plate thickness 2.2 including wt% and the remainder being substantially Fe
After annealing a hot-rolled sheet of 1.m at 1000°C for 2 minutes and rapidly cooling it, 1.
Cold rolled to 80+m++ thickness, then quenched after intermediate annealing at 1100°C for 2 minutes, cold rolled to final thickness of 0.23m, then decarburized to 840"C for 2 minutes, followed by 10% TiO2 The added IgO was applied as an annealing separator, and final annealing was performed using the heat pattern shown in FIG. 1 and the conditions shown in Table 2.

こうして得られた製品の磁束密度、鉄損を第2表に示す
Table 2 shows the magnetic flux density and iron loss of the product thus obtained.

実施例2 Si : 3.36wt%、  C:0.066wt%
、酸可溶性Af: 0.023wt%、 N : 0.
0095wt%、 Mn : 0.071wt%。
Example 2 Si: 3.36wt%, C: 0.066wt%
, acid-soluble Af: 0.023 wt%, N: 0.
0095wt%, Mn: 0.071wt%.

Se : 0.020wt%、 Sb : 0.025
wt%、 Cu : 0.09wt%を含み残部実質的
にFe(7)組成になる板厚2.4鴫の熱延板を100
0℃2分間焼鈍後急冷した後、1.50mm厚まで冷間
圧延し、次いで1075℃2分間の中間焼鈍後急冷し、
0.230111の最終板厚まで冷間圧延し、次いで8
40℃2分間の脱炭焼鈍を行い、引き続きTiO□を1
0%、  5rSO,を3%添加したMgOを焼鈍分離
剤として塗布し、第2図に表わされるヒートパターンを
用い第3表で示される条件によって仕上焼鈍を行った。
Se: 0.020wt%, Sb: 0.025
wt%, Cu: 100% of a hot-rolled sheet with a thickness of 2.4 mm containing 0.09 wt% and the remainder being essentially Fe(7).
After annealing at 0°C for 2 minutes and quenching, cold rolling to a thickness of 1.50 mm, then intermediate annealing at 1075°C for 2 minutes, and then quenching.
Cold rolled to a final thickness of 0.230111 then 8
Decarburization annealing was performed at 40°C for 2 minutes, and then TiO□ was added to
MgO containing 3% of 0% and 5rSO was applied as an annealing separator, and final annealing was performed under the conditions shown in Table 3 using the heat pattern shown in FIG.

こうして得られた製品の磁束密度。The magnetic flux density of the product thus obtained.

鉄損を第3表に示す。Iron loss is shown in Table 3.

実施例3 第4表で示される成分を含み残部実質的にFeの組成に
なる鋼についてMgOl布工程まで実施例1と同様な工
程で処理した0次いで仕上焼鈍を850℃まで30°(
/hrの速度で850℃からは12°(/hrの昇温速
度で行った。仕上焼鈍時の雰囲気は第3図に示す組成で
行った。各成分におし)でも高磁束密度、低鉄損が実現
されている。
Example 3 A steel containing the components shown in Table 4 with the remainder essentially having a composition of Fe was treated in the same steps as in Example 1 up to the MgOl cloth step.
The annealing was performed at a heating rate of 12° (/hr) from 850°C at a rate of 12° (/hr. The atmosphere during final annealing was performed with the composition shown in Figure 3. Iron loss is realized.

〈発明の効果〉 本発明のように方向性珪素鋼板の製造工程において、そ
の含有するインヒビターの機能を発揮するように最終仕
上焼鈍の昇熱速度と焼鈍雰囲気を調整することにより撓
めて良好な磁気特性を得ることができた。
<Effects of the Invention> As in the present invention, in the manufacturing process of grain-oriented silicon steel sheets, the heating rate and annealing atmosphere of the final finish annealing are adjusted so that the function of the inhibitor contained in the grain-oriented silicon steel sheet is controlled. We were able to obtain magnetic properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1の、第2図は実施例2の、第3図は実
施例3の夫々仕上焼鈍のヒートパターンを示す模式図で
ある。 特許出願人   川崎製鉄株式会社 第1図 第2図
FIG. 1 is a schematic diagram showing the heat pattern of finish annealing of Example 1, FIG. 2 is of Example 2, and FIG. 3 is of Example 3. Patent applicant: Kawasaki Steel Corporation Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、方向性珪素鋼スラブを熱間圧延後、1回ないし中間
焼鈍を含む2回以上の冷間圧延を施して最終板厚とし、
次いで脱炭焼鈍を経て焼鈍分離材を塗布し最終仕上焼鈍
を施す一連の工程からなる方向性珪素鋼板の製造方法に
おいて、該熱延板にインヒビター構成元素としてAl及
びSeを含有させ、かつ該最終仕上焼鈍時の昇温速度を
700〜875℃間の任意の所定の温度までは20℃/
hr以上とし、次いで該所定の温度から1100℃〜1
300℃の温度域までを5℃/hr以上15℃/hr未
満とし、かつ昇温中H_2、N_2焼鈍雰囲気中のN_
2分圧を700〜875℃間の任意の温度までは80%
以上、次いでその温度から920〜980℃間の任意の
温度までを50%以上、次いで920〜980℃間の該
任意の温度から1100℃〜1300℃の温度域までを
50%以下とすることを特徴とする磁気特性の良好な方
向性珪素綱板の製造方法。 2、最終仕上焼鈍時の昇温途中の700〜840℃の温
度域で20時間以上保持することを特徴とする請求項1
記載の磁気特性の良好な方向性珪素綱板の製造方法。
[Claims] 1. After hot rolling a grain-oriented silicon steel slab, it is cold rolled once or twice or more including intermediate annealing to obtain the final thickness;
In a method for producing a grain-oriented silicon steel sheet, which comprises a series of steps of decarburizing annealing, applying an annealing separator, and final annealing, the hot rolled sheet contains Al and Se as inhibitor constituent elements, and the final The temperature increase rate during final annealing is 20℃/20℃ to any predetermined temperature between 700 and 875℃.
hr or more, and then from the predetermined temperature to 1100°C to 1
The temperature range up to 300°C is 5°C/hr or more and less than 15°C/hr, and N_2 in the H_2, N_2 annealing atmosphere during temperature increase.
2 Partial pressure up to any temperature between 700 and 875℃ is 80%
Above, next, from that temperature to an arbitrary temperature between 920 to 980°C is 50% or more, and then from the arbitrary temperature between 920 to 980°C to a temperature range of 1100°C to 1300°C is 50% or less. A method for producing a oriented silicon steel plate with good magnetic properties. 2. Claim 1, characterized in that the temperature is maintained in a temperature range of 700 to 840°C during final annealing for 20 hours or more.
A method for producing the described oriented silicon steel sheet with good magnetic properties.
JP31603690A 1990-11-22 1990-11-22 Production of grain-oriented silicon steel sheet having superior magnetic property Pending JPH04187721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31603690A JPH04187721A (en) 1990-11-22 1990-11-22 Production of grain-oriented silicon steel sheet having superior magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31603690A JPH04187721A (en) 1990-11-22 1990-11-22 Production of grain-oriented silicon steel sheet having superior magnetic property

Publications (1)

Publication Number Publication Date
JPH04187721A true JPH04187721A (en) 1992-07-06

Family

ID=18072547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31603690A Pending JPH04187721A (en) 1990-11-22 1990-11-22 Production of grain-oriented silicon steel sheet having superior magnetic property

Country Status (1)

Country Link
JP (1) JPH04187721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023507952A (en) * 2019-12-18 2023-02-28 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023507952A (en) * 2019-12-18 2023-02-28 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH032324A (en) Manufacture of grain-oriented silicon steel sheet having excellent magnetic characteristics and film characteristics
EP3859019A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH04187721A (en) Production of grain-oriented silicon steel sheet having superior magnetic property
KR20020044243A (en) A method for manufacturing grain oriented electrical steel sheet with superior magnetic property
JP2709549B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP7465975B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
KR101263846B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR101263843B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR101263848B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
JPH02258929A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
KR101318275B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
KR100359242B1 (en) Low temperature heating method of high magnetic flux density oriented electrical steel sheet
JPS6256205B2 (en)
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH042724A (en) Production of thin grain-oriented silicon steel sheet excellent in magnetic property
KR101263847B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
JPH04297524A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR100360096B1 (en) The method of manufacturing grain oriented silicon steel by low heating
JP2022501518A (en) Directional electrical steel sheet and its manufacturing method
JPH01201425A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic property
JPH06145802A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JPH10158740A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property