JPH04187557A - Binder composition for powder forming, powder-formed article produced by using the same and production of powder-formed article - Google Patents

Binder composition for powder forming, powder-formed article produced by using the same and production of powder-formed article

Info

Publication number
JPH04187557A
JPH04187557A JP2313411A JP31341190A JPH04187557A JP H04187557 A JPH04187557 A JP H04187557A JP 2313411 A JP2313411 A JP 2313411A JP 31341190 A JP31341190 A JP 31341190A JP H04187557 A JPH04187557 A JP H04187557A
Authority
JP
Japan
Prior art keywords
powder
binder composition
organic material
forming
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2313411A
Other languages
Japanese (ja)
Inventor
Katsutoshi Nishida
西田 勝利
Masaru Kumagai
勝 熊谷
Tsuneji Kameda
常治 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2313411A priority Critical patent/JPH04187557A/en
Publication of JPH04187557A publication Critical patent/JPH04187557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the decreasing degree of a powder-formed article by mixing a specific skeleton-forming organic material and a void-forming organic material, mixing the obtained binder composition for powder-forming with powder and forming the mixture to a prescribed form. CONSTITUTION:A binder composition for powder-forming is produced by mixing (A) 20-70vol.% of a skeleton-forming organic material such as diallyl isophthalate prepolymer having a molecular weight of >=1,000, (B) a compatible 1st void-forming organic material such as dibutyl phthalate, (C) an incompatible 2nd void-forming organic material such as n-paraffin and (D) a polymerization initiator such as dicumyl peroxide at specific ratios. The powder-forming binder composition is added to the powder of Si3N4, etc., in an amount of 40-60vol.% based on the powder-formed article, the mixture is kneaded and a powder-formed article is produced by a plasticizing molding such as injection molding of the kneaded material. The powder-formed article is heated to a degreasing temperature in N2 gas flow at a prescribed rate of heating to effect the degreasing treatment and obtain a powder-formed article free from defects of cracks and bubbles.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、セラミックスや金属等の粉末に所定形状を付
与する粉末成形用バインダ組成物およびそれを用いた脱
脂性に優れる粉末成形体、さらにはこの粉末成形体の製
造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a binder composition for powder molding that imparts a predetermined shape to powders of ceramics, metals, etc., and an excellent degreasing property using the binder composition. The present invention relates to a powder compact and a method for producing the powder compact.

(従来の技術) セラミックスや金属等の粉末の成形は、金型ブレス法、
スリップキャスト法、ドクターブレード法、押出成形法
、射出成形法等の成形法を利用して、所用の形状に成形
する二とが行われている。
(Conventional technology) Molding of powders such as ceramics and metals is performed using the mold press method,
Molding methods such as a slip casting method, a doctor blade method, an extrusion molding method, and an injection molding method are used to mold the material into a desired shape.

これらのうちで、金型プレス法は単純形状に限られ、自
在な形状付与性を与えるものではなく、目すと適用可能
形状に制限か存在する。また、スリップキャスト法は、
複雑形状には適しているか、成形能率や製品の寸法精度
の点て若干の難点を何している。ドクターブレード法は
、肉薄のシートの成形に限定され、これまた自在な形状
付与性を有するものではない。
Among these, the mold press method is limited to simple shapes and does not give a flexible shape, and there are limits to the shapes that can be applied. In addition, the slip cast method
Is it suitable for complex shapes, and does it have some drawbacks in terms of molding efficiency and product dimensional accuracy? The doctor blade method is limited to forming thin sheets, and also does not have the ability to give shapes freely.

これらに対して、射出成形法や押出成形法等の可塑化成
形法は、自在な形状付与性と高能率・高精度の成形能力
を有している。しかしその半面、粉末に流動性を付与す
るために、流動性付与材として多量のバインダ成分を添
加する必要かあり、そのためバインダ成分の除去に難点
を有していた。
On the other hand, plasticization molding methods such as injection molding and extrusion molding have flexible shape-forming properties and high-efficiency, high-precision molding capabilities. On the other hand, however, in order to impart fluidity to the powder, it is necessary to add a large amount of a binder component as a fluidity-imparting material, which makes it difficult to remove the binder component.

すなわち、上述したような粉末に流動性を付与するため
には、−船釣には40容量%〜60容ffi 9o程度
のバインダ量が必要となる。このように、多量のバイン
ダを添加するために、所要の形状を付与した後、不要と
なったバインダ成分の除去か困難となり、バインダ除去
時にクラック、発泡等の欠陥か生じ易く、そのため特に
肉厚の成形体の健全な成形が著しく困難となっている。
That is, in order to impart fluidity to the powder as described above, a binder amount of approximately 40% by volume to 60% by volume is required for boat fishing. In this way, since a large amount of binder is added, it becomes difficult to remove unnecessary binder components after giving the desired shape, and defects such as cracks and foaming are likely to occur when removing the binder. It has become extremely difficult to form a molded product in a sound manner.

通常、肉厚10+e+*以上の成形体の脱脂(バインダ
を除去すること)は困難と言われており、それ以上の肉
厚の成形体を得るためには、極度に制御されたガス流、
温度パターンの脱脂炉を用い、極め 2て長時間にわた
る昇温スケジュールによって、脱脂を遂行する必要があ
る。しかし、それでも、脱脂後にクラック等の欠陥が入
ることが多く、実質的な工業的製法とはなっていないの
が現状である。
Normally, it is said that it is difficult to degrease (remove the binder) a molded body with a wall thickness of 10+e+* or more, and in order to obtain a molded body with a wall thickness greater than that, extremely controlled gas flow,
Degreasing must be accomplished using a degreasing furnace with a temperature pattern and an extremely long heating schedule. However, even so, defects such as cracks often occur after degreasing, and the present situation is that this method is not a practical industrial manufacturing method.

上記したような可塑化成形に対し、従来のバインダの系
としては、熱可塑性樹脂等の加熱により流動性が付与さ
れ、かつ低温度の金型内では固化し、型からの取出しを
可能にするタイプの物質が用いられてきた。
In contrast to the above-mentioned plasticization molding, conventional binder systems impart fluidity by heating thermoplastic resins, etc., and solidify in a mold at a low temperature, making it possible to remove the resin from the mold. types of substances have been used.

一般に、加熱により流動性を付与する成形法は、低温度
下では固化し、高温度下にさらすと軟化して、流動性を
示すタイプの物質を使用しており、脱脂時には高温下に
あるため、粉末とバインダとの混線物は、強度はほとん
ど無い状態となる。このような状況の下で、高温に昇温
しで脱脂することは、分解・揮発成分のガス圧が発生す
ることであり、このような条件下でクラック等の欠陥を
抑制するためには、発生したガス圧に耐え得るような構
造とする必要がある。
In general, molding methods that impart fluidity by heating use a type of material that solidifies at low temperatures and softens when exposed to high temperatures, exhibiting fluidity. , the mixture of powder and binder has almost no strength. Under these circumstances, degreasing at high temperatures generates gas pressure of decomposed and volatile components, and in order to suppress defects such as cracks under these conditions, The structure must be able to withstand the gas pressure generated.

しかしながら、上記したように従来のバインダ系では、
高温下におけるバインダの強度か全く無く、粉体同志の
絡み合いと粒子間作用力のみにより強度が維持されてい
ると考えられるため、成形体の肉厚が10mmを超える
と、急激に正常な脱脂が困難となってしまう。
However, as mentioned above, with conventional binder systems,
It is thought that the binder has no strength at all under high temperatures, and its strength is maintained only by the entanglement of the powder particles and the acting force between the particles, so if the wall thickness of the compact exceeds 10 mm, normal degreasing will suddenly fail. It becomes difficult.

(発明か解決しようとする課題) 上述したように、従来のバインダ系では、高温下(脱脂
が実質的に行われる温度)における強度か全く得られな
いため、肉厚が10mmを超えるような成形体を脱脂す
る際には、クラックや発泡等の欠陥か著しく生し易すく
なってしまうという問題を有していた。
(Problem to be solved by the invention) As mentioned above, with conventional binder systems, no strength can be obtained at high temperatures (temperatures at which degreasing is substantially carried out), so molding with a wall thickness exceeding 10 mm cannot be achieved. When degreasing the body, there is a problem in that defects such as cracks and foaming are extremely likely to occur.

本発明は、このような課題に対処するためになされたも
のであって、本発明の目的は、脱脂性を損うことなく、
脱脂温度下での強度を高め得る粉末成形用バインダ組成
物を提供することにあり、また他の目的は、クラックや
発泡等の欠陥の発生を大幅に抑制した粉末成形体を提供
することにあり、さらにはこのような粉末成形体を射出
成形法や押出成形法等の可塑化成形法によって得ること
を可能にした粉末成形体の製造方法を提供することにあ
る。
The present invention was made to address such problems, and the purpose of the present invention is to
Another object of the present invention is to provide a binder composition for powder molding that can increase the strength at degreasing temperatures, and another object is to provide a powder molded product that significantly suppresses the occurrence of defects such as cracks and foaming. Furthermore, it is an object of the present invention to provide a method for producing a powder molded body, which makes it possible to obtain such a powder molded body by a plasticization molding method such as an injection molding method or an extrusion molding method.

[発明の構成コ (課題を解決するための手段と作用) 本発明の粉末成形用バインダ組成物は、粉末に対して所
定形状を付与する粉末成形用バインダ組成物において、
化学的または物理的に結合して粉体同志を連結させる骨
格形成用有機材料と、この有機材料か実質的な強度を保
持している温度領域で実質的な部分か除去され得る空隙
形成用有機材料とを含有し、前記骨格形成用有機材料は
20容量96〜70容量%の範囲で含まれることを特徴
としている。
[Configuration of the Invention (Means and Effects for Solving the Problems) The binder composition for powder molding of the present invention is a binder composition for powder molding that imparts a predetermined shape to powder,
An organic material for forming a skeleton that connects the powders by chemical or physical bonding, and an organic material for forming voids that can be removed in a substantial portion in a temperature range where the organic material retains substantial strength. The structure is characterized in that the organic material for skeleton formation is contained in a range of 96 to 70% by volume.

また、本発明の粉末成形体は、粉末に、バインダ組成物
によって所定形状を付与した粉末成形体において、前記
バインダ組成物として、請求項1記載の粉末成形用バイ
ンダ組成物を、前記粉末成形体に対して40容量%〜6
0容量%の範囲て用い、骨格形成用有機材料を前記粉末
の近傍に配すると共に、二の有機材料間を相互に結合さ
せて該粉末を含むスケルトン構造を形成し、かつこのス
ケルトン構造の間隙に空隙形成用有機材料を配した構造
を有することを特徴としている。
Further, the powder compact of the present invention is a powder compact in which a predetermined shape is imparted to powder with a binder composition, in which the binder composition for powder compacting according to claim 1 is added to the powder compact as the binder composition. 40% by volume to 6
A skeleton-forming organic material is placed in the vicinity of the powder, and the two organic materials are bonded to each other to form a skeleton structure containing the powder, and the gaps between the skeleton structure are It is characterized by having a structure in which a void-forming organic material is arranged on the inside.

さらに、本発明の粉末成形体の製造方法は、粉末とバイ
ンダ組成物との混合物を所定形状に成形するに際し、前
記バインダ組成物として、請求項1記載の粉末成形用バ
インダ組成物を用い、かつ骨格形成用有機材料を第1の
空隙形成用有機材料に溶解し、その溶液に前記骨格形成
用有機材料に対して非溶媒である第2の空隙形成用有機
材料を適当量加え、前記骨格形成用有機材料を空隙形成
用有機材料から析出させ、この状態でのバインダ組成物
と粉末との混合物を所定形状に成形することを特徴とし
ている。
Furthermore, the method for producing a powder compact of the present invention uses the binder composition for powder compacting according to claim 1 as the binder composition when shaping a mixture of powder and a binder composition into a predetermined shape, and A skeleton-forming organic material is dissolved in a first void-forming organic material, and an appropriate amount of a second void-forming organic material, which is a non-solvent for the skeleton-forming organic material, is added to the solution. The method is characterized by precipitating the organic material for forming voids from the organic material for forming voids, and molding the mixture of the binder composition and powder in this state into a predetermined shape.

すなわち本発明は、上述したような課題に対して、ます
上記化学的または物理的に結合して粉体同志を連結させ
る骨格形成用有機材料を、肉厚成形体の脱脂時における
強度保持成分として用いることによって、脱脂時におけ
る高温下での成形体の強度を向上させ、クラック等の成
形体欠陥の発生を抑制したものである。つまり、骨格形
成用有機材料によって脱脂時に発生する分解・揮発成分
のガス圧に耐え得る構造か得られる。また、上記強度保
持成分と共に、易脱脂成分として骨格形成用有機材料か
強度を保持している間に、実質的な部分か分解、揮発、
蒸発、しみたし等の現象により、系外に容易に除去され
得る空隙形成用有機材料を用いることによって、成形体
か強度を保持している間に、脱脂に必要な経路を予め成
形体内部に形成し、上記骨格形成用有機材料を除去(脱
脂)する際に、成形体の健全な状態を維持することを可
能にしている。
That is, the present invention addresses the above-mentioned problems by using the above-mentioned organic material for forming a skeleton, which chemically or physically bonds powders together, as a strength-maintaining component during degreasing of a thick-walled molded body. By using it, the strength of the molded product at high temperatures during degreasing is improved and the occurrence of molded product defects such as cracks is suppressed. In other words, by using the organic material for forming the skeleton, a structure that can withstand the gas pressure of decomposition and volatile components generated during degreasing can be obtained. In addition to the above-mentioned strength-maintaining component, the organic material for skeleton formation as an easily degreasable component can decompose, volatilize, or
By using a void-forming organic material that can be easily removed from the system through phenomena such as evaporation and seepage, the necessary path for degreasing can be created in advance within the molded body while maintaining its strength. This makes it possible to maintain the healthy state of the molded body when the organic material for forming the skeleton is removed (degreased).

また、上記したような脱脂過程をより容易にする成形体
構造として、上記した本発明の粉末成形体を見出たした
ものである。
Furthermore, the powder compact of the present invention described above has been discovered as a compact structure that facilitates the degreasing process as described above.

本発明における骨格形成用有機材料としては、熱可塑性
樹脂でも上記したような構造を得ることか可能であるが
、主要な成分として熱硬化性有機物質を使用することに
より、上記構造の達成が容品となる。
Although it is possible to obtain the structure described above using thermoplastic resin as the organic material for forming the skeleton in the present invention, it is difficult to achieve the structure described above by using a thermosetting organic material as the main component. It becomes a product.

上記熱硬化性有機物質としては、例えばジアリールフタ
レート・プレポリマー、不飽和ポリエステル、オリゴエ
ステルアクリレート(アクリル酸エステルのオリゴマー
)、低分子量ポリブタジェン等か例示され、これらを単
独であるいは複合して用いられる。また、熱硬化性有機
物質は強度保持効果の点で、数平均分子量が1000以
上の有機物質を用いることが好ましい。さらに、上記し
たような構造の成形体を得る上で、極性を有する有機物
質を使用することが好ましい。これにより、粉末の近傍
に配することが容易となる。
Examples of the thermosetting organic substance include diarylphthalate prepolymers, unsaturated polyesters, oligoester acrylates (oligomers of acrylic esters), and low molecular weight polybutadiene, which may be used alone or in combination. Further, from the viewpoint of strength retention effect, it is preferable to use an organic substance having a number average molecular weight of 1000 or more as the thermosetting organic substance. Furthermore, in order to obtain a molded article having the structure as described above, it is preferable to use a polar organic substance. This makes it easy to arrange it near the powder.

また、強度保持成分は、上記した熱硬化性有機物質によ
って脱脂時における強度が得られればよいため、これら
に対して相溶性、もしくは親和性を有する重合性有機物
モノマー、例えばアクリル酸、メタアクリル酸、および
これらのエステル類七ツマ−1さらにはビニルモノマー
、ブタジェンモノマー等を併用して用いることができる
In addition, the strength-maintaining component may be a polymerizable organic monomer that is compatible with or has an affinity for these thermosetting organic substances, such as acrylic acid, methacrylic acid, etc. , and these esters may be used in combination with vinyl monomers, butadiene monomers, etc.

本発明における空隙形成用有機材料は、骨格形成用有機
材料が強度を保持している温度領域で、実質的な部分を
容易に脱脂し得る物性を有していることと、強度保持成
分との親和性、相溶性等とを考慮して選択する必要があ
る。このような空隙形成用有機材料としては、例えばパ
ラフィンワックス類、流動パラフィン、ステアリン酸の
ような脂肪酸、各種溶剤等が例示され、これらを単独で
あるいは複合して用いられる。また、これらに対して相
溶性、もしくは親和性を有する物質を併用することも可
能である。さらに、上記したような構造の成形体を得る
上では、極性のない有機材料を使用することが好ましい
The organic material for forming voids in the present invention has physical properties that allow a substantial portion to be easily degreased in the temperature range where the organic material for forming a skeleton maintains its strength, and has a strength-maintaining component. It is necessary to select by considering affinity, compatibility, etc. Examples of such organic materials for forming voids include paraffin waxes, liquid paraffin, fatty acids such as stearic acid, various solvents, etc., and these may be used alone or in combination. Furthermore, it is also possible to use substances that are compatible with or have an affinity for these substances. Furthermore, in order to obtain a molded article having the above structure, it is preferable to use a non-polar organic material.

また、後に詳述する粉末成形体の製造方法との兼ね合い
から上記易脱脂成分は、強度保持成分を溶解し得る第1
の易脱脂成分と、この溶液に対して相溶性を有し、かつ
強度保持成分の主要成分に対しては非溶媒の関係を有す
る第2の易脱脂成分とで構成することが好ましい。
In addition, in consideration of the manufacturing method of the powder compact, which will be described in detail later, the above-mentioned easily degreasable component is the first component that can dissolve the strength-retaining component.
It is preferable to consist of an easily degreasable component and a second easily degreasable component that is compatible with this solution and has a non-solvent relationship with respect to the main component of the strength maintaining component.

上記した骨格形成用有機材料および空隙形成用有機材料
の使用割合としては、全組成物中に骨格形成用有機材料
が20容量%〜70容量%の範囲で含まれるように調整
することか好ましい。また、その他の成分を使用する際
には、空隙形成用有機材料が20容量%以上含まれるよ
うに調整することか好ましい。骨格形成用有機材料が2
0容量%未満となると、脱脂時における強度保持効果十
分に得られず、また70容量%を超えると、易脱脂成分
の存在によっても健全な脱脂が困難となるためである。
The proportions of the organic material for forming the skeleton and the organic material for forming the voids described above are preferably adjusted so that the organic material for forming the skeleton is contained in the entire composition in a range of 20% by volume to 70% by volume. In addition, when using other components, it is preferable to adjust the content of the void-forming organic material to 20% by volume or more. 2 organic materials for skeleton formation
If it is less than 0% by volume, a sufficient strength retention effect during degreasing cannot be obtained, and if it exceeds 70% by volume, healthy degreasing becomes difficult due to the presence of easily degreased components.

なお、強度保持成分として熱可塑性樹脂を使用する場合
については、軟化温度の高い樹脂、例えばポリスチレン
、高融点ポリエチレン等を使用し、易脱脂成分として低
融点ワックス、低融点脂肪酸、流動パラフィン等を使用
することか適当である。
In addition, when using a thermoplastic resin as a strength-maintaining component, use a resin with a high softening temperature, such as polystyrene, high-melting point polyethylene, etc., and use a low-melting point wax, low-melting point fatty acid, liquid paraffin, etc. as an easily degreasable component. Is it appropriate to do so?

本発明の粉末成形用バインダ組成物の構成成分は、上記
した強度保持成分と易脱脂成分とに限定されるものでは
ない。これらは、本来の機能か果たされればよいのであ
って、これらの機能を著しく妨害しなければ、両方の機
能を持たない性質の無機あるいは有機材料を加えること
は、同等除外するものではない。例えば、前述の機能を
害さない量の熱可塑性樹脂、熱硬化性物質、可塑剤、離
形剤、界面活性剤、重合促進剤、安定化剤、重合開始剤
等を加えることは、特に排除されるものではない。また
、強度保持成分と易脱脂成分との親和性を改良する成分
を配合することも、使用材料によっては効果的である。
The constituent components of the binder composition for powder molding of the present invention are not limited to the strength-retaining component and easily degreasable component described above. It is sufficient for these materials to fulfill their original functions, and the addition of inorganic or organic materials that do not have either of these functions is not equally excluded as long as these functions are not significantly interfered with. For example, the addition of thermoplastic resins, thermosetting substances, plasticizers, mold release agents, surfactants, polymerization accelerators, stabilizers, polymerization initiators, etc. in amounts that do not impair the aforementioned functions is specifically excluded. It's not something you can do. Furthermore, it is also effective to blend a component that improves the affinity between the strength-retaining component and the easily degreasable component, depending on the materials used.

本発明の粉末成形用バインダ組成物を用いた粉末成形体
は、例えば射出成形法や押し出し成形法等の可塑化成形
法によって成形される。ここで、上記バインダ組成物と
成形用粉末との比率は、限定されるものではないが、バ
インダ組成物が成形体中に40容量%〜60容量%程度
含まれるというように、多量にバインダ組成物を使用す
る際に、本発明は特に効果的である。また、対象となる
成形用粉末としては、各種セラミックス粉末、金属粉末
等が例示される。
A powder molded body using the binder composition for powder molding of the present invention is molded, for example, by a plasticization molding method such as an injection molding method or an extrusion molding method. Here, the ratio of the binder composition to the molding powder is not limited, but the binder composition may be contained in a large amount such that the binder composition is contained in the molded article at about 40% to 60% by volume. The present invention is particularly effective when using Moreover, various ceramic powders, metal powders, etc. are exemplified as the target molding powder.

また、本発明の粉末成形用バインダ組成物を用いて得ら
れる硬化後の粉末成形体の構造としては、第1図に示す
3種類の構造が代表例として挙げられる。ここで、硬化
後の構造とあるが、硬化前の混線物または成形体の構造
とても、硬化しているか否かを除いて同一である。
Moreover, as the structure of the powder compact after hardening obtained using the binder composition for powder compaction of the present invention, the three types of structures shown in FIG. 1 can be cited as typical examples. Here, although the structure is referred to as after curing, the structure of the mixed wire or molded object before curing is the same except for whether or not it is cured.

すなわち、第1図(a)に示した構造(1)は、粉末1
の間に強度保持成分と易脱脂成分とが均一に分散あるい
は溶解した成分2が存在している構造である。第1図(
b)に示した構造(It)は、強度保持成分3が粉体1
の近傍に存在すると共に、強度保持成分3どうしが化学
的または物理的に結合して、粉末1と一体となって成形
体中でスケルトン構造を形成し、易脱脂成分4がスケル
トンの間に存在している構造である。第1図(C)に示
した構造(m)は、構造(1)と構造(II)との中間
的な位置づけの構造であり、強度保持成分3が粉体1の
近傍に存在すると共に、この強度保持成分3間に強度保
持成分と易脱脂成分とが均一に分散あるいは溶解した成
分2が存在している構造である。
That is, the structure (1) shown in FIG.
This is a structure in which component 2, in which a strength-retaining component and an easily degreasable component are uniformly dispersed or dissolved, exists between the two. Figure 1 (
In the structure (It) shown in b), strength-retaining component 3 is powder 1
At the same time, the strength-retaining components 3 are chemically or physically combined with each other to form a skeleton structure in the molded body together with the powder 1, and the easily degreasable component 4 is present between the skeletons. It has a structure that Structure (m) shown in FIG. 1(C) is an intermediate structure between structure (1) and structure (II), in which the strength-retaining component 3 is present near the powder 1, and This structure has a structure in which a component 2 in which a strength retaining component and an easily degreasable component are uniformly dispersed or dissolved exists between the strength retaining components 3.

ここて、上記した構造(1)〜(m)の成形体としての
評価結果として、高温での曲げ強度を測定した結果を第
2図に示す。この高温強度の比較で成形体としての特性
が理解されよう。曲げ試験は、各構造モデルに対応した
25mmX5龍X2mmtの成形体を用意し、室温から
 200℃までの温度範囲で行った。
Here, as an evaluation result of the above-described structures (1) to (m) as molded bodies, the results of measuring the bending strength at high temperature are shown in FIG. This comparison of high-temperature strength will help you understand the characteristics of the molded product. The bending test was conducted at a temperature range from room temperature to 200° C. using 25 mm x 5 dragon x 2 mm t molded bodies corresponding to each structural model.

第2図から明らかなように、構造(II)か高温度で強
度が高く、本発明の目的に最適であることか分る。なお
、これら混練物を成形し、脱脂した結果、やはり強度の
高い組成物はど脱脂結果もよい結果が得られる。以上に
より明らかなように、熱硬化成分が粉末近傍に存在し、
これと粉末とが一体となって成形体中でスケルトン構造
を作り、易脱詣成分かスケルトンの間に入っているもの
か可塑化成形体として最適であることか分る。
As is clear from FIG. 2, structure (II) has high strength at high temperatures and is most suitable for the purpose of the present invention. Furthermore, as a result of molding and degreasing these kneaded products, good degreasing results can be obtained for compositions with high strength. As is clear from the above, the thermosetting component exists near the powder,
This and the powder come together to form a skeleton structure in the molded body, and it can be determined whether it is an easily removable component or is contained between the skeletons, and whether it is optimal as a plasticized molded body.

たたし、構造(1)および(III)においても、従来
の熱可塑性有機材料を用いた成形体に比べて高温での強
度の向上を図ることが可能であるため、本発明のバイン
ダ組成物においては、構造(1)および(III)の成
形体を除外するものではない。
However, in structures (1) and (III), it is possible to improve the strength at high temperatures compared to molded products using conventional thermoplastic organic materials, so the binder composition of the present invention The above does not exclude molded bodies of structures (1) and (III).

次に、上記構造(II)の粉末成形体の製造方法につい
て述べる。
Next, a method for manufacturing the powder compact having the above structure (II) will be described.

ここで一番問題になるのは、骨格形成用有機材料と空隙
形成用有機材料の間の相溶性である。骨格形成物質が完
全に空隙形成物質に溶解するのでは、構造(II)には
ならない。しかし、これらが完全に分かれて相互の親和
性か全くないと、均一に混練することもてきなくなる。
The most important issue here is the compatibility between the organic material for forming the skeleton and the organic material for forming the voids. If the skeleton-forming substance is completely dissolved in the void-forming substance, structure (II) will not be obtained. However, if these are completely separated and have no mutual affinity, it will not be possible to knead them uniformly.

そこで、できるたけなじみかよくて、かつ実質的に分離
した関係か成立される必要がある。このような状態を達
成する手段としては、以下に示すような方法が例示され
る。
Therefore, it is necessary to establish a relationship that is as familiar as possible and that is substantially separate. As means for achieving such a state, the following methods are exemplified.

■ 溶媒−非溶媒の関係の利用 すなわち、骨格形成物質(A)を空隙形成物質Bまたは
その一成分(第1の空隙形成物質:B1)に溶解し、そ
の溶液にAに対しては非溶媒である第2の空隙形成物質
(B2)を加える。これにより、B2のある量を添加し
たところで、AがBから析出を始める。はぼ全体のAが
析出し終わったところで、B2の添加を停止すると、こ
の状態かAとB、+82とか極めてなじみかよく、しか
もAが粉末の周辺に集められた状態、すなわち構造(I
t)の状態か得られる。
■ Use of the solvent-nonsolvent relationship, that is, dissolve the skeleton-forming substance (A) in the pore-forming substance B or one of its components (first pore-forming substance: B1), and add a non-solvent to the solution for A. A second void-forming substance (B2) is added. As a result, when a certain amount of B2 is added, A starts to precipitate from B. When the addition of B2 is stopped when the entire amount of A has been precipitated, this state or the state where A and B, +82, are extremely familiar, and the state where A is gathered around the powder, that is, the structure (I
The state t) is obtained.

■ A、B両方になじみのある中間層を添加これは、A
の固有の特性を生じさせている官能基と同しまたは類似
の基を有し、かつB特有の官能基と同しあるいは類似の
基を有するような物質を両者の中間に配するものである
。界面活性剤は、この機能を有する代表的な物質である
。しかし、ここで注意を要するのは、この中間層はAの
間に入ってくるため、Aどうしの結合が阻害され易くな
り、その結果粉末との混練物の強度(硬化させる場合は
硬化後の)か低下する恐れかある。したがって、本発明
においては、このような中間層自体にAどうしを結合さ
せる役割を持たせることか好ましい。
■ Adding a familiar intermediate layer to both A and B.
A substance that has the same or similar group as the functional group that gives rise to the unique characteristics of B, and also has the same or similar group as the functional group unique to B, is placed between the two. . Surfactants are typical substances that have this function. However, it is important to note here that since this intermediate layer is inserted between A, the bond between A is likely to be inhibited, and as a result, the strength of the kneaded product with powder (in case of hardening, after hardening) ) or may decline. Therefore, in the present invention, it is preferable that such an intermediate layer itself has the role of bonding A to each other.

次に、熱硬化性物質を用いた場合の硬化(成形体として
の形状維持のための硬化)は、(a)  成形直後の金
型内で硬化させる。
Next, in the case of using a thermosetting substance, curing (curing to maintain the shape of the molded object) is as follows: (a) Hardening is performed in the mold immediately after molding.

(b)  成形後、金型から取出した後に、加熱等の硬
化処理を行う。
(b) After being molded and removed from the mold, a curing treatment such as heating is performed.

(e)  脱脂時加熱等の方法で、脱脂と同時に硬化を
行う。
(e) Curing is carried out at the same time as degreasing using a method such as heating during degreasing.

等の方法かある。これらは射出成形法の例であるが、他
の可塑化成形法でも同様な工程が考えられ、これらはい
ずれも本発明の硬化方法として利用可能である。
There are other methods. Although these are examples of injection molding methods, similar steps can be considered with other plasticization molding methods, and any of these can be used as the curing method of the present invention.

また、硬化の方法としては、例えば熱硬化性有機物質を
用いた場合、ラジカル重合、イオン重合、付加重合、重
縮合、重付加等を使用することができる。この中では、
ラジカル重合が最も制御範囲か広いと考えられ、この方
法が好ましい。このラジカル重合に関しては、重合開始
剤が各種知られており、成形条件等によって最適化する
ことが好ましい。重合開始剤としては、パーオキサイド
、無機過酸化物、アゾ化合物等か用いられる。
Further, as a curing method, for example, when a thermosetting organic substance is used, radical polymerization, ionic polymerization, addition polymerization, polycondensation, polyaddition, etc. can be used. In this,
Radical polymerization is considered to have the widest control range and is preferred. Regarding this radical polymerization, various types of polymerization initiators are known, and it is preferable to optimize the initiators depending on molding conditions and the like. As the polymerization initiator, peroxide, inorganic peroxide, azo compound, etc. are used.

上記過酸化物としては、1,1−ビス・ターシャリ−ブ
チルパーオキシ・3,3.5−1−リメチルシクロヘキ
サン、1.1−ビス・ターシャリ−ブチル、?−オキジ
シクロヘキサン、2.2−ビス・ターシャリ−ブチルパ
ーオキシオクタン、n−ブチル・4,4−ビス・ターシ
ャリ−ブチルパーオキシバレレート、2.2−ビス・タ
ーシャリ−ブチルパーオキシブタン等のパーオキシケタ
ール類;ターシャリ−ブチルハイドロパーオキサイド、
クメンハイドロパーオキサイド、ジイソプロピルベンゼ
ンハイドロバーオキサイド、バラ−メンタンハイドロパ
ーオキサイド、2.5−ジメチルヘキサン・2.5−ハ
イドロパーオキサイド、1.1.13−テトラメチルブ
チルハイドロパーオキサイド等のハイドロパーオキサイ
ド類;ジターシャリ−ブチルパーオキサイド、ターシャ
リ−ブチルクミルパーオキサイド、ジクミルパーオキサ
イド、2.5−ジメチル・2.5−ジターシャリ−ブチ
ルパーオキシヘキサン等のジアルキルパーオキサイド類
;アセチルパーオキサイド、イソブチリルパーオキサイ
ド、オクタンパーオキサイド、デカノイルパーオキサイ
ド、ラウロイルパーオキサイド、ベンゾイルパーオキサ
イド、m−トルオイルパーオキサイド等のジアシルパー
オキサイド類;ジイソブロビルパーオキシジカーボ不一
ト、シ −2−エチルヘキシルバーオキシジカーボネー
ト、ジ−n−プロピルパーオキシジカーボネート、ジア
リルパーオキシジカーボネート等のパーオキシジカーボ
ネート類;ターシャリ−ブチルパーオキシアセテート、
ターシャリ−ブチルパーオキシイソブチレート、ターシ
ャリープチルパーオキンラウレート、ターシャリ−ブチ
ルパーオキシベンゾニード、2.5−ジメチル−2,5
−ジベンゾイルパーオキシヘキサン等のパーオキシエス
テル類等が例示される。
Examples of the peroxides include 1,1-bis-tert-butylperoxy-3,3.5-1-limethylcyclohexane, 1,1-bis-tert-butyl, ? -oxydicyclohexane, 2,2-bis tert-butyl peroxyoctane, n-butyl 4,4-bis tert-butyl peroxyvalerate, 2,2-bis tert-butyl peroxybutane, etc. Peroxyketals; tertiary-butyl hydroperoxide,
Hydroperoxides such as cumene hydroperoxide, diisopropylbenzene hydroperoxide, bara-menthane hydroperoxide, 2,5-dimethylhexane/2,5-hydroperoxide, and 1,1,13-tetramethylbutyl hydroperoxide. Dialkyl peroxides such as ditertiary-butyl peroxide, tertiary-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl/2,5-ditertiary-butylperoxyhexane; acetyl peroxide, isobutyryl peroxide diacyl peroxides such as oxide, octane peroxide, decanoyl peroxide, lauroyl peroxide, benzoyl peroxide, m-toluoyl peroxide; carbonate, peroxydicarbonates such as di-n-propyl peroxydicarbonate, diallyl peroxydicarbonate; tert-butyl peroxyacetate,
Tert-butyl peroxyisobutyrate, Tert-butyl peroxyisobutyrate, Tert-butyl peroxybenzonide, 2,5-dimethyl-2,5
Examples include peroxy esters such as -dibenzoyl peroxyhexane.

これらの過酸化物は、そのラジカル発生開始温度、半減
期、活性エネルギー等を勘案して、射出成形等の可塑化
成形条件に応じて選択する。
These peroxides are selected depending on the conditions of plasticization molding such as injection molding, taking into consideration the temperature at which radical generation starts, half-life, activation energy, etc.

また、これら重合開始剤のラジカル発生を促進するもの
として、C0% Mn5Cu、 Ni、 Fe、 Zn
等のイオンを含む化合物、あるいはジメチルアニリン、
ジメチルパラトルイジン等の芳香族第3級アミン等を添
加してもよい。さらに、重合促進剤の助触媒類の添加も
可能である。これら重合促進剤の添加により、重合温度
を著しく低下させることかてき、室温における硬化も可
能となる。
In addition, as substances that promote radical generation of these polymerization initiators, C0% Mn5Cu, Ni, Fe, Zn
Compounds containing ions such as, or dimethylaniline,
Aromatic tertiary amines such as dimethyl para-toluidine may also be added. Furthermore, it is also possible to add promoters of polymerization promoters. By adding these polymerization accelerators, the polymerization temperature can be significantly lowered, and curing at room temperature is also possible.

(実施例〉 次に、本発明の実施例について説明する。(Example> Next, examples of the present invention will be described.

実施例1 まず、窒化ケイ素粉末(電気化学工業製)に対し、バイ
ンダ組成物を50容量%で添加した。このバインダ組成
物の構成成分および比率は、ジアリルイソフタレート・
プレポリマー(分子量8000、大阪曹達製) 40容
量%、n−パラフィン(融点60℃)17、l容量%、
ジブチルフタレー) (DBP ) 39.9容量%、
および重合開始剤としてジクミルパーオキサイド(DC
P )  3.0容量%とした。
Example 1 First, a binder composition was added at 50% by volume to silicon nitride powder (manufactured by Denki Kagaku Kogyo). The components and proportions of this binder composition include diallylisophthalate,
Prepolymer (molecular weight 8000, manufactured by Osaka Soda) 40% by volume, n-paraffin (melting point 60°C) 17% by volume,
dibutyl phthale) (DBP) 39.9% by volume,
and dicumyl peroxide (DC) as a polymerization initiator.
P) 3.0% by volume.

ここで、ジアリルレイソフタレート拳プレポリマーは、
ジブチルフタレートに対して溶解し、n−パラフィンに
対しては非溶解であり、かつジブチルフタレートとn−
パラフィンとは相溶性を有する。
Here, the diallyl isophthalate fist prepolymer is
It is soluble in dibutyl phthalate, insoluble in n-paraffin, and is soluble in dibutyl phthalate and n-paraffin.
It is compatible with paraffin.

次に、上記窒化ケイ素粉末にバインダ組成物を添加した
ものを、80℃の加熱下にて加圧ニーダ−で60分間混
練した。この混練物は、前述した構造(II)に相当す
る。
Next, a binder composition was added to the silicon nitride powder and kneaded for 60 minutes in a pressure kneader while heating at 80°C. This kneaded material corresponds to the structure (II) described above.

この後、上記混練物を3CI+n+s X 5mm X
  L5mmの寸法に射出成形法によって成形し、目的
とする粉末成形体を得たJこのようにして得た粉末成形
体の200℃における曲げ強度を測定したところ、50
kgf’/cJと良好な値が得られた。
After that, the above kneaded material was 3CI+n+s x 5mm x
The desired powder molded body was obtained by injection molding to a size of 5 mm. When the bending strength at 200°C of the thus obtained powder molded body was measured, it was found to be 50
A good value of kgf'/cJ was obtained.

また、同じ混練物を30關φX20mmtの形状に射出
成形し、窒素気流中250℃まで10℃/時間の昇温速
度で上げ、250℃で20時間保持した後、500℃ま
で10℃7時間の速度で昇温しで脱脂した。脱脂後の成
形体の状況は、健全て欠陥は認められなかった。
In addition, the same kneaded material was injection molded into a shape of 30 mm φ x 20 mm, heated to 250°C in a nitrogen stream at a rate of 10°C/hour, held at 250°C for 20 hours, and then heated to 500°C at 10°C for 7 hours. Degreasing was carried out by raising the temperature at a rapid rate. The molded product after degreasing was in good condition with no defects observed.

また、上記脱脂体を焼結して評価したところ、密度3.
2g/cm’ 、室温強度105kg r 7mm 2
という良好な結果が得られた。
Furthermore, when the degreased body was sintered and evaluated, the density was 3.
2g/cm', room temperature strength 105kg r 7mm 2
Good results were obtained.

実施例2 アルミナ粉末に、ジアリルイソフタレート・プレポリマ
ー(分子ffi 8000、大阪曹達製) 48.0容
量%、ジイソデシルフタレート(DIDP)とブチルフ
タリルブチルグリコレート(BPBG)との1・1 (
容積比)混合物34.2容量%、パラフィン(融点50
℃)15.0容ffi 9に 5DCP 2.0容量 
9ciで調整したバインダ組成物を、粉末に対するバイ
ンダ組成物の合計添加量が45容量%となるように添加
し、70’Cの加熱下にて加圧ニーダ−で60分間混練
した。この混練物は、前述の構造(II)に相当する。
Example 2 Alumina powder was mixed with 48.0% by volume of diallyl isophthalate prepolymer (molecular ffi 8000, manufactured by Osaka Soda) and 1.1% of diisodecyl phthalate (DIDP) and butylphthalylbutyl glycolate (BPBG).
volume ratio) mixture 34.2% by volume, paraffin (melting point 50
°C) 15.0 volume ffi 9 to 5DCP 2.0 volume
A binder composition prepared at 9ci was added so that the total amount of the binder composition added to the powder was 45% by volume, and kneaded for 60 minutes in a pressure kneader while heating at 70'C. This kneaded material corresponds to the above-mentioned structure (II).

次に、上記混練物を30mmφX 20o+mtのベレ
ット状に射出成形し、次いて窒素中にて、室温から20
℃/時間で昇温し、250℃で10時間保持した後、5
0°C/時間で600℃まで昇温したところ、欠陥のな
い脱脂体が得られた。
Next, the above kneaded material was injection molded into a pellet shape of 30 mmφ
After increasing the temperature at ℃/hour and holding it at 250℃ for 10 hours,
When the temperature was raised to 600°C at a rate of 0°C/hour, a degreased body without defects was obtained.

実施例3 ステンレス粉末に、ジアリルフタレート・プレポリマー
(分子=Ioooo、大阪曹達製) 46.0容量q6
、ジオクチルフタレート(DIDP)とブチルフタリル
ブチルグリコレート(BPBG)とのに1(容積比)混
合物342容量%、パラフィン(融点50℃)150容
量%、ジペンタエリスリトールへキサアクリレート3.
8容量%、 DCP 2.0容量%て調整したバインダ
組成物を、粉末に対するバインダ組成物の合計添加量か
40容量%となるように添加し、7゜℃の加熱下にて加
圧ニーダ−で60分間混練した。
Example 3 Add diallyl phthalate prepolymer (molecule = Ioooo, manufactured by Osaka Soda) to stainless steel powder 46.0 volume q6
, mixture of dioctyl phthalate (DIDP) and butylphthalyl butyl glycolate (BPBG) (volume ratio) 342% by volume, paraffin (melting point 50°C) 150% by volume, dipentaerythritol hexaacrylate 3.
A binder composition prepared by adding 8% by volume and 2.0% by volume of DCP was added so that the total amount of the binder composition added to the powder was 40% by volume, and the mixture was heated in a pressure kneader at 7°C. The mixture was kneaded for 60 minutes.

この混練物は、前述の構造(n)に相当する。This kneaded material corresponds to the above-mentioned structure (n).

次に、上記混線物を30mmφX 20matのベレッ
ト状に射出成形し、次いでアルゴン気流中にて、室温か
ら20℃/時間で昇温し、250℃で10時間保持した
後、50℃/時間で600℃まで昇温したところ、欠陥
のない脱脂体が得られた。
Next, the above mixed wire was injection molded into a pellet shape of 30 mmφ x 20 mats, and then the temperature was raised from room temperature at 20°C/hour in an argon stream, held at 250°C for 10 hours, and then heated to 600°C at 50°C/hour. When the temperature was raised to ℃, a defatted body without defects was obtained.

実施例4 アルミナ粉末に、ジアリルイソフタレートプレポリマー
(分子量8000、大阪曹達製) 25.9容量%、ポ
リエチレンテレフタレート(PET)(分子ffi 4
000)16.1容量%、パラフィン(融点60℃) 
16.5容量%、DBP 38.5容量%、DCP 3
.0容量%で調整したバインダ組成物を、粉末に対する
バインダ組成物の合計添加量か45容量%となるように
添加し、70℃の加熱下にて加圧ニーダ−で60分間混
練した。
Example 4 Alumina powder was mixed with 25.9% by volume of diallyl isophthalate prepolymer (molecular weight 8000, manufactured by Osaka Soda) and polyethylene terephthalate (PET) (molecular ffi 4
000) 16.1% by volume, paraffin (melting point 60°C)
16.5% by volume, DBP 38.5% by volume, DCP 3
.. The binder composition adjusted to 0% by volume was added so that the total amount of the binder composition added to the powder was 45% by volume, and kneaded for 60 minutes in a pressure kneader under heating at 70°C.

これは、熱硬化性樹脂であるジアリルイソフタレート・
プレポリマーを熱可塑性樹脂であるPETと混合したも
ので、両者を合せて骨格形成材料とした場合の構造(I
I)に該当する混練物である。
This is a thermosetting resin called diallylisophthalate.
The structure (I
This is a kneaded material that falls under I).

次に、上記混練物を30+n+nφX 20mn+tの
ベレット状に射出成形し、大気中にて、室温から20℃
/時間で昇温し、250℃で10時間保持後、50℃/
時間で600℃まで昇温したところ、欠陥のない脱脂体
か得られた。
Next, the above kneaded material was injection molded into a pellet shape of 30 + n + nφ
/ hour, held at 250℃ for 10 hours, then heated to 50℃/hour.
When the temperature was raised to 600° C. for an hour, a degreased body with no defects was obtained.

実施例5 シリカ粉末に、不飽和ポリエステル(分子量3000 
、イソフタル酸、テトラヒドロフタル酸、無水マレイン
酸、プロピレングリコール等を主成分とするもの) 4
8.0容量%、ジオクチルフタレート(DOP)とDB
Pとの1=1(容積比)混合物34.2容量%、パラフ
ィン(融点50℃) 15.08二%、アクリル酸エス
テル(東亜合成化学工業株式会社製、商品名M−315
)  3.8容量%、DCP 1.0容量%て調整した
バインダ組成物を、粉末に対するバインダ組成物の合計
添加量が45容ffi %となるように添加し、90℃
の加熱下にて加圧ニーダ−で60分間混練した。
Example 5 Unsaturated polyester (molecular weight 3000
, isophthalic acid, tetrahydrophthalic acid, maleic anhydride, propylene glycol, etc.) 4
8.0% by volume, dioctyl phthalate (DOP) and DB
1=1 (volume ratio) mixture with P 34.2% by volume, paraffin (melting point 50°C) 15.082%, acrylic ester (manufactured by Toagosei Chemical Co., Ltd., trade name M-315)
) A binder composition prepared by adding 3.8% by volume and 1.0% by volume of DCP was added so that the total addition amount of the binder composition to the powder was 45% by volume, and the mixture was heated at 90°C.
The mixture was kneaded for 60 minutes in a pressure kneader under heating.

次に、上記混練物を30+n+nφX 20+nmtの
ベレット状に射出成形し、大気中にて、室温から20℃
/時間で昇温し、250℃で10時間保持した後、50
℃/時間で600℃まで昇温したところ、欠陥のない脱
脂体が得られた。
Next, the above-mentioned kneaded material was injection molded into a pellet shape of 30+n+nφ
/ hour, and after holding at 250℃ for 10 hours, 50℃
When the temperature was increased to 600° C./hour, a degreased body without defects was obtained.

実施例6 チタニア粉末に、ジアリルイソフタレート・プレポリマ
ー(分子JR8000、大阪曹達製) 28.3容量%
、DBP 46.5容量%、液状イソパラフィン系炭化
水素(出光石油化学株式会社製;商品名IP2835)
22.7容量%、ジターシャリ−ブチルパーオキサイド
2,5容量%で調整したバインダ組成物を、粉末に対す
るバインダ組成物の合計添加量が51容量%となるよう
に添加し、加圧ニーダ−で混練した。
Example 6 28.3% by volume of diallyl isophthalate prepolymer (Molecular JR8000, manufactured by Osaka Soda) was added to titania powder.
, DBP 46.5% by volume, liquid isoparaffinic hydrocarbon (manufactured by Idemitsu Petrochemical Co., Ltd.; trade name IP2835)
A binder composition prepared by adding 22.7% by volume and 2.5% by volume of ditertiary-butyl peroxide was added so that the total amount of binder composition added to the powder was 51% by volume, and kneaded with a pressure kneader. did.

この混練物は、ジアリルイソフタレート・プレポリマー
がDBPに溶解した溶液と、液状イソパラフィン系炭化
水素溶剤との間て相分離を起こし、ジアリルイソフタレ
ート・プレポリマーの溶解したDBPに富んた液相が粉
体の周辺に集って、強度保持成分を構成し、構造(II
)を形成する。
In this kneaded product, phase separation occurs between a solution of diallylisophthalate prepolymer dissolved in DBP and a liquid isoparaffinic hydrocarbon solvent, and a liquid phase rich in DBP in which diallylisophthalate prepolymer is dissolved forms a liquid phase rich in DBP. It gathers around the powder, forms a strength-retaining component, and forms a structure (II
) to form.

次に、上記混練物を30mmφX 20mmtのベレッ
ト状に射出成形し、大気中にて、室温からIO”c /
時間で昇温し、250℃で10時間保持した後、50”
C/時間で600℃まで昇温したところ、欠陥のない脱
脂体が得られた。
Next, the above-mentioned kneaded product was injection molded into a pellet shape of 30 mmφ x 20 mmt, and was heated in the atmosphere from room temperature to IO”c /
After heating at 250℃ for 10 hours,
When the temperature was raised to 600°C at a rate of C/hour, a degreased body without defects was obtained.

[発明の効果コ 以上説明したように本発明によれば、脱脂温度下での強
度を高めた上で、正常な脱脂を行うことが可能なバイン
ダ組成物を提供することが可能となる。よって、多量の
バインダ組成物を使用して行う可塑化成形法によって、
健全な肉厚成形体を得ることが可能となる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to provide a binder composition that has increased strength at the degreasing temperature and is capable of normal degreasing. Therefore, by the plasticization molding method using a large amount of binder composition,
It becomes possible to obtain a healthy thick-walled molded body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)はそれぞれ本発明のバインダ組成
物を用いて成形した成形体の構造例を示す図、第2図は
第1図に示した構造の曲げ強度をそれぞれ示すグラフで
ある。 1・・・・・・粉末、2・・・・・・強度保持成分と易
脱脂成分とが均一に分散あるいは溶解した成分、3・・
・・・・強度保持成分、4・・・・・・易脱脂成分。 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 − N’)    ?
Figures 1 (a) to (C) are diagrams each showing structural examples of molded bodies molded using the binder composition of the present invention, and Figure 2 is a graph showing the bending strength of the structure shown in Figure 1. It is. 1... Powder, 2... Component in which the strength-retaining component and easily degreasable component are uniformly dispersed or dissolved, 3...
...Strength retaining component, 4...Easy degreasing component. Applicant Toshiba Corporation Representative Patent Attorney Suyama Sa - N') ?

Claims (5)

【特許請求の範囲】[Claims] (1)粉末に対して所定形状を付与する粉末成形用バイ
ンダ組成物において、 化学的または物理的に結合して粉体同志を連結させる骨
格形成用有機材料と、この有機材料が実質的な強度を保
持している温度領域で実質的な部分が除去され得る空隙
形成用有機材料とを含有し、前記骨格形成用有機材料は
20容量%〜70容量%の範囲で含まれることを特徴と
する粉末成形用バインダ組成物。
(1) In a powder molding binder composition that imparts a predetermined shape to powder, a skeleton-forming organic material that chemically or physically bonds the powders together, and this organic material has substantial strength. and a void-forming organic material that can be substantially removed in a temperature range where the structure is maintained, and the skeleton-forming organic material is contained in a range of 20% to 70% by volume. Binder composition for powder molding.
(2)請求項1記載の粉末成形用バインダ組成物におい
て、 前記骨格形成用有機材料は、熱硬化性有機物質を主成分
として構成されることを特徴とする粉末成形用バインダ
組成物。
(2) The binder composition for powder molding according to claim 1, wherein the organic material for forming a skeleton is composed mainly of a thermosetting organic substance.
(3)請求項1記載の粉末成形用バインダ組成物におい
て、 前記粉末成形用バインダ組成物は、粉末の可塑化成形に
用いられることを特徴とする粉末成形用バインダ組成物
(3) The binder composition for powder molding according to claim 1, wherein the binder composition for powder molding is used for plasticization molding of powder.
(4)粉末に、バインダ組成物によって所定形状を付与
した粉末成形体において、 前記バインダ組成物として、請求項1記載の粉末成形用
バインダ組成物を、前記粉末成形体に対して40容量%
〜60容量%の範囲で用い、骨格形成用有機材料を前記
粉末の近傍に配すると共に、この有機材料間を相互に結
合させて該粉末を含むスケルトン構造を形成し、かつこ
のスケルトン構造の間隙に空隙形成用有機材料を配した
構造を有することを特徴とする粉末成形体。
(4) In a powder molded body in which a predetermined shape is imparted to powder with a binder composition, the binder composition for powder molding according to claim 1 is added to the powder molded body in an amount of 40% by volume as the binder composition.
~60% by volume, the organic material for forming a skeleton is placed near the powder, the organic materials are bonded to each other to form a skeleton structure containing the powder, and the gaps between the skeleton structure are A powder compact characterized by having a structure in which a void-forming organic material is arranged on the inside.
(5)粉末とバインダ組成物との混合物を所定形状に成
形するに際し、 前記バインダ組成物として、請求項1記載の粉末成形用
バインダ組成物を用い、 かつ骨格形成用有機材料を第1の空隙形成用有機材料に
溶解し、その溶液に前記骨格形成用有機材料に対して非
溶媒である第2の空隙形成用有機材料を適当量加え、前
記骨格形成用有機材料を空隙形成用有機材料から析出さ
せ、この状態でのバインダ組成物と粉末との混合物を所
定形状に成形することを特徴とする粉末成形体の製造方
法。
(5) When molding a mixture of a powder and a binder composition into a predetermined shape, the binder composition for powder molding according to claim 1 is used as the binder composition, and the organic material for forming a skeleton is used in the first cavity. A suitable amount of a second pore-forming organic material, which is a non-solvent for the skeleton-forming organic material, is added to the solution, and the skeleton-forming organic material is dissolved in the pore-forming organic material. 1. A method for producing a powder compact, which comprises precipitating the binder composition and molding the mixture of the powder into a predetermined shape.
JP2313411A 1990-11-19 1990-11-19 Binder composition for powder forming, powder-formed article produced by using the same and production of powder-formed article Pending JPH04187557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2313411A JPH04187557A (en) 1990-11-19 1990-11-19 Binder composition for powder forming, powder-formed article produced by using the same and production of powder-formed article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2313411A JPH04187557A (en) 1990-11-19 1990-11-19 Binder composition for powder forming, powder-formed article produced by using the same and production of powder-formed article

Publications (1)

Publication Number Publication Date
JPH04187557A true JPH04187557A (en) 1992-07-06

Family

ID=18040960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2313411A Pending JPH04187557A (en) 1990-11-19 1990-11-19 Binder composition for powder forming, powder-formed article produced by using the same and production of powder-formed article

Country Status (1)

Country Link
JP (1) JPH04187557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524220A (en) * 2017-07-06 2020-08-13 エルジー・ケム・リミテッド Metal foam manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524220A (en) * 2017-07-06 2020-08-13 エルジー・ケム・リミテッド Metal foam manufacturing method
US11358219B2 (en) 2017-07-06 2022-06-14 Lg Chem, Ltd. Preparation method for metal foam

Similar Documents

Publication Publication Date Title
US5972272A (en) Unsaturated polyester resin composition and process for molding the composition
HRP920442A2 (en) Compositions based on unsaturated polyester resins and new antishrink additives
JPH04187557A (en) Binder composition for powder forming, powder-formed article produced by using the same and production of powder-formed article
CA1056083A (en) Quick-ripening unsaturated-polyester molding materials
JP4215341B2 (en) Low shrinkage agent, thermosetting resin composition containing the same, and molded product thereof
JP4727441B2 (en) Black vinyl ester resin molding material
KR101775749B1 (en) Modifier for rubber composition, manufacturing method thereof and rubber composition comprising the modifier
EP0243505B1 (en) Low-shrinkage unsaturated polyester resin composition
JPH01234434A (en) Bulk molding compound composition and molded article produced therefrom
JPH0711010B2 (en) COMPOSITION FOR METAL POWDER INJECTION MOLDING, SINTERED METAL MEMBER AND PROCESS FOR PRODUCING SAID MEMBER
JPH04311761A (en) Unsaturated polyester resin composition having low shrink property
CA1084190A (en) Semisolid polymerizable compositions, method of preparing the same and thermoset products thereof
JPH073170A (en) Production of thermosetting resin molding
WO1993017054A1 (en) Inorganic peroxygen initiator and processes for using same
JPH08295794A (en) Unsaturated polyester resin composition
JPH09188771A (en) Bulk molding compound
JPS5844691B2 (en) Fuhouwa polyester material
JPH09188770A (en) Sheet molding compound
JPS62283148A (en) Low shrinkable unsaturated polyester resin composition
JPH09194708A (en) Production of unsaturated polyester resin composition and unsaturated polyester resin molding
JPH04170350A (en) Resin composition for scagliola for press molding
JPS63177940A (en) Production of resin cured casting mold
JPS6015658B2 (en) Unsaturated polyester resin composition
JPS63319248A (en) Production of sintered ceramic
JPH0229623B2 (en)