JPH04186807A - Magnetic film - Google Patents

Magnetic film

Info

Publication number
JPH04186807A
JPH04186807A JP31717890A JP31717890A JPH04186807A JP H04186807 A JPH04186807 A JP H04186807A JP 31717890 A JP31717890 A JP 31717890A JP 31717890 A JP31717890 A JP 31717890A JP H04186807 A JPH04186807 A JP H04186807A
Authority
JP
Japan
Prior art keywords
magnetic
film
thin film
oxidation
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31717890A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP31717890A priority Critical patent/JPH04186807A/en
Publication of JPH04186807A publication Critical patent/JPH04186807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To form the title magnetic film having the enhanced characteristics as a magneto-optical recording medium further avoiding the thermal cracking and oxidation due to the heating step using laser beams by a method wherein a transparent and non-magnetic oxidation preventive film is provided on the surface of a specific magnetic body thin film having the vertical magnetic anisotropy formed directly on a non-magnetic supporting body or through the intermediary of a reflected layer. CONSTITUTION:The title magnetic film is columnarly structured of a component mainly comprising metallic (M) fine particles selected from Fe, Co and Ni formed directly on a non-magnetic supporting body or through the intermediary of a reflected layer, a non-magnetic body having an M-O coupling and a C axially oriented crystalline nitride represented by MxN2<X<=3 while a transparent non-magnetic oxidation preventive film is provided on the surface of a magnetic body thin film having the vertical magnetic anisotropy. For example, an Al film about 1500Angstrom thick is formed on a polycarbonate disc-made basic body using a vacuum evaporation device and then the magnetic body thin film also about 1500Angstrom thick is formed using an ion beam sputtering device as well as Fe, N2+Ar and air respectively for a target material, an ionization gas and a leading-in gas. Finally, an SiAlON film about 1500Angstrom thick is provided on the magnetic body thin film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁性膜に関し、詳しくは、光磁気記録媒体とし
て特に有用であり、更には、レーザー光を利用しないで
記録・再生を行なう磁気記録媒体や、その他、書換え可
能なホログラフィ−用メモリ材料としても適用可能な磁
性膜に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magnetic film, and more particularly, it is particularly useful as a magneto-optical recording medium, and more particularly, it is a magnetic recording medium that performs recording and reproduction without using laser light. The present invention relates to a magnetic film that can be used as a medium or as a rewritable memory material for holography.

〔従来の技術〕[Conventional technology]

磁性膜(磁性体薄膜)を適当な基板(非磁性支持体)上
に形成したものは記録媒体(磁気記録媒体、光磁気記録
媒体)として利用されるている。殊に、光磁気記録方式
に採用される記録媒($(光磁気記録媒体)には、記録
感度が高いこと、磁気光学効果(ファラデー効果、カー
効果)が大きいこと、大面積のものが均質かつ安価に製
作できる二と、安定性にすぐれていること等が要求され
る。これに加えて、磁気光学効果の大きさは磁化の向き
と光の進行方向とが平行なとき最も大きくなり、また、
面に垂直な磁化という条件は垂直磁気記録の要件も満た
しているため高密度記録にも適する。従って、媒体の面
に垂直に磁化をもつ材料が選択されねばならない。
A magnetic film (magnetic thin film) formed on a suitable substrate (non-magnetic support) is used as a recording medium (magnetic recording medium, magneto-optical recording medium). In particular, the recording medium ($ (magneto-optical recording medium)) used in the magneto-optical recording method has high recording sensitivity, a large magneto-optic effect (Faraday effect, Kerr effect), and a large area that is homogeneous. In addition, the magneto-optic effect is greatest when the direction of magnetization and the direction of light propagation are parallel. Also,
The condition of magnetization perpendicular to the plane also satisfies the requirements for perpendicular magnetic recording, making it suitable for high-density recording. Therefore, a material must be selected that has magnetization perpendicular to the plane of the medium.

こうした要請から、光磁気記録媒体における磁性膜の材
料として(])垂直磁気記録媒体で採用されている磁性
材料(代表的な六方晶最密充填(hcp)構造のフグネ
トプラムバイト型Baフェライ)・)を使用したり、(
2)MnBi、MnCuB1.MnGaGe、 MnA
QGe、PtCo(以上多結晶):(YBi)3(Fe
Ga)so+□(単結晶) ;GdCo、GdFe、 
TbFe、GdTbFe、TbDyFe(以上アモルフ
ァス)などが使用されたりしている。
Due to these demands, the magnetic material used in perpendicular magnetic recording media (Fugenetoplumbite type Ba ferrite with a typical hexagonal close-packed (HCP) structure) is used as the material for the magnetic film in magneto-optical recording media.・) or use (
2) MnBi, MnCuB1. MnGaGe, MnA
QGe, PtCo (polycrystalline): (YBi)3(Fe
Ga) so+□ (single crystal); GdCo, GdFe,
TbFe, GdTbFe, TbDyFe (amorphous), etc. are used.

だが、前記(])(2)の磁性膜は、その材料によって
は、製膜が低基板温度で行ないにくかったり、半導体レ
ーザーの波長域(例えば780n[11,830nmな
ど)では大きな磁気光学効果を得ることかできなかった
り、高いS/N比が得られなかったり、或いは、安定性
に不安があったりする、等のいずれかの欠点を有してい
る。
However, depending on the material used, the magnetic films in (]) and (2) above may be difficult to form at low substrate temperatures, or may have a large magneto-optic effect in the wavelength range of semiconductor lasers (for example, 780n [11,830nm, etc.)]. It has some drawbacks, such as not being able to obtain high signal-to-noise ratios, not being able to obtain high signal-to-noise ratios, or having concerns about stability.

かかる不都合な現象のない磁性材料の開発が進められて
きた結果、近時は、窒化鉄が注目されている。この窒化
鉄は錆びることなく、強磁性体であり、しかも基板に対
して垂直方向に磁気異方性を有するため録音テープ、と
デオテーブ、コンピュータ用の大容量記憶装置などの高
密度磁気記録媒体に応用することが提案されている(特
開昭55−33093号、同59−228705号、同
60−7602]号、同61−110328号、同62
−103821号などの公報)。
As a result of advances in the development of magnetic materials free from such inconvenient phenomena, iron nitride has recently attracted attention. This iron nitride does not rust, is ferromagnetic, and has magnetic anisotropy perpendicular to the substrate, so it is used as high-density magnetic recording media such as recording tapes, audiotapes, and mass storage devices for computers. It has been proposed to apply (JP-A No. 55-33093, No. 59-228705, No. 60-7602), No. 61-110328, No. 62
Publications such as No.-103821).

しかし、これまで提案されてきた窒化物磁性材料は、主
として、その垂直磁気異方性に注目した垂直磁気記録媒
体に対してであって、光磁気記録媒体への応用は大方見
送られているのが実情である。
However, the nitride magnetic materials that have been proposed so far have mainly been used for perpendicular magnetic recording media focusing on their perpendicular magnetic anisotropy, and their application to magneto-optical recording media has largely been abandoned. is the reality.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、膜構造を制御することによって光磁気
記録媒体としての特性を向」ニさせ、更に、レーサー光
を用いた加熱による熱分解や酸化が起らない磁性膜を提
供するものである。本発明の他の目的は、特にファラデ
ー効果による再生効率が高められた磁性膜を提供するも
のである。
An object of the present invention is to improve the characteristics of a magneto-optical recording medium by controlling the film structure, and to provide a magnetic film that does not undergo thermal decomposition or oxidation due to heating using laser light. be. Another object of the present invention is to provide a magnetic film with improved reproduction efficiency, particularly due to the Faraday effect.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明の磁性膜は、非磁性支持体上に直接又は反射層を
介して形成されるFe、co及びNiから選ばれる金属
(M)の微粒子と1M−0結合を有する非磁性体と、M
xN(2<X≦3)で表わされるC軸配向結晶の窒化物
とを主成分とした柱状構造を呈し垂直磁気異方性を有す
る磁性体薄膜の表面に透明で非磁性の酸化防止膜が設け
られてなることを特徴としている。
The magnetic film of the present invention includes a nonmagnetic material having a 1M-0 bond with fine particles of a metal (M) selected from Fe, Co, and Ni formed directly or via a reflective layer on a nonmagnetic support;
A transparent non-magnetic anti-oxidation film is provided on the surface of a magnetic thin film having a columnar structure mainly composed of nitride of C-axis oriented crystals expressed by xN (2<X≦3) and having perpendicular magnetic anisotropy. It is characterized by being set up.

ちなみに、本発明者は前記酸化防止膜を設けないかたち
の磁性体薄膜を先に提案した(特願平1−135575
号)。その磁性膜は非磁性支持体上に形成されるFe、
 Co及びNiから選ばれる金属(M)の少なくとも1
種の窒化物(MxN(2<x≦3)〕を主成分とし柱状
構造を呈しており、かつ、その柱状構造内にはアモルフ
ァス状非磁性体に包囲されたC軸配向の該金属窒化物を
有している、というものである。
Incidentally, the present inventor previously proposed a magnetic thin film without the above-mentioned oxidation prevention film (Japanese Patent Application No. 1-135575).
issue). The magnetic film is made of Fe formed on a non-magnetic support,
At least one metal (M) selected from Co and Ni
It has a columnar structure mainly composed of seed nitride (MxN (2<x≦3)), and within the columnar structure, the C-axis oriented metal nitride is surrounded by an amorphous nonmagnetic material. It is said that it has.

そして、この先に提案した磁性体薄膜の構造は、多少の
表現のちがいはあるものの、本発明の酸化防止膜を除い
たところの磁性体薄膜は実質的に又は一部において同一
である。
The structure of the magnetic thin film proposed above is substantially or partially the same except for the anti-oxidation film of the present invention, although there are some differences in expression.

だが、前記光に提案した磁性体薄膜を直接又は反射層を
介して非磁性支持体上で設けた光磁気記録媒体は多数回
の記録・再生で徐々にではあるがC/N比が低下するこ
とが認められ、この度、その原因がレーザー光などの加
熱による磁性膜の酸化によることを確めた。本発明はそ
うしたことの認識のうえにたってなされたものである。
However, in the magneto-optical recording medium in which the magnetic thin film proposed above is provided on a non-magnetic support directly or via a reflective layer, the C/N ratio gradually decreases after multiple recording and reproducing operations. We have now confirmed that the cause of this is oxidation of the magnetic film due to heating with laser light or the like. The present invention has been made based on this recognition.

以下に、本発明をさらに詳細に説明するが、本発明に係
る磁性体薄膜は、一般には直接又は反射層を介して非磁
性支持体上に形成されて、主として光磁気記録媒体に供
されるが、前記磁性体薄膜と前記非磁性支持体との間に
、前記反射層に代えて、アモルファス希土類・遷移元素
合金薄膜を形成することもできる。
The present invention will be explained in more detail below. Generally, the magnetic thin film according to the present invention is formed on a non-magnetic support directly or via a reflective layer, and is mainly used for magneto-optical recording media. However, instead of the reflective layer, an amorphous rare earth/transition element alloy thin film may be formed between the magnetic thin film and the nonmagnetic support.

ところで、先に従来技術のところで触れた特開昭59−
228705号公報には、垂直磁気異方性を有する六方
晶系窒化鉄を主体とする磁気記録媒体が記載されている
が、そこにはNi、Co等を]Oalomic%以下の
範囲で含有させること、磁性膜中の窒素含有率は20〜
32alomic%が好ましいこと、等が明らかにされ
ている。そして、後者の磁性膜中の窒素含有量が20−
20−32alo%と制限しているのは、膜全体が窒化
鉄(Fe3N及び/又はFe2N)としているからに他
ならない。また、この文献には熱に対する特性やキュリ
ー温度(磁化が消失する温度)についても明記されてお
らず、ただ、膜構造はco−Ct膜のように膜面に垂直
に結晶粒子が成長した柱状構造が望ましい旨の記述にと
どまっている。
By the way, the Japanese Patent Application Laid-Open No. 1983-1983, which was mentioned earlier in the section on the prior art,
Publication No. 228705 describes a magnetic recording medium mainly made of hexagonal iron nitride having perpendicular magnetic anisotropy, which contains Ni, Co, etc. in a range of ]Oalomic% or less. , the nitrogen content in the magnetic film is 20~
It has been clarified that 32alomic% is preferable. The nitrogen content in the latter magnetic film is 20-
The reason why it is limited to 20-32 alo% is simply because the entire film is made of iron nitride (Fe3N and/or Fe2N). Furthermore, this document does not specify the thermal characteristics or the Curie temperature (temperature at which magnetization disappears), but the film structure is columnar with crystal grains grown perpendicular to the film surface, like the co-Ct film. It merely states that the structure is desirable.

六方晶系窒化鉄(六方晶系窒化コバルト、大方晶系窒化
二ソケルについても同じ)はその膜が加熱されていくと
200〜300℃にキュリー温度をもつが、キュリー温
度以上に加熱すると膜中から窒素が抜は出してα−Fe
となり垂直磁化膜から水平磁化膜へと移行してゆき、飽
和磁化も2〜3倍と大ぎくなっていく。例えば、窒化鉄
は約295℃にキュリー温度(Tc)を示すが、この窒
化鉄がキュリー温度(Tc)以上に加熱されると飽和磁
化は著しく増大する。この飽和磁化の増大した窒化鉄膜
のX線回折を行なうと、MxNの6面である(002)
の回折ピークがなくなり、α−Feの回折ピークが現わ
れてくる。この状態にある窒化鉄膜は、磁気ヘットを用
いて加熱によらない記録・再生・消去のだめの垂直磁気
記録媒体には利用可能であっても、レーザー光で加熱し
記録する光磁気記録媒体としては有用であるとはいえな
い。
Hexagonal iron nitride (the same applies to hexagonal cobalt nitride and macrogonal disokel nitride) has a Curie temperature of 200 to 300°C when its film is heated, but when heated above the Curie temperature, Nitrogen is extracted from α-Fe
As a result, the perpendicular magnetization film shifts to the horizontal magnetization film, and the saturation magnetization also increases by two to three times. For example, iron nitride exhibits a Curie temperature (Tc) of about 295° C., but when this iron nitride is heated above the Curie temperature (Tc), its saturation magnetization increases significantly. When this iron nitride film with increased saturation magnetization is subjected to X-ray diffraction, it is found that it has 6 planes of MxN (002).
The diffraction peak of α-Fe disappears, and the diffraction peak of α-Fe appears. Although an iron nitride film in this state can be used as a perpendicular magnetic recording medium that uses a magnetic head for recording, reading, and erasing without heating, it cannot be used as a magneto-optical recording medium that is heated and recorded with laser light. cannot be said to be useful.

それにも拘らず、本発明に係る磁性体薄膜にそうした不
都合がみられないのは、特定な膜構造が採用されたため
、加熱によって膜中から窒素が抜けないか又は抜けにく
いことを示唆している。
Nevertheless, the fact that such inconveniences are not observed in the magnetic thin film according to the present invention suggests that due to the adoption of a specific film structure, nitrogen cannot escape from the film or is difficult to escape from the film by heating. .

かかる現象は強磁性金属(Fe、Co、Ni)の六方晶
系窒化物に各種の元素を加えて飽和磁化を減少させ、よ
り垂直磁気異方性磁界(14k)を高めることの検討の
上に見出されたものであり、膜構造が非磁性支持体の表
面の直上から形成された柱状構造を有し、窒化物[Mx
N(2<x≦3)〕はC軸配向し、更に、前記元素に代
えてM−0結合を有する非磁性体が採用されることによ
ってなされることが明らかとなった。
This phenomenon was discovered by adding various elements to hexagonal nitrides of ferromagnetic metals (Fe, Co, Ni) to reduce the saturation magnetization and further increase the perpendicular magnetic anisotropy field (14k). It was discovered that the film structure has a columnar structure formed directly above the surface of the non-magnetic support, and the film structure is made of nitride [Mx
N (2<x≦3)] is C-axis oriented, and it has become clear that this can be achieved by employing a nonmagnetic material having an M-0 bond in place of the above element.

前記式(Mx(2<x≦3)〕で表わされた窒化物はC
軸配向の結晶子(CBs+allite尾結晶の粒子)
であり、このものの大きさは約5OAであり、柱状構造
の柱の径は約150〜300A<らいである。個々の窒
化物粒子はE和室化物の結晶であり、C軸配向してし入
る。柱状構造内部では、窒化物の配向結晶は磁気的には
密につながっている。なお、面間隙は、窒化鉄2,19
人、窒化コバルト2.]7A、窒化ニッケル2、]4A
である。
The nitride represented by the above formula (Mx (2<x≦3)) is C
Axially oriented crystallites (CBs + allite tail crystal particles)
The size of this thing is about 5 OA, and the diameter of the pillars of the columnar structure is about 150 to 300 Å. Each nitride particle is a crystal of E-Japanese compound, and is oriented along the C axis. Inside the columnar structure, the oriented crystals of nitride are closely connected magnetically. Note that the surface gap is iron nitride2,19
People, cobalt nitride2. ]7A, nickel nitride 2, ]4A
It is.

実際に、膜断面を数百万倍の倍率でTEM(透過型電子
顕微鏡)で見ると柱状形状は明確に認められる。なおF
e、 Co、 Ni等強磁性金属元素はそのもの自体の
微粒子及びM−0等非磁性の結合を有して柱状構造中に
含有されている。
In fact, when a cross section of the membrane is viewed with a TEM (transmission electron microscope) at a magnification of several million times, a columnar shape is clearly recognized. Furthermore, F
Ferromagnetic metal elements such as e, Co, and Ni are contained in the columnar structure with their own fine particles and nonmagnetic bonds such as M-0.

このような構造が採用されることによって、反磁界がキ
ャンセルされやすくなり、レーザー光の透過性が向上し
、成長した個々の柱の間の界面のために熱は横方向より
縦方向に広がりやすくなって記録領域の面方向への広が
りが少なくなり、さらに高密度な記録が行なえるように
なる。
By adopting such a structure, the demagnetizing field is easily canceled, the transparency of the laser beam is improved, and the interface between the individual pillars that have grown allows heat to spread more vertically than horizontally. As a result, the extent of the recording area in the plane direction is reduced, and even higher density recording can be performed.

また、本発明に係る磁性体薄膜によれば、前記MxN(
2<x≦3)で表わされる窒化物はその周囲がM−0の
結合を有する非磁性体1bで覆われた形態を呈している
ので、加熱によって膜中から窒素が抜けることがないか
又は殆んどなく、従って、飽和磁化に大きな変化をもた
らすようなキュリー温度を示さないが、加熱によって抗
磁力は低下するので、これら現象を利用してレーザー光
で加熱し、磁界を印加して書込むことができる光磁気記
録材料となる。
Further, according to the magnetic thin film according to the present invention, the MxN(
Since the nitride represented by 2<x≦3) is surrounded by a non-magnetic material 1b having an M-0 bond, nitrogen will not be released from the film by heating. Therefore, it does not exhibit a Curie temperature that would cause a large change in saturation magnetization, but coercive force decreases with heating, so these phenomena can be used to heat with laser light and write by applying a magnetic field. It becomes a magneto-optical recording material that can be embedded.

垂直磁気異方性磁界(Hk)は、これまでは例えば4K
Oe程度が最大値といわれていたが、本発明における磁
性体薄膜のような膜構造が採用さればその飽和磁化は大
幅に減少し、従って、垂直磁気異方性磁界(Hk)は4
KOe以上となり、特にIhN(2<x≦3)のうちの
強磁性金属M(Fe、Co、Ni)成分の割合を多くし
ていけば5KOe以上の値を容易に得ることができる。
Until now, the perpendicular magnetic anisotropy field (Hk) was, for example, 4K.
It was said that the maximum value was around Oe, but if a film structure like the magnetic thin film of the present invention is adopted, the saturation magnetization will be significantly reduced, and therefore the perpendicular magnetic anisotropy field (Hk) will be 4.
In particular, if the ratio of the ferromagnetic metal M (Fe, Co, Ni) component in IhN (2<x≦3) is increased, a value of 5KOe or more can be easily obtained.

磁性体薄膜の膜厚は500八〜1μsが適当であり、好
ましくは100OA〜3000人である。製膜には各種
PVD、 CVD法が用いられるか、特にイオンヒーム
スパノタ法が好ましい。
The appropriate thickness of the magnetic thin film is 5,008 to 1 μs, preferably 100 to 3,000 μs. Various PVD and CVD methods may be used for film formation, and ion heat spanometry is particularly preferred.

本発明に係る磁性体薄膜は、上記のような構成が採用さ
れたことにより、熱的安定性が更に向上しているのが認
められる。その理由は、必ずしも明らかでないが、 (i)M−0結合を有する非磁性体の存在の為に結晶成
長が抑えられること、 (■)高配向性をとった結晶部分は磁歪が小さくなるこ
と などが考えられる。
It is recognized that the thermal stability of the magnetic thin film according to the present invention is further improved by employing the above configuration. The reasons for this are not necessarily clear, but (i) crystal growth is suppressed due to the presence of a nonmagnetic material with M-0 bonds, and (■) magnetostriction is reduced in highly oriented crystal parts. etc. are possible.

この磁性体薄膜を光磁気記録材料として用いる場合、先
に触れたように、磁性体薄膜に記録時の加熱・冷却をく
り返すと、比較的安定であると言っても酸化が進むこと
がある。しかし真空中ではこの酸化が進まなくなり、更
に磁性体薄膜にノくノシベーション膜を付与すれば酸化
の進まないことがわかった。従って、この膜(酸化防止
膜)は透明性が高く、密度が高くて酸素を通さず、かつ
、密着性の良好なものが望ましく、例えば、一般にノく
ソンヘーショ膜材料として用いられているTie、Ti
0N、AQSiO,TiN、 AQS iN、 BN、
 SiN、 AflN、 A!LSiON、 S iO
,S iON、5i02.Cr5iNなどで形成される
のが有利である。
When using this magnetic thin film as a magneto-optical recording material, as mentioned earlier, if the magnetic thin film is repeatedly heated and cooled during recording, oxidation may progress even though it is relatively stable. . However, it was found that this oxidation does not proceed in a vacuum, and that oxidation does not proceed if a nonsivation film is further applied to the magnetic thin film. Therefore, it is desirable that this film (antioxidant film) has high transparency, high density, does not allow oxygen to pass through, and has good adhesion.For example, Tie, which is generally used as a film material, Ti
0N, AQSiO, TiN, AQS iN, BN,
SiN, AflN, A! LSiON, SiO
, S iON, 5i02. Advantageously, it is made of Cr5iN or the like.

また、このものの膜厚は100A〜100OOA好まし
くは500〜300OAが適当であり、製膜法としては
スノくツタ法、蒸着法、イオンブレーティング法等これ
らに限定されない。
Further, the film thickness of this material is suitably 100 Å to 100 OA, preferably 500 to 300 OA, and the film forming method includes, but is not limited to, the slat vine method, the vapor deposition method, the ion blating method, and the like.

実際に本発明に係る磁性膜を製膜するには、非磁性支持
体上に直接又は反射層を介して磁性体薄膜を形成し、更
にその上に酸化防止膜を形成せしめればよい。なお、磁
性体薄膜の製膜法は前記のとおりであるが、その際、導
入ガスとして空気を用いてもよいが、CO□ガスを用い
N2、A「のイオン化ガスの総ガス圧力を最適化するこ
とによって。
In order to actually form the magnetic film according to the present invention, it is sufficient to form a magnetic thin film directly or via a reflective layer on a non-magnetic support, and further form an oxidation-preventing film thereon. The method for forming the magnetic thin film is as described above, and although air may be used as the introduced gas, CO□ gas may be used to optimize the total gas pressure of the ionized gases of N2 and A. By.

所望の膜構造を得ることができる。A desired membrane structure can be obtained.

かくして製膜されたFe、Co及び/又はNiの微粒子
と、これら金属(M)−酸素結合をもつ非磁性成分とを
E相MIN(2<1≦3、M:Fe、 Co又はNi)
とを有する柱状磁性体薄膜は、耐熱性か大幅に向上して
おり、膜は緻密で耐摩擦特性、耐蝕性が良好で、機械的
にも化学的にも安定なものとなっているうえ、その磁性
体薄膜の表面が酸化防止膜で被覆されているので、加熱
による磁性体薄膜の酸化が有効に阻止される。
The Fe, Co and/or Ni fine particles thus formed and the non-magnetic component having these metal (M)-oxygen bonds are combined into an E-phase MIN (2<1≦3, M: Fe, Co or Ni).
The columnar magnetic thin film has significantly improved heat resistance, is dense, has good friction and corrosion resistance, and is mechanically and chemically stable. Since the surface of the magnetic thin film is coated with an oxidation-preventing film, oxidation of the magnetic thin film due to heating is effectively prevented.

非磁性体支持体3にはプラスチックフィルム(ポリイミ
ド、ポリアミド、ポリエーテルサルホン等の耐熱性プラ
スチックフィルムやポリエチレンテレフタレート、ポリ
塩化ビニル、三酢酸セルロース、ポリカーボネート、ポ
リメチルメタクリレートなど)、セラミック、金属、ガ
ラスなどが用いられ、その形態としては例えばフィルム
状、テープ状、シート状、ディスク状、カート状、ドラ
ム状などである。
The non-magnetic support 3 is made of plastic film (heat-resistant plastic film such as polyimide, polyamide, polyethersulfone, polyethylene terephthalate, polyvinyl chloride, cellulose triacetate, polycarbonate, polymethyl methacrylate, etc.), ceramic, metal, glass. The shapes include, for example, film, tape, sheet, disk, cart, and drum shapes.

反射層はAu、 AQ、 Ag、PL、 CT、Nd、
 Ge、 Rh、 Cu、TiNなどの材料を用い、電
子ヒーム(EB)蒸着法等の各種蒸着法やイオンブーテ
ィング、スパフタリング、PVD法、CVD法などの薄
膜形成法により製膜される。反射層の厚さは1μs以下
好ましくは0.05−0.5/j11<らいが適当であ
る。
The reflective layer is Au, AQ, Ag, PL, CT, Nd,
The film is formed using materials such as Ge, Rh, Cu, and TiN by various evaporation methods such as electron beam (EB) evaporation, and thin film formation methods such as ion booting, sputtering, PVD, and CVD. The thickness of the reflective layer is preferably 1 .mu.s or less, preferably 0.05-0.5/j11<.

なお、酸化防止膜の上面又は磁性体薄膜の下面に誘電体
層(S102、TlO2、窒化シリコン、窒化アルミニ
ウム、アモルファス51などの薄膜)を設けてエンハン
ス効果を出すようにしてもよい。
Note that a dielectric layer (a thin film of S102, TlO2, silicon nitride, aluminum nitride, amorphous 51, etc.) may be provided on the upper surface of the anti-oxidation film or the lower surface of the magnetic thin film to produce an enhancement effect.

〔実施例〕〔Example〕

次に実施例及び比較例を示すが、本発明磁性膜はこの実
施例に限られるものではない。
Next, Examples and Comparative Examples will be shown, but the magnetic film of the present invention is not limited to these Examples.

実施例1 真空蒸着装置を用いポリカーボネートディスク基体上に
厚さ約150OAのAflを製膜した後、二のAQ模膜
上イオンビームスパッタ装置を用い下記の条件で厚さ約
150OAの磁性体薄膜を製膜した。
Example 1 After forming an Afl film with a thickness of about 150 OA on a polycarbonate disk substrate using a vacuum evaporation device, a magnetic thin film with a thickness of about 150 OA was formed on the second AQ pattern using an ion beam sputtering device under the following conditions. A film was formed.

ターゲット材料  Fe(99,99%)ターゲットと
基板との距M15II1m基体回転速度  2+pm 真空槽の背圧  I X 1O−6Tartイオン銃電
圧  9.5KV イオン銃電流  2.5mA イオン化ガス  N2 (25%)+A+(75%)導
入ガス(圧力) 空気(l X 10””Torr)製
膜時全ガス圧力  1.5X 10−”Tou【ターゲ
ットへのイオン入射角   30度この磁性体薄膜をX
線回折法で調べたところ、E相FexN(2<X≦3)
の(002) (004)の回折面を示すピークのみが
観察された。断面をTEM法で調べたところ直径的25
OAの柱状構造が観察された。メスパワースペクトルを
調べたところα−Feの垂直方向の配列が観察された。
Target material Fe (99,99%) Distance between target and substrate M15II 1m Substrate rotation speed 2+pm Back pressure of vacuum chamber I (75%) Introduced gas (pressure) Air (1 x 10" Torr) Total gas pressure during film formation 1.5
When examined by line diffraction method, E-phase FexN (2<X≦3)
Only peaks representing the (002) and (004) diffraction planes were observed. When the cross section was examined using the TEM method, the diameter was 25.
A columnar structure of OA was observed. When examining the female power spectrum, vertical alignment of α-Fe was observed.

EXAFSスペクトルを調べたところFe3O4と相似
のスペクトルが観察された。また、VSMで調べた磁気
的特性は以下の通りであった。Hcヨ(抗磁力)=69
00e、Hc4(抗磁力)=2100e、Ms(飽和磁
化)=570emu/cc、 sq□(角型比)=0゜
26、Hk(垂直異方性磁界)−4,0KOeの垂直磁
化膜であった。光透過率は51%(λ=800nm)で
あった。
When the EXAFS spectrum was examined, a spectrum similar to that of Fe3O4 was observed. Further, the magnetic properties examined by VSM were as follows. Hcyo (coercive force) = 69
00e, Hc4 (coercive force) = 2100e, Ms (saturation magnetization) = 570 emu/cc, sq□ (squareness ratio) = 0°26, Hk (perpendicular anisotropic magnetic field) -4,0 KOe perpendicularly magnetized film. Ta. The light transmittance was 51% (λ=800 nm).

次いで、この磁性体薄膜の上にスパッタ法を用いて5i
AflON膜を設けた。製膜条件は放電室カフ00W、
基板回転速度15rprn、基板とターゲット間距離7
0mrn、 N2とArとの流量比1/9、N2及びA
rのガス圧力IX 10−”Too+、ターゲット5i
AQ、膜厚は約150OAとした。光透過率は46%で
あった。
Next, 5i was deposited on this magnetic thin film using a sputtering method.
An AflON film was provided. The film forming conditions were: discharge chamber cuff 00W;
Substrate rotation speed 15rprn, distance between substrate and target 7
0 mrn, flow rate ratio of N2 and Ar 1/9, N2 and A
r gas pressure IX 10-”Too+, target 5i
The AQ and film thickness were approximately 150OA. The light transmittance was 46%.

この光磁気記録媒体を3.lim/5ec(C1,N)
の速度で記録周波数1.28M1−1z、再生パワー]
mWの条件のもとて記録・再生した(レーザ光はこの5
iAQON膜の側から入射した)。その結果、C/Nは
26dBであった。ついで、10万回記録・再生を繰り
返した後測定したC/Nは26dBで変化がなかった。
3. This magneto-optical recording medium. lim/5ec(C1,N)
Recording frequency 1.28M1-1z, playback power at a speed of
Recording and reproduction were performed under the conditions of mW (the laser beam was
(incident from the iAQON membrane side). As a result, the C/N was 26 dB. Then, after repeating recording and reproducing 100,000 times, the C/N was measured at 26 dB with no change.

比較例 S i AnON膜(酸化防止膜)を省略した以外は実
施例1と同様にして光磁気記録媒体をつくり、実施例1
と同様の記録の記録・再生を行なったところ、初期のC
/N=211dBであったが、10万回の記録・再生で
はC/N値が幾分低下した。
Comparative Example S i A magneto-optical recording medium was produced in the same manner as in Example 1 except that the AnON film (antioxidation film) was omitted.
When I recorded and played back the same recording, I found that the early C.
/N=211 dB, but the C/N value decreased somewhat after 100,000 recording/playbacks.

〔発明の効果〕〔Effect of the invention〕

本発明の窒化物磁性体薄膜は垂直磁気異方性磁界(Hk
)が大きく、しかし、加畝によって窒素の分解・逸散も
なく、また、酸化防止膜は加熱による磁性体薄膜の酸化
を有効;こ防止するため、多数回の繰り返し使用かなさ
れる光磁気記録媒体への応用にはすこぶる有利である。
The nitride magnetic thin film of the present invention has a perpendicular magnetic anisotropy field (Hk
) is large, but the ridges do not decompose or dissipate nitrogen, and the anti-oxidation film is effective against oxidation of the magnetic thin film due to heating; to prevent this, magneto-optical recording is used repeatedly. It is extremely advantageous for media applications.

Claims (1)

【特許請求の範囲】[Claims] (1)非磁性支持体上に直接又は反射層を介して形成さ
れるFe、Co及びNiから選ばれる金属(M)の微粒
子と、M−O結合を有する非磁性体と、M_XN(2<
X≦3)で表わされるC軸配向結晶の窒化物とを主成分
とした柱状構造を呈し垂直磁気異方性を有する磁性体薄
膜の表面に透明で非磁性の酸化防止膜が設けられなるこ
とを特徴とする磁性膜。
(1) Fine particles of metal (M) selected from Fe, Co, and Ni formed directly or via a reflective layer on a nonmagnetic support, a nonmagnetic material having an M-O bond, and M_XN(2<
A transparent, non-magnetic oxidation-preventing film is not provided on the surface of a magnetic thin film having a columnar structure mainly composed of nitride of C-axis oriented crystals represented by X≦3) and having perpendicular magnetic anisotropy. A magnetic film characterized by
JP31717890A 1990-11-21 1990-11-21 Magnetic film Pending JPH04186807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31717890A JPH04186807A (en) 1990-11-21 1990-11-21 Magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31717890A JPH04186807A (en) 1990-11-21 1990-11-21 Magnetic film

Publications (1)

Publication Number Publication Date
JPH04186807A true JPH04186807A (en) 1992-07-03

Family

ID=18085321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31717890A Pending JPH04186807A (en) 1990-11-21 1990-11-21 Magnetic film

Country Status (1)

Country Link
JP (1) JPH04186807A (en)

Similar Documents

Publication Publication Date Title
US6893746B1 (en) Magnetic recording medium with high thermal stability, method for producing the same, and magnetic recording apparatus
US5747136A (en) High-density magneto-optic disk and method of manufacturing the same
US6493164B1 (en) Magnetic recording apparatus and method of magnetic recording
JP3954553B2 (en) Recording medium and manufacturing method thereof
JP3474401B2 (en) Magneto-optical recording medium
US5112701A (en) Magneto-optic recording media and process for producing the same
JP2008071455A (en) Magnetic recording medium, its manufacturing method, and recording and reproducing device and recording and reproducing method of magnetic recording medium
JPH04186807A (en) Magnetic film
EP1887568A1 (en) Heat assisted magnetic recording medium and method for fabricating the same
JP2777594B2 (en) Magnetic film
JP2989575B2 (en) Magneto-optical recording medium
Chen et al. Thin film media with and without bicrystal cluster structure on glass ceramic substrates
US5529854A (en) Magneto-optic recording systems
JPH0387005A (en) Magnetic film
JP3977238B2 (en) Magneto-optical recording medium
JP2008016103A (en) Information recording medium
JP2001148109A (en) Magnetic disk and magnetic disk device
JP2829321B2 (en) Magneto-optical recording medium
JP2824998B2 (en) Magnetic film
JPH03222112A (en) Magnetic film
JPH03122846A (en) Magneto-optical recording medium
JP3057644B2 (en) Magneto-optical recording medium
JPH03102666A (en) Magnetic recording medium
JPH0380445A (en) Magneto-optical recording medium
JP2876062B2 (en) Magnetic film