JPH04186806A - Superconducting device and permanent current switch applicable to same - Google Patents

Superconducting device and permanent current switch applicable to same

Info

Publication number
JPH04186806A
JPH04186806A JP31416290A JP31416290A JPH04186806A JP H04186806 A JPH04186806 A JP H04186806A JP 31416290 A JP31416290 A JP 31416290A JP 31416290 A JP31416290 A JP 31416290A JP H04186806 A JPH04186806 A JP H04186806A
Authority
JP
Japan
Prior art keywords
superconducting
current switch
persistent current
wire
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31416290A
Other languages
Japanese (ja)
Other versions
JP2859953B2 (en
Inventor
Yoshitoshi Hotta
堀田 好寿
Fumio Iida
文雄 飯田
Naofumi Tada
直文 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31416290A priority Critical patent/JP2859953B2/en
Publication of JPH04186806A publication Critical patent/JPH04186806A/en
Application granted granted Critical
Publication of JP2859953B2 publication Critical patent/JP2859953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enable the high permanent current to be applied stably by a method wherein the superconducting member parts exposed out of the matrix layers of permanent current switches are connected to low resistors so that the connection resistance value at the connection parts between the permanent current switches and the low resistors intermediating between a superconducting coil and the permanent coil and the permanent current switches for the parallel connection thereof may be lessened. CONSTITUTION:Within the title superconducting device provided with a conductive coil 3, a superconducting wire 8 with a matrix layer 8d in high specific resistance formed on the outer periphery of a superconducting member 8c, the permanent circuit switches 5a-5c with a heating means to heat the superconducting wire 8 and low resistors 9, 10 intermediating between the superconducting coil 3 and the permanent current switches 5a-5c for the parallel connection thereof, the permanent current switches 5a-5c are arranged so that the superconducting members 8c exposed out of the matrix layer 8d may be connected to the low resistors 9, 10. For example, the matrix layer 8d in the connection parts of respective leading wires 8a, 8b is removed to expose the fine multiple cores 8c which are covered with Cu sleeves 13, 14 to be pressure-fixed for connection and then the Cu sleeves 13, 14 are connected to the low resistors 9, 10 by soldering step.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導装置及び該超電導装置に使用する永久電
流スイッチに係り、特に超電導コイルと永久電流スイッ
チの接続に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting device and a persistent current switch used in the superconducting device, and particularly relates to a connection between a superconducting coil and a persistent current switch.

〔従来の技術〕[Conventional technology]

核磁気共鳴装置(MRI)等に使用する超電導コイル装
置は、超電導コイルを永久電流(循環電流)モードで使
用するために該超電導コイルと並列に永久電流スイッチ
が接続される。この永久電流スイッチは、形状2重量及
び操作(制御)性等の観点から、超電導材の外周に比抵
抗が大きいマトリックス層が形成された超電導線と該超
電導線を加熱するヒータとを備え、ヒータによって超電
導線の温度を制御して該超電導線を超電導状態(オン状
態)または常電導状態(オフ状態)とする構成である。
In a superconducting coil device used in a nuclear magnetic resonance apparatus (MRI) or the like, a persistent current switch is connected in parallel with the superconducting coil in order to use the superconducting coil in a persistent current (circulating current) mode. This persistent current switch is equipped with a superconducting wire in which a matrix layer with a high specific resistance is formed around the outer periphery of a superconducting material and a heater that heats the superconducting wire, from the viewpoint of shape 2 weight and operability (controllability). This is a configuration in which the temperature of the superconducting wire is controlled to put the superconducting wire into a superconducting state (on state) or a normal conducting state (off state).

第7図は、このような超電導装置の電気的接続(配置)
構成を示している。冷却容器1に充填された液体ヘリウ
ム2に浸された超電導コイル3には、励磁電源4から励
磁電流が供給される。給電時には、超電導コイル3と並
列に接続された永久電流スイッチSをオフ状態とするた
めに、該永久電流スイッチ5を制御するヒータ6に制御
電源7から電流を供給し、超電導線8を加熱して常電導
状態にする。そして、超電導コイル3に流れている励磁
電流を永久電流スイッチ5を介して循環する永久電流と
するためには、ヒータ6への給電を止めて超電導線8を
周囲の液体ヘリウム2で冷却して超電導状態にし、該永
久電流スイッチ5をオン状態にする。
Figure 7 shows the electrical connection (arrangement) of such a superconducting device.
It shows the configuration. An excitation current is supplied from an excitation power source 4 to the superconducting coil 3 immersed in liquid helium 2 filled in the cooling container 1 . At the time of power supply, in order to turn off the persistent current switch S connected in parallel with the superconducting coil 3, current is supplied from the control power source 7 to the heater 6 that controls the persistent current switch 5 to heat the superconducting wire 8. to bring it into a normal conducting state. In order to make the excitation current flowing through the superconducting coil 3 into a persistent current circulating through the persistent current switch 5, the power supply to the heater 6 is stopped and the superconducting wire 8 is cooled with the surrounding liquid helium 2. A superconducting state is established, and the persistent current switch 5 is turned on.

永久電流スイツツチ5は好ましいオン/オフ機能を実現
するために、該永久電流スイッチ5を構成する超電導、
[8には、NbTi合金線を超電導材として使用し、オ
フ状態で大きい抵抗値を得るために、例えばCu N 
i合金等の比抵抗の大きい金属をマトリックスとする極
細多心線が用いられている。
In order to realize a preferable on/off function, the persistent current switch 5 is made of a superconductor, which constitutes the persistent current switch 5.
[8] NbTi alloy wire is used as a superconducting material, and in order to obtain a large resistance value in the off state, for example, CuN
An ultra-fine multi-core wire whose matrix is a metal with high specific resistance such as i-alloy is used.

しかしながら、比抵抗の大きいマトリックスを用いた超
電導線は、CuやAI等のように比抵抗の小さい金属を
マトリックスとする超電導コイル用の超電導線に較べて
電磁気的に不安定であり、超電導状態での通電許容電流
が小さい。このために、超電導コイル3に対して複数個
の永久電流スイッチ5を並列接続して大きな永久電流を
確保することが行われている。そして、複数個の永久電
流スイッチ5に均等に電流を分流すために、励磁用電流
線との間に低抵抗体を介在させた接続を行うことが提案
されている。
However, superconducting wires using a matrix with a high specific resistance are electromagnetically unstable compared to superconducting wires for superconducting coils whose matrix is a metal with a low specific resistance, such as Cu or AI. The allowable current is small. For this purpose, a plurality of persistent current switches 5 are connected in parallel to the superconducting coil 3 to ensure a large persistent current. In order to evenly divide the current into the plurality of persistent current switches 5, it has been proposed to connect them to the excitation current line by interposing a low resistance element.

この種の超電導装置及び永久電流スイッチは、特開昭6
1−269301号公報及び特開平1−102905号
公報に開示されている。
This type of superconducting device and persistent current switch was developed in Japanese Patent Application Laid-open No. 6
It is disclosed in JP-A No. 1-269301 and JP-A-1-102905.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この種の従来の超電導装置及び永久電流
スイッチは、永久電流スイッチの超電導線と低抵抗体と
の接続部において、CuNi合金マトリックス層の抵抗
によるジュール発熱が原因で、しばしば、該超電導線が
超電導状態から常電導状態に転移してしまう問題があっ
た。
However, in this type of conventional superconducting device and persistent current switch, the superconducting wire is often damaged due to Joule heat generation due to the resistance of the CuNi alloy matrix layer at the connection between the superconducting wire and the low-resistance element of the persistent current switch. There was a problem with the transition from a superconducting state to a normal conducting state.

従って、本発明の目的は、超電導コイルと永久電流スイ
ッチとの並列接続を仲介する低抵抗体と永久電流スイッ
チの接続部の接続抵抗値を小さくして大きな永久電流を
安定に流すことができる超電導装で及び永久電流スイッ
チを提供することにある。
Therefore, an object of the present invention is to provide a superconductor that can stably flow a large persistent current by reducing the connection resistance value of the connection between the persistent current switch and the low resistance body that mediates the parallel connection between the superconducting coil and the persistent current switch. The purpose of the present invention is to provide a permanent current switch with a permanent current switch.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するために、第1の発明は、超電導コイ
ルと、超電導材の外周に比抵抗が大きいマトリックス層
が形成された超電導線と該超電導線を加熱する加熱手段
とを備えた永久電流スイッチと、前記超電導コイルと永
久電流スイッチとの並列接続を仲介する低抵抗体を侃え
た超電導装置において、前記永久電流スイッチは、前記
マトリツクス層外に露出した超電導材部分を前記低抵抗
体に接続することを特徴とし、 第2の発明は、超電導材の外周に比抵抗が大きいマトリ
ックス層が形成された超電導線と該超電導線を加熱する
ヒータと前記超電導線を延長して口出し線部とした永久
電流スイッチにおいて、前記口出し線部の接続部分の超
電導材をマトリックス層外に露出させたことを特徴とす
る。
In order to achieve this object, the first invention provides a persistent current comprising a superconducting coil, a superconducting wire in which a matrix layer having a high specific resistance is formed on the outer periphery of a superconducting material, and a heating means for heating the superconducting wire. In a superconducting device including a switch and a low resistance body that mediates parallel connection between the superconducting coil and the persistent current switch, the persistent current switch connects a superconducting material portion exposed outside the matrix layer to the low resistance body. A second invention is characterized in that a superconducting wire in which a matrix layer with a high specific resistance is formed on the outer periphery of a superconducting material, a heater for heating the superconducting wire, and an extension of the superconducting wire to form a lead wire portion. The persistent current switch is characterized in that the superconducting material of the connecting portion of the lead wire portion is exposed outside the matrix layer.

〔作用〕[Effect]

永久電流スイッチと低抵抗体との接続部分には比抵抗が
大きいマトリックス層が介在しないので接続抵抗が小さ
くなり、接続抵抗のジュール発熱による常電導状態転移
がなくなる。
Since a matrix layer with a high specific resistance is not interposed in the connection portion between the persistent current switch and the low resistance element, the connection resistance is reduced, and transition to a normal conductive state due to Joule heat generation of the connection resistance is eliminated.

〔実施例〕〔Example〕

超電導コイルに複数個の永久電流スイッチを並列した超
電導装置では、各永久電流スイッチに均等に電流を分配
するために、前述したように、低抵抗体を仲介しており
、その抵抗値が1/107Ω程度あるので、回路抵抗が
零の永久電流モードとはならない。永久電流の減衰時定
数は、超電導コイルのインダクタンスLと循環回路の抵
抗Rの比L/Rで決まる。超電導コイルでの永久電流モ
ート持続必要時間は20時間程度で十分であり、前記低
抵抗体の抵抗値が減衰時定数に及ぼす影響は問題になら
ない程度である。
In a superconducting device in which a plurality of persistent current switches are connected in parallel to a superconducting coil, in order to distribute current evenly to each persistent current switch, a low resistance body is used as an intermediary as described above, and the resistance value is 1/ Since the resistance is about 107Ω, the permanent current mode with zero circuit resistance does not occur. The decay time constant of the persistent current is determined by the ratio L/R of the inductance L of the superconducting coil and the resistance R of the circulation circuit. About 20 hours is sufficient for the persistent current mode to last in the superconducting coil, and the influence of the resistance value of the low resistance body on the decay time constant is not a problem.

しかしながら、発明者等が種々の実験を行った結果、該
抵抗が永久電流スイッチの超電導線の接続部分に集中し
ているために、大きな永久電流を流すと、そのジュール
発熱のために該永久電流スイッチの超電導線が超電導状
態から常電導状態に転移して永久電流モードを維持する
ことができなくなる事態が発生することが分かった。
However, as a result of various experiments conducted by the inventors, it was found that the resistance is concentrated at the connection part of the superconducting wire of the persistent current switch. It has been found that a situation occurs in which the superconducting wire of the switch transitions from the superconducting state to the normal conducting state and is no longer able to maintain the persistent current mode.

永久電流スイッチの超電導線は、比較的高抵抗のCuN
i合金をマトリックスとするNbTi極細多心線である
ので、安定性のマージンが極めて小さく、超電導コイル
の超電導線として使用されるCuマトリックスNbTi
極細多心線の場合の1/10以下の熱エネルギーで超電
導状態から常電導状態に転移してしまうことが分かった
The superconducting wire of the persistent current switch is CuN, which has a relatively high resistance.
Since it is an NbTi ultra-fine multi-core wire with an i-alloy matrix, the stability margin is extremely small, and the Cu-matrix NbTi wire is used as a superconducting wire in a superconducting coil.
It was found that the superconducting state can be transitioned to the normal conducting state with less than 1/10 the thermal energy of an ultra-fine multi-core wire.

従って本発明の各実施例は、低抵抗体に対する永久電流
スイッチの超電導線の接続部の接続抵抗が極力小さくな
るように工夫されている。
Therefore, each embodiment of the present invention is designed to minimize the connection resistance of the connection portion of the superconducting wire of the persistent current switch to the low resistance body.

超電導線同志の接続は、接続抵抗の観点からは接続抵抗
値が零の超電導接続が理想的であるが、多数のNbTi
極細多心線同志を加締め圧着で接続したり、スポット溶
接接続する構成は、電磁気的及び機械的に不安定な接続
部となる。従って、本発明は、超電導コイルに対する永
久電流スイッチの超電導線の接続部には低抵抗体を介在
させ、然も、永久電流スイッチの超電導線の高抵抗マト
リックスが介在されて接続抵抗値が増えないように、該
高抵抗マトリックスを除去して該超電導線のNbTi極
細多心線を露出させて低抵抗体に接続するようにしてい
る。ただ、裸のNbTi極細多心線を低抵抗体に良好な
状態で直接接続することが困難であるので、低抵抗のス
リーブを介在させたり、比抵抗が小さいCuマトリック
ス超電導線を介在させたりしている。低抵抗体に対する
超電導線の好ましい接続抵抗値の許容最大値は、該超電
導コイルが動作状態にあるときの温度4.2Kにおいて
、1/10gΩ程度である。
From the viewpoint of connection resistance, the ideal connection between superconducting wires is a superconducting connection with zero connection resistance.
A configuration in which ultra-fine multi-filament wires are connected by crimping or spot welding results in an electromagnetically and mechanically unstable connection. Therefore, in the present invention, a low-resistance element is interposed at the connection portion of the superconducting wire of the persistent current switch to the superconducting coil, and a high-resistance matrix of the superconducting wire of the persistent current switch is interposed, so that the connection resistance value does not increase. In this way, the high-resistance matrix is removed to expose the NbTi ultrafine multifilamentary wire of the superconducting wire and connect it to a low-resistance body. However, since it is difficult to directly connect a bare NbTi ultrafine multi-core wire to a low-resistance element in good condition, a low-resistance sleeve or a Cu matrix superconducting wire with a low resistivity is interposed. ing. A preferable maximum allowable connection resistance value of the superconducting wire to the low resistance body is about 1/10 gΩ at a temperature of 4.2 K when the superconducting coil is in an operating state.

低抵抗のスリーブには無酸素銅を使用し、接続部の電磁
気的安定性向上と電磁力に対する機械的補強機能をもた
せる。また、スリーブ内の超電導線の充填率が低いと接
続(圧接)状態が不安定になるので、AgやCuの粉末
や繊維を充填して堅固な接続状態が得られるようにする
とよい。
Oxygen-free copper is used for the low-resistance sleeve, which improves the electromagnetic stability of the connection and provides mechanical reinforcement against electromagnetic force. Furthermore, if the filling rate of the superconducting wires in the sleeve is low, the connection (pressure welding) state will become unstable, so it is preferable to fill the sleeve with Ag or Cu powder or fiber to obtain a firm connection state.

また、永久電流スイッチにおける超電導線の常電導状態
への転移は、その口出し線部で発生する場合が多い。超
電導線が無誘導巻きされた永久電流スイッチであっても
、電磁力に対する固定が不十分である場合に発生する。
Furthermore, transition of the superconducting wire to the normal conductive state in a persistent current switch often occurs at the lead wire portion thereof. Even in persistent current switches in which superconducting wires are non-inductively wound, this problem occurs when the fixation against electromagnetic force is insufficient.

永久電流スイッチ内部の巻線部はエポキシ樹脂含浸等に
より堅固に固定されるが、口出し線部は自由な状態であ
るので該部分が常電導状態に転移し易い。このような部
分をなくして安定した超電導状態を維持するためには、
低抵抗体、永久電流スイッチ(口出し線)及び接続部を
一体的に支持する支持体を設け、エポキシ樹脂含浸(充
填)や縛り付は等による固定を行うことが好ましい。
Although the winding portion inside the persistent current switch is firmly fixed by impregnating with epoxy resin, the lead wire portion is in a free state, and therefore this portion is likely to transition to a normal conduction state. In order to eliminate such parts and maintain a stable superconducting state,
It is preferable to provide a support that integrally supports the low resistance element, the persistent current switch (lead wire), and the connection part, and to perform fixation by impregnating (filling) with epoxy resin, tying, or the like.

次に、永久電流スイッチ用超電導線のクエンチ電流の値
を該超電導線の接続構成を変えて測定・評価した結果を
説明する。測定した超電導線は、外径が0.4訂で、直
径が約I Q μmのNbTi極細線を1171本纏め
てCu−30%Ni合金マトリックス中に埋設したもの
である。
Next, the results of measuring and evaluating the quench current value of a superconducting wire for a persistent current switch by changing the connection configuration of the superconducting wire will be described. The superconducting wires measured were 1171 NbTi ultrafine wires with an outer diameter of 0.4 scale and a diameter of about IQ μm, which were embedded in a Cu-30%Ni alloy matrix.

該超電導線は測定のためにヘアピン状にしてその両端部
を低抵抗体(Cu線)に接続し、液体ヘリウム中に浸し
て4.2にの温度で外部磁界の大きさを変えながら、ク
エンチ電流を測定した。測定試料(1)は永久電流スイ
ッチ用超電導線をそのままCu線に半田付は接続したも
の、測定試料(n)は永久電流スイッチ用超電導線の両
端部のマトリックスを除去してNbTi極細多心線を露
出させ、該露出部にCuスリーブを加締固定(接続)し
、該CuスリーブをCu線に半田付は接続したものであ
る。各測定試料(I)、(11)は、それぞれ、10本
ずつ同一方法で測定及び評価して、そのバラツキ状態も
併せて測定した。
For measurement, the superconducting wire was made into a hairpin shape, both ends of which were connected to a low-resistance material (Cu wire), and quenched by immersing it in liquid helium at a temperature of 4.2 degrees while changing the magnitude of the external magnetic field. The current was measured. The measurement sample (1) is a superconducting wire for a persistent current switch that is directly connected to a Cu wire by soldering, and the measurement sample (n) is a superconducting wire for a persistent current switch that has the matrix removed from both ends and is made of an NbTi ultrafine multicore wire. is exposed, a Cu sleeve is caulked and fixed (connected) to the exposed part, and the Cu sleeve is connected to the Cu wire by soldering. Ten measurement samples (I) and (11) were each measured and evaluated using the same method, and the state of variation was also measured.

第8図は該測定結果を示している。領域(I)は測定試
料(I)の10本の超電導線の測定値の最大値と最小値
(分布範囲)であり、領域(II)は測定試料(Ilr
)の10本の超電導線の測定値の最大値と最小値(分布
範囲)である。測定試料(II)のクエンチ電流の値は
、測定試料(I)のクエンチ電流の値よりも大きいこと
が分かる。測定試料(1)の常電導転移は接続部から発
生しており、接続部の接続抵抗によるジュール発熱で超
電導線が加熱されてクエンチ電流を低下させている、と
考えられる。このような測定結果を見ると、接続構造を
工夫することにより、1Tの外部磁界において従来の1
.7倍の電流を安定に流すことができることが分かる。
FIG. 8 shows the measurement results. Area (I) is the maximum and minimum values (distribution range) of the measured values of the 10 superconducting wires of the measurement sample (I), and area (II) is the measurement sample (Ilr
) are the maximum and minimum values (distribution range) of the measured values of 10 superconducting wires. It can be seen that the value of the quench current of the measurement sample (II) is larger than the value of the quench current of the measurement sample (I). It is thought that the normal conduction transition of measurement sample (1) occurs at the connection, and the superconducting wire is heated by Joule heat generation due to the connection resistance at the connection, reducing the quench current. Looking at these measurement results, it seems that by devising the connection structure, it is possible to improve the conventional 1T in an external magnetic field of 1T.
.. It can be seen that it is possible to stably flow seven times the current.

以下、本発明の実施例を図面を参照して具体的に説明す
る。
Embodiments of the present invention will be specifically described below with reference to the drawings.

第1図は本発明になる超電導コイル装置の主要構成要素
の配置を示している。
FIG. 1 shows the arrangement of main components of a superconducting coil device according to the present invention.

超電導コイル3の両端の口出し線3−a、3bは低抵抗
体9,10に半田付けにより接続される。
Lead wires 3-a and 3b at both ends of the superconducting coil 3 are connected to low resistance elements 9 and 10 by soldering.

励磁電源4から該超電導コイル3の励磁電流を供給する
ための励磁用電流線11,12もこの低抵抗体9,10
に半田付けで接続される。超電導コイル3に対して並列
回路を構成するために3個の永久電流スイッチ5a、5
b、5cが前記低抵抗体9,10間に並列接続される。
Excitation current lines 11 and 12 for supplying excitation current from the excitation power source 4 to the superconducting coil 3 are also connected to these low resistance bodies 9 and 10.
connected by soldering. Three persistent current switches 5a, 5 are used to configure a parallel circuit for the superconducting coil 3.
b and 5c are connected in parallel between the low resistance bodies 9 and 10.

各永久電流スイッチ58〜5cは、前述した永久電流ス
イッチ5と同様な構成であり、それぞれ、NbTi合金
線の超電導体とCuNi合金のマトリックスを使用した
極細多心線の超電導線8と、該超電導線8を加熱するヒ
ータ(図示せず)とを備え、各永久電流スイッチ58〜
5cはそれぞれの口出し線部8a、8bを前記低抵抗体
9,1゜に接続する構成である。各接続部は同様な接続
構成であり、各日出し線部8a、8bの接続部分のマト
リックスを硝酸で溶解除去してN b T i合金の極
細多心線を露出させ、該露出部分にCuスリーブ13.
14を被せて圧着接続し、該Cuスリーブ13.14を
低抵抗体9,1oに半田付けで接続する構成である。
Each of the persistent current switches 58 to 5c has the same configuration as the persistent current switch 5 described above, and each has a superconducting wire 8 that is an ultrafine multi-core wire using a superconductor of NbTi alloy wire and a matrix of CuNi alloy; Each persistent current switch 58~ is equipped with a heater (not shown) for heating the wire 8.
Reference numeral 5c has a configuration in which the respective lead wire portions 8a and 8b are connected to the low resistance bodies 9 and 1°. Each connection part has a similar connection configuration, and the matrix of the connection part of each sunrise wire part 8a, 8b is dissolved and removed with nitric acid to expose an ultrafine multi-core wire of NbTi alloy, and Cu is applied to the exposed part. Sleeve 13.
The Cu sleeves 13 and 14 are connected to the low resistance elements 9 and 1o by soldering.

第2図(a)、(b)は、該接続部の接続構造の一部を
詳細に示したものである。永久電流スイッチ5の超電導
線8の延長部分である口出し線部8aは、NbTi合金
の極細多心線8cとこれを埋設するCuNi合金のマト
リックス8dから成り、接続部分となる先端部のCuN
i合金マトリックス8dが除去されて極細多心線8cが
露出される。Cuスリーブ13は極細多心線8cのこの
露出部分に被せて圧着接続され、該Cuスリーブ13が
低抵抗体9に半田付け19で接続されている。
FIGS. 2(a) and 2(b) show a part of the connection structure of the connection portion in detail. The lead wire portion 8a, which is an extension of the superconducting wire 8 of the persistent current switch 5, consists of an ultra-fine multi-core wire 8c made of NbTi alloy and a matrix 8d made of CuNi alloy in which it is buried.
The i-alloy matrix 8d is removed to expose the ultrafine multifilamentary wires 8c. The Cu sleeve 13 is placed over the exposed portion of the ultra-fine multi-core wire 8c and crimped and connected, and the Cu sleeve 13 is connected to the low resistance element 9 by soldering 19.

5個の永久電流スイッチ5を並列接続した従来の超電導
コイル装置で、5個のスイッチ5がオフ状態にあるとき
の合成抵抗を100Ω(1個の抵抗値を500Ω)とし
、オン状態にあるときの許容電流を686A (1個の
定格電流を137.5A)とする特性を、本実施例では
3個の永久電流スイッチ58〜5cで得ることができた
。すなわち、1個の永久電流スイッチ5で228.7A
の定格電流が得られ、オフ状態で300Ωの抵抗値が得
られた。これは、各永久電流スイッチ5a〜5cの超電
導線8の口出し線部8a、8bと低抵抗体9,10の接
続抵抗が減少して許容電流が増加することにより実現し
たものである。
In a conventional superconducting coil device in which five persistent current switches 5 are connected in parallel, the combined resistance when the five switches 5 are in the off state is 100Ω (the resistance value of one piece is 500Ω), and when the switches are in the on state In this embodiment, the characteristic that the allowable current of 686 A (the rated current of one is 137.5 A) could be obtained with the three persistent current switches 58 to 5c. In other words, one persistent current switch 5 generates 228.7A.
A rated current of , and a resistance value of 300Ω in the off state were obtained. This is achieved by reducing the connection resistance between the lead wire portions 8a, 8b of the superconducting wire 8 of each persistent current switch 5a to 5c and the low resistance elements 9, 10, and increasing the allowable current.

そしてこのような構成の超電導コイル装置によれば、永
久電流スイッチ5の数が減少すると共に該永久電流スイ
ッチ5における超@agsを短くすることができるので
、超電導コイル装置内での配置所要スペース、重量、製
造コストが低減すると共に、冷却用の液体ヘリウムの蒸
発量を低減して運転コストを低減することができる。
According to the superconducting coil device having such a configuration, the number of persistent current switches 5 is reduced and the super@ags in the persistent current switches 5 can be shortened, so that the space required for arrangement within the superconducting coil device, In addition to reducing weight and manufacturing costs, it is also possible to reduce the amount of evaporation of liquid helium for cooling, thereby reducing operating costs.

第3図は永久電流スイッチ5a〜5cの各日出し線部8
a、8bを、N b T i合金の極細多心線をCuマ
トリックス中に埋設した低抵抗の超電導線20.21を
介して低抵抗体9,10に半田付は接続した超電導コイ
ル装置を示している。
FIG. 3 shows each sunrise line portion 8 of the persistent current switches 5a to 5c.
A and 8b are connected to low resistance elements 9 and 10 by soldering via low resistance superconducting wires 20 and 21 in which ultrafine multi-core wires of N b Ti alloy are embedded in a Cu matrix. ing.

この実施例で、永久電流スイッチ5a〜5cにおける超
電導gsの各日出し線部8a、8bと仲介用超電導線2
0.21との接続は、接続部分のマトリックスを除去し
てNbTi合金の極細多心線を露出させ、該露出部分を
重ね合わせた状態でCuスリーブ13.14を被せて圧
着接続する構成である。
In this embodiment, each solar wire portion 8a, 8b of the superconducting gs in the persistent current switches 5a to 5c and the intermediate superconducting wire 2
The connection with 0.21 is made by removing the matrix of the connection part to expose the NbTi alloy ultra-fine multi-filament wire, and with the exposed parts overlapped, a Cu sleeve 13 and 14 is covered and the connection is made by crimping. .

第4図(a)〜(e)は、該接続部の接続プロセスを詳
細に示している。永久電流スイッチ5の超電導線8の延
長部分である口出し線部8aで接続部分となる先端部の
CuNi合金マトリックス8dが除去されて極細多心線
8cが露出され、同様に、仲介用超電導線20の接続部
分となる先端部のCuマトリックス20dも除去されて
極細多心線20cが露出され、極細多心線8c、20c
の詠露出部分を重ね合わせた状態でCuスリーブ13を
被せて圧着接続される。そして、仲介用超電導線20の
他端部分はCuマトリックス20dを付けたままの状態
で低抵抗体9に半田付は接続される。
FIGS. 4(a) to 4(e) show the connection process of the connection portion in detail. The CuNi alloy matrix 8d at the tip of the lead wire portion 8a, which is an extension of the superconducting wire 8 of the persistent current switch 5, is removed to expose the ultrafine multi-core wire 8c, and similarly, the intermediary superconducting wire 20 is removed. The Cu matrix 20d at the tip, which is the connecting part of
A Cu sleeve 13 is covered with the exposed portions of the two parts overlapped, and the two are crimped and connected. The other end of the intermediary superconducting wire 20 is soldered to the low resistance element 9 with the Cu matrix 20d still attached.

この実施例は、Cuスリーブ13内の極細多心線の充填
率が大幅に向上して極細多心線同志の超電導接続が安定
し、永久電流スィッチ5a〜50間のクエンチ電流のバ
ラツキが低減する利点がある。
In this embodiment, the filling rate of the ultra-fine multi-core wires in the Cu sleeve 13 is significantly improved, the superconducting connection between the ultra-fine multi-core wires is stabilized, and the variation in quench current between the persistent current switches 5a to 50 is reduced. There are advantages.

第5図(a)、(b)は、永久電流スイッチ用超電導線
と仲介用超電導線との接続の他の実施例を示している。
FIGS. 5(a) and 5(b) show another embodiment of the connection between the persistent current switch superconducting wire and the intermediary superconducting wire.

永久電流スイッチ5の超電導線8は、通常、線材製法上
の制約から、Cu−30%Ni合金をマトリックスとす
るNbTi極細多心線8cを中心にしてその周りにCu
−30%N1合金層8dが存在する構成である。例えば
、外径が0.46mmの超電導線では、外周部分のCu
−30%Ni合金層8Cの厚さは約0.03mmである
The superconducting wire 8 of the persistent current switch 5 usually has a NbTi ultrafine multi-core wire 8c with Cu-30%Ni alloy as a matrix, and Cu is placed around it due to restrictions in the wire manufacturing method.
-30%N1 alloy layer 8d is present. For example, in a superconducting wire with an outer diameter of 0.46 mm, Cu on the outer periphery
The thickness of the -30% Ni alloy layer 8C is approximately 0.03 mm.

このような超電導線8の口出し線部8aにNbTi合金
の極細多心線をCuマトリックス中に埋設した仲介用超
電導線をそのまま長さ300mmにわたって半田付は接
続したものを液体ヘリウムに浸して冷却した状態で、そ
の接続抵抗値を測定すると、8/10″Ωもの接続抵抗
があり、この接続抵抗値の大部分は外周部分のCu−3
0%Ni合金層8dによるものである。
An intermediary superconducting wire in which ultrafine multi-core NbTi alloy wires were embedded in a Cu matrix was connected to the lead wire portion 8a of the superconducting wire 8 over a length of 300 mm by soldering, and the wire was cooled by immersing it in liquid helium. When measuring the connection resistance value in this state, there was a connection resistance of 8/10''Ω, and most of this connection resistance value was due to the Cu-3 on the outer periphery.
This is due to the 0% Ni alloy layer 8d.

この実施例は、このようなCu −30%Ni合金層8
dによる接続抵抗の増加を抑えたもので、永久電流スイ
ッチ用超電導@8の口出し線部8aにおける長さ450
mmの半田付は接続端部の前記Cu−30%Ni合金層
8dを硝酸にて溶解除去し、該接続端部に2本のCuマ
トリックス極細多心線構造の仲介用超電導線20a、2
0bを長さ450mmにわたって半田付は接続したもの
である。
In this example, such a Cu-30%Ni alloy layer 8
This suppresses the increase in connection resistance due to
For soldering of 30 mm, the Cu-30%Ni alloy layer 8d at the connection end is dissolved and removed with nitric acid, and two superconducting superconducting wires 20a, 2 with a Cu matrix ultrafine multi-filament structure are attached to the connection end.
0b were connected by soldering over a length of 450 mm.

この接続部の電気抵抗を温度4.2にで測定したところ
、9/1010Ωであり、永久電流スイッチ8のクエン
チ電流に影響しない値であることが分かった。この接続
抵抗値は、他の実施例における接続抵抗値よりも劣る値
であるが、接続構造が極めて単純であり、信頼性の高い
接続部が得られる利点がある。
When the electrical resistance of this connection was measured at a temperature of 4.2, it was found to be 9/1010Ω, a value that does not affect the quench current of the persistent current switch 8. Although this connection resistance value is inferior to the connection resistance values in other embodiments, it has the advantage that the connection structure is extremely simple and a highly reliable connection portion can be obtained.

このような超電導コイル装置における永久電流スイッチ
の特性を安定させるには、電磁力によって口出し線部あ
るいは仲介用超電導線が振動しないようにすることが好
ましいことは前述した通りである。
As described above, in order to stabilize the characteristics of the persistent current switch in such a superconducting coil device, it is preferable to prevent the lead wire portion or the intermediate superconducting wire from vibrating due to electromagnetic force.

第6図は、口出し線部及び仲介用超電導線を堅固に保持
して、振動に起因するクエンチの発生を防止した実施例
である。低抵抗体と永久電流スイッチの接続構成は、第
3図を参照して前述した実施例と同一である。2個の低
抵抗体9,10の間に配置された永久電流スイッチ58
〜5cとその各日出し線部8a、8b及び仲介用超電導
線20゜21更には画線を圧着接続するCuスリーブ1
3゜14を、これらに沿わせて絶縁状態で配置したステ
ンレス製の支持板22に縛り付は又は樹脂含浸あるいは
充填等の固定材23により、絶縁状態に一体的に固着し
ている。
FIG. 6 shows an embodiment in which the lead wire portion and the intermediary superconducting wire are firmly held to prevent the occurrence of quenching due to vibration. The connection structure between the low resistance element and the persistent current switch is the same as the embodiment described above with reference to FIG. Persistent current switch 58 arranged between two low resistance elements 9 and 10
5c, each of its exposed wire portions 8a, 8b, and the intermediate superconducting wire 20° 21, as well as the Cu sleeve 1 for crimping and connecting the drawing wires.
3.degree. 14 is integrally fixed in an insulated state by binding or fixing material 23 such as resin impregnation or filling to a stainless steel support plate 22 arranged in an insulated state along these parts.

〔発明の効果〕〔Effect of the invention〕

本発明は、永久電流スイッチと低抵抗体との接続部分に
は比抵抗が大きいマトリックス層が介在しないので、接
続抵抗が小さくなり該接続抵抗のジュール発熱による影
響が少なくなり、大きな永久電流を安定に流すことがで
きる超電導装置及び永久電流スイッチを提供することが
できる。
In the present invention, since a matrix layer with high specific resistance is not interposed in the connection part between the persistent current switch and the low resistance element, the connection resistance is reduced, the influence of Joule heat generation of the connection resistance is reduced, and a large persistent current is stabilized. It is possible to provide a superconducting device and a persistent current switch that can conduct current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明の実施例を示すもので、第1図
はその一実施例である超電導コイル装置の主要構成要素
配置図、第2図(a)、(b)は低抵抗体と永久電流ス
イッチの接続部の詳細を示す縦断側面図とそのB−B断
面図、第3図は他の実施例である超電導コイル装置の主
要構成要素配置図、第4図(a)〜(e)は永久電流ス
イッチロ呂し線部と仲介超電導線の接続工程図、第5図
(a)、(b)は永久電流スイッチ用超電導線と仲介用
超電導線との接続の他の実施例を示す縦断面図、第6図
は更に他の実施例である超電導コイル装置の主要構成要
素配置図である。 第7図は従来の超電導コイル装置の主要構成要素配置図
である。 第8図は接続抵抗特性図である。 3・・・・・超電導コイル、   3a、3b・・・・
口出し線、  58〜5c・・・・永久電流スイッチ、
8a、8b・・・・・・口出し線部、    8c・・
・・NbTi合金の極細多心線、  8d・・・・・・
Cu N i合金のマトリックス、  9,10・・・
・低抵抗体、13、1’4・・・・・・Cuスリーブ、
  19・・由半田付け。 第1図 3−−−−−− Mi電導コイル 50〜5C−一 −永久電流スイッチ 8−−−−−−超電導線 8a、8b  −−−口出し線部 8cm−−−−−NbTi合金掻細多心線8d  −−
−−−−CuNi合金マトリックス9.10−−− −
低抵抗体 13.14−− −  Cuスリーブ 第2図 第3図 第4図 d 第5図 第6図 第7図
Figures 1 to 6 show embodiments of the present invention. Figure 1 is a layout diagram of the main components of a superconducting coil device, which is one embodiment, and Figures 2 (a) and (b) are A vertical side view showing details of the connection between the resistor and the persistent current switch, and its BB sectional view; FIG. 3 is a layout diagram of the main components of a superconducting coil device according to another embodiment; FIG. 4(a) - (e) are connection process diagrams of the persistent current switch roller part and the intermediate superconducting wire, and Figures 5 (a) and (b) are other connections between the persistent current switch superconducting wire and the intermediate superconducting wire. FIG. 6 is a longitudinal cross-sectional view showing the embodiment, and is a layout diagram of the main components of a superconducting coil device according to yet another embodiment. FIG. 7 is a layout diagram of the main components of a conventional superconducting coil device. FIG. 8 is a connection resistance characteristic diagram. 3...Superconducting coil, 3a, 3b...
Lead wire, 58~5c...persistent current switch,
8a, 8b... Lead line part, 8c...
・・NbTi alloy ultra-fine multi-core wire, 8d・・・・・・
CuNi alloy matrix, 9,10...
・Low resistance element, 13, 1'4...Cu sleeve,
19.Yu soldering. Fig. 1 3 ---- Mi conductive coils 50 to 5C-1 - Persistent current switch 8 - Superconducting wires 8a, 8b - Lead wire portion 8 cm ---- NbTi alloy thin Multi-core wire 8d --
---CuNi alloy matrix 9.10----
Low resistance element 13.14 -- - Cu sleeve Fig. 2 Fig. 3 Fig. 4 d Fig. 5 Fig. 6 Fig. 7

Claims (9)

【特許請求の範囲】[Claims] 1.超電導コイルと、超電導材の外周に比抵抗が大きい
マトリツクス層が形成された超電導線と該超電導線を加
熱する加熱手段とを備えた永久電流スイツチと、前記超
電導コイルと永久電流スイツチとの並列接続を仲介する
低抵抗体を備えた超電導装置において、 前記永久電流スイツチは、前記マトリツクス層外に露出
した超電導材部分が前記低抵抗体に接続されたことを特
徴とする超電導装置。
1. A persistent current switch comprising a superconducting coil, a superconducting wire in which a matrix layer with a high specific resistance is formed on the outer periphery of a superconducting material, and heating means for heating the superconducting wire, and a parallel connection of the superconducting coil and the persistent current switch. A superconducting device comprising a low-resistance element that mediates the persistent current switch, wherein a portion of the superconducting material exposed outside the matrix layer is connected to the low-resistance element.
2.請求項1において、前記永久電流スイツチは、前記
超電導材露出部分が低抵抗材スリーブを介して前記低抵
抗体に接続されたことを特徴とする超電導装置。
2. 2. A superconducting device according to claim 1, wherein the persistent current switch has an exposed portion of the superconducting material connected to the low resistance body through a low resistance material sleeve.
3.請求項2において、前記低抵抗スリーブは超電導材
露出部に圧着接続されると共に前記低抵抗体に半田付け
接続されたことを特徴とする超電導装置。
3. 3. The superconducting device according to claim 2, wherein the low resistance sleeve is crimped and connected to the superconducting material exposed portion and is soldered to the low resistance body.
4.請求項3において、前記超電導材露出部分と前記低
抵抗スリーブの間に充填材を充填した状態で該低抵抗ス
リーブを加締接続したことを特徴とする超電導装置。
4. 4. The superconducting device according to claim 3, wherein the low-resistance sleeve is connected by caulking with a filler filled between the exposed portion of the superconducting material and the low-resistance sleeve.
5.請求項1において、前記永久電流スイツチは、前記
超電導材露出部分が超電導接続された低抵抗マトリツク
ス超電導線を介して前記低抵抗体に接続されたことを特
徴とする超電導装置。
5. 2. The superconducting device according to claim 1, wherein the persistent current switch is connected to the low resistance body through a low resistance matrix superconducting wire in which the exposed portion of the superconducting material is superconductingly connected.
6.請求項1において、前記永久電流スイツチは、前記
超電導材露出部分と半田付けされた低抵抗マトリツクス
超電導線を介して前記低抵抗体に接続されたことを特徴
とする超電導装置。
6. 2. A superconducting device according to claim 1, wherein the persistent current switch is connected to the low resistance body through a low resistance matrix superconducting wire soldered to the exposed portion of the superconducting material.
7.請求項1において、低抵抗体及び前記永久電流スイ
ツチとその接続部を一体的に固定したことを特徴とする
超電導装置。
7. 2. The superconducting device according to claim 1, wherein the low resistance element, the persistent current switch, and the connecting portion thereof are integrally fixed.
8.請求項1〜7の1項において、前記接続部の接続抵
抗値を4.2Kにおいて1/10^9Ω以下にしたこと
を特徴とする超電導装置。
8. 8. The superconducting device according to claim 1, wherein the connection resistance value of the connection portion is set to 1/10^9Ω or less at 4.2K.
9.超電導材の外周に比抵抗が大きいマトリツクス層が
形成された超電導線と該超電導線を加熱するヒータと前
記超電導線を延長して口出し線部とした永久電流スイツ
チにおいて、前記口出し線部の接続部分の超電導材を前
記マトリツクス層から露出させたことを特徴とする永久
電流スイツチ。
9. A persistent current switch including a superconducting wire in which a matrix layer with a high specific resistance is formed on the outer periphery of a superconducting material, a heater for heating the superconducting wire, and an extension of the superconducting wire as a lead wire part, the connecting part of the lead wire part. A persistent current switch characterized in that a superconducting material is exposed from the matrix layer.
JP31416290A 1990-11-21 1990-11-21 Superconducting device and permanent current switch used for the superconducting device Expired - Lifetime JP2859953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31416290A JP2859953B2 (en) 1990-11-21 1990-11-21 Superconducting device and permanent current switch used for the superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31416290A JP2859953B2 (en) 1990-11-21 1990-11-21 Superconducting device and permanent current switch used for the superconducting device

Publications (2)

Publication Number Publication Date
JPH04186806A true JPH04186806A (en) 1992-07-03
JP2859953B2 JP2859953B2 (en) 1999-02-24

Family

ID=18049991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31416290A Expired - Lifetime JP2859953B2 (en) 1990-11-21 1990-11-21 Superconducting device and permanent current switch used for the superconducting device

Country Status (1)

Country Link
JP (1) JP2859953B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472966B1 (en) * 1997-05-15 2002-10-29 Magnet-Motor Gesellschaft Fur Magnetmotorische Technik Mbh Superconducting heavy-current disconnector
JP2009010128A (en) * 2007-06-27 2009-01-15 Central Japan Railway Co Semiconductor switch and persistent current switch system
JP2019160818A (en) * 2018-03-07 2019-09-19 株式会社東芝 High-temperature superconducting magnet device, and operation control device and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472966B1 (en) * 1997-05-15 2002-10-29 Magnet-Motor Gesellschaft Fur Magnetmotorische Technik Mbh Superconducting heavy-current disconnector
JP2009010128A (en) * 2007-06-27 2009-01-15 Central Japan Railway Co Semiconductor switch and persistent current switch system
JP2019160818A (en) * 2018-03-07 2019-09-19 株式会社東芝 High-temperature superconducting magnet device, and operation control device and method thereof

Also Published As

Publication number Publication date
JP2859953B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
US7602269B2 (en) Permanent current switch
CN105706191B (en) Equipment for current limiter and the current limiter including the equipment
US8385994B2 (en) Superconducting joint and method for manufacturing same
JP5276542B2 (en) Superconducting circuit, superconducting connection manufacturing method, superconducting magnet, and superconducting magnet manufacturing method
US6735848B1 (en) Method of manufacturing a superconducting magnet
US20100245005A1 (en) Superconducting wire rod, persistent current switch, and superconducting magnet
DE102005062581B3 (en) Superconducting magnetic coil with quench-protection circuit for magnetic resonance tomography apparatus, has diode in parallel with part of coil, and in thermal contact with coil
WO2014034295A1 (en) Conduction cooling permanent current switch, mri device, nmr device
US4904970A (en) Superconductive switch
JPH01302876A (en) Superconducting switch package
JPH04186806A (en) Superconducting device and permanent current switch applicable to same
JP4477859B2 (en) Permanent current switch, superconducting magnet, and magnetic resonance imaging apparatus
EP3803916B1 (en) Superconducting joints
JP3783518B2 (en) Superconducting wire connection structure
Cui et al. Design and test of superconducting persistent current switch for experimental Nb 3 Sn superconducting magnet
JP6913570B2 (en) Superconducting tape wire, superconducting current lead using this superconducting tape wire, permanent current switch and superconducting coil
JPH08181014A (en) Superconductive magnet device and its manufacture
JP3020315B2 (en) Superconducting switch
CN109285648B (en) Superconducting joint, superconducting magnet system and superconducting joint preparation method
WO2015158470A1 (en) High di/dt superconductive joint
JP2000068567A (en) Conduction cooling perpetual current switch
JPS6161275B2 (en)
JPH07211365A (en) Method and device for connecting superconducting wire and superconducting coil device
JPH0511644B2 (en)
JP2023043040A (en) Connection structure for superconducting wires and connection method therefor