JPH04186258A - Scorotron charging device - Google Patents

Scorotron charging device

Info

Publication number
JPH04186258A
JPH04186258A JP31724590A JP31724590A JPH04186258A JP H04186258 A JPH04186258 A JP H04186258A JP 31724590 A JP31724590 A JP 31724590A JP 31724590 A JP31724590 A JP 31724590A JP H04186258 A JPH04186258 A JP H04186258A
Authority
JP
Japan
Prior art keywords
charging device
arrangement
grid
opening holes
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31724590A
Other languages
Japanese (ja)
Inventor
Tsutomu Hamada
力 浜田
Yoshihiro Hara
原 芳宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31724590A priority Critical patent/JPH04186258A/en
Publication of JPH04186258A publication Critical patent/JPH04186258A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To lower the cost of a scorotron charging device and heighten the performance by making an arrangement of multiple parallelogrammic openings in plural lines arranged on a charged grid the most suitable arrangement. CONSTITUTION:An arrangement of multiple parallelogrammic openings 6 forming in plural lines on a charged grid 5 is provided by shifting the arrangement in the direction of arbitrary sides of the parallelogram. By this arrangement, the number of progressive processes for press working can be reduced. That is to achieve low cost and high performance of a scorotron charging device because the charged grid can be machined at a low cost with high precision by the progressive press working method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子写真装置に用いられる帯電グリッドを有す
るスコロトロン帯電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a scorotron charging device having a charging grid for use in electrophotographic equipment.

従来の技術 近年、電子写真装置のスコロトロン帯電装置において、
その低コスト化、高性能化が強く要望されてきている。
Prior Art In recent years, in scorotron charging devices for electrophotographic devices,
There is a strong demand for lower cost and higher performance.

以下図面を参照しながら、上述した従来のスコロトロン
帯電装置の一例について説明する。
An example of the conventional scorotron charging device described above will be described below with reference to the drawings.

第3図は電子写真装置の断面図で感光ドラム1とスコロ
トロン帯電装置2のみを示す断面図である。第3図にお
いてスコロトロン2は絶縁性のベース3にタングステン
からなるワイヤー4、金属薄板からなる帯電グリッド5
がそれぞれ絶縁して支持構成されている。さらに帯電グ
リッド5は感光ドラム1とワイヤー4間に開口穴6が設
けられている。
FIG. 3 is a sectional view of the electrophotographic apparatus, showing only the photosensitive drum 1 and the scorotron charging device 2. FIG. In FIG. 3, a scorotron 2 includes an insulating base 3, a wire 4 made of tungsten, and a charging grid 5 made of a thin metal plate.
are each insulated and supported. Furthermore, the charging grid 5 is provided with an opening 6 between the photosensitive drum 1 and the wire 4.

以上のように構成されたスコロトロン帯電装置2につい
て、以下その機能について説明する。スコロトロン帯電
装置2は一定速度で矢印六方向へ回転する感光ドラム1
の表面を均一にかつ一定電位に帯電させるものである。
The functions of the scorotron charging device 2 configured as described above will be explained below. A scorotron charging device 2 includes a photosensitive drum 1 that rotates at a constant speed in six directions of arrows.
The surface of the electrode is charged uniformly and at a constant potential.

このためにワイヤー1に高電圧を加え、発生するイオン
で感光ドラム1の表面を帯電させる。ここで帯電グリッ
ド6はグリッド効果により帯電前の感光ドラム1の表面
電位にむらがあっても均一にかつ目標電位に帯電できる
よう制御するものであり、具体的には帯電グリッド5に
ワイヤー4とは異なる高電圧を加える。
For this purpose, a high voltage is applied to the wire 1, and the surface of the photosensitive drum 1 is charged with generated ions. Here, the charging grid 6 controls the charging grid 5 so that it can be charged uniformly to a target potential even if the surface potential of the photosensitive drum 1 before charging is uneven due to the grid effect. applies different high voltages.

第4図は第3図の帯電グリッド5のみを平面図で示した
ものであり、帯電グリッド5には比較的大きい開口穴6
が設けられている。しかしながら上記したグリッド効果
は開口穴6の大きさにより大きく影響されるので、近年
第5図に帯電グリッドの一部を示すように、比較的小さ
な開口穴6を多数も設けることで高性能化を計ろうとす
る傾向にある。
FIG. 4 is a plan view showing only the charging grid 5 shown in FIG. 3, and the charging grid 5 has a relatively large opening hole 6.
is provided. However, the grid effect described above is greatly influenced by the size of the opening holes 6, so in recent years, performance has been improved by providing a large number of relatively small opening holes 6, as shown in part of a charging grid in FIG. There is a tendency to try to measure.

発明が解決しようとする課題 しかしながら第5図のような構成では以下に示す理由に
より加工費の安価なプレス加工法を採用できないため加
工費の高いエツチング加工で帯電グリッド5を加工する
必要があり、結果としてスコロトロン帯電器自体が非常
に高価となるという問題があった。
Problems to be Solved by the Invention However, in the configuration shown in FIG. 5, it is not possible to use the press processing method, which is inexpensive for processing costs, for the reasons shown below, and therefore, it is necessary to process the charged grid 5 by etching processing, which is expensive. As a result, there was a problem in that the scorotron charger itself became very expensive.

プレス加工法を採用できない理由は、コストと精度の両
面で問題が残るためであり、このことについて金型構造
の面から第6図、第7図を使って以下に説明する。第6
図は帯電グリッド5の素材7に全開口穴6を同時にプレ
ス加工しようとするときの概略の全形構造の断面を示す
ものである。
The reason why the press working method cannot be adopted is that problems remain in terms of both cost and precision, and this will be explained below from the perspective of the mold structure using FIGS. 6 and 7. 6th
The figure schematically shows a cross section of the entire structure when all open holes 6 are to be press-formed in the material 7 of the charging grid 5 at the same time.

全開口穴6を同時に加工するには、これに対応した凸部
を有する上型8.凹部を有する下型9で素材7をプレス
すれば良いが、この時下型9の突起部10の幅が非常に
狭いため強度が低下し下型9の寿命が極端に短くなる。
In order to process all the opening holes 6 at the same time, an upper die 8. The material 7 may be pressed using the lower mold 9 having a recessed portion, but at this time, the width of the protrusion 10 of the lower mold 9 is very narrow, so the strength is reduced and the life of the lower mold 9 is extremely shortened.

逆に強度を上げるため突起部10の幅を広くしようとす
ると、必然的に開口穴が小さくなるため帯電グリッドと
しての性能が落ちて(ることになる。なお11はプレス
加工時に素材7が動かないよう保持するための押えであ
る。
On the other hand, if you try to widen the width of the protrusion 10 to increase the strength, the opening hole will inevitably become smaller and the performance as a charging grid will deteriorate (11). This is a presser foot to keep it in place.

このような問題を解決するために、−船釣には第7図に
概略の断面構成を示すような順送りの金型を用いる。こ
れはまず隣接しない開口穴6をプレス加工し、このあと
更に隣接しない開口穴6を別のプレスで加工していく方
法で、これにより下型9の突起部を広(し、金型寿命を
確保できるようにしている。第7図では図示しない別の
金型で隣接しない開口穴6の一部が加工された素材7つ
いて、更に残された開口穴6を加工するときの金型であ
る。なお同一機能部品については第6図と同一番号を記
しである。残された開口穴6を加工するために、これと
対応する凸部を有する上型8、凹部を有する下型9でプ
レス加工すれば全開口穴6が形成されることとなる。こ
の時下型9の突起部10も十分な幅が確保できるという
ことは言うまでもない。
In order to solve these problems, a progressive mold, the schematic cross-sectional configuration of which is shown in FIG. 7, is used for boat fishing. This is a method in which non-adjacent opening holes 6 are first pressed, and then non-adjacent opening holes 6 are further processed using another press.This widens the protrusion of the lower die 9 and extends the life of the die. Fig. 7 shows a mold for processing the remaining opening holes 6 on a material 7 in which a part of the non-adjacent opening holes 6 has been processed using another mold (not shown). Note that parts with the same function are indicated by the same numbers as in Fig. 6. In order to process the remaining opening hole 6, press with an upper die 8 having a corresponding convex part and a lower die 9 having a concave part. By machining, a fully open hole 6 will be formed.It goes without saying that at this time, the protrusion 10 of the lower mold 9 can also have a sufficient width.

しかしながらこのような順送りのプレス加工方法では素
材7の送り量の誤差により開口穴のピッチがずれやすい
という点、また金型数も多(なりコスト上昇につながる
という点で問題が残り、スコロトロン帯電装置の低コス
ト化、高性能化を十分に達成できないという問題点があ
った。逆に考えると順送り行程数が低減できるような開
口穴6の配列こそがスコロトロン帯電装置の低コスト化
と高性能化の向上に大きなポイントとなってくる。
However, with this progressive press processing method, problems remain in that the pitch of the opening holes is likely to shift due to errors in the feeding amount of the material 7, and the number of molds is large (which leads to an increase in cost). There was a problem that it was not possible to sufficiently reduce the cost and improve the performance of the scorotron charging device.Conversely, it is the arrangement of the opening holes 6 that can reduce the number of forward strokes that reduces the cost and improves the performance of the scorotron charging device. This will be a major point for improvement.

、ここで開口穴6の配列と順送り行程数の関係について
考える。順送りのプレス加工法においても当然第6図に
示すような下型9の突起部10があっては意味がない。
, Here, the relationship between the arrangement of the opening holes 6 and the number of progressive strokes will be considered. Even in the progressive press working method, it is of course meaningless if there is a protrusion 10 on the lower die 9 as shown in FIG.

この突起部10は帯電グリッド5の桟部12に対応する
ので、桟部12の交点の周りにいくつの開口穴6がある
かで順送りの行程数が決定されてしまう。第5図におけ
る開口穴6の配列では、桟部12の周りには4つの開口
穴6があるため順送り行程数は必然的に4行程となる。
Since this protrusion 10 corresponds to the crosspiece 12 of the charging grid 5, the number of sequential feeding strokes is determined by how many opening holes 6 are present around the intersection of the crosspieces 12. In the arrangement of the opening holes 6 in FIG. 5, since there are four opening holes 6 around the crosspiece 12, the number of forward strokes is necessarily four.

このため従来の開口穴6の配列ではコスト、精度とも余
り大きな効果は得られないこととなる。
For this reason, the conventional arrangement of the opening holes 6 does not provide much advantageous effects in terms of cost and precision.

本発明は上記問題点に鑑み、開口穴6の配列をプレス加
工法に対して最適な配列にすることにより、安価で精度
の高い帯電グリッドを提供するものである。
In view of the above problems, the present invention provides an inexpensive and highly accurate charging grid by arranging the opening holes 6 in an optimal arrangement for the press working method.

課題を解決するための手段 上記問題点を解決するために本発明のスコロトロン帯電
装置は、帯電グリッドに復列設けられた多数の平行四辺
形の開口穴配列を平行四辺形の任意の辺の方向へずらす
という構成を備えたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the scorotron charging device of the present invention provides a charging grid with a large number of parallelogram-shaped opening holes arranged in rows in the direction of any side of the parallelogram. It has a structure that allows it to move forward.

作   用 本発明は上記した開口穴の配列によってプレス加工を行
うときの順送り行程数を低減できるので、低コスト、高
精度の帯電グリッドの加工を行うことができる。
Function: The present invention can reduce the number of progressive strokes during press working by arranging the opening holes as described above, so that a charging grid can be processed at low cost and with high accuracy.

実施例 以下本発明の一実施例のスコロトロン帯電装置について
、図面を参照しながら説明する。
EXAMPLE Hereinafter, a scorotron charging device according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例におけるスコロトロン帯
電装置の帯電グリッドの一部を示すものである。なお従
来例と同一機能部品については同一番号を記す。第1図
において帯電グリッド5には平行四辺形の開口穴6が4
列設けられており、かつ開口穴6の列は感光ドラムの回
転方向Aと直交方向にずらして設けである。
FIG. 1 shows a portion of a charging grid of a scorotron charging device in a first embodiment of the present invention. Note that the same numbers are used for parts with the same functions as those in the conventional example. In FIG. 1, the charging grid 5 has four parallelogram-shaped opening holes 6.
The opening holes 6 are arranged in rows, and the rows of opening holes 6 are staggered in a direction perpendicular to the rotational direction A of the photosensitive drum.

以上のように構成されたスコロトロン帯電装置について
の動作は従来例と同じであるので省略する。しかしなが
らこのように構成された帯電グリッド5をプレス加工法
により加工するとき、順送りの行程数が低減できる。具
体的には従来例での説明で明確なように、開口穴6の桟
部12の周りには開口穴6が3個しかないため、プレス
加工の順送り行程数は従来の4行程が3行程に短縮でき
る。このため順送りのプレス型数が低減されると同時に
、順送り時の送り精度に起因する送りむら(帯電グリッ
ド5の開口穴6のピッチむら)が発生する確率を低減で
きることとなる。
The operation of the scorotron charging device configured as described above is the same as that of the conventional example, so a description thereof will be omitted. However, when the charging grid 5 configured in this manner is processed by a press working method, the number of sequential feeding steps can be reduced. Specifically, as is clear from the explanation of the conventional example, since there are only three opening holes 6 around the crosspiece 12 of the opening hole 6, the number of progressive strokes in press working is reduced from the conventional four strokes to three strokes. It can be shortened to Therefore, the number of press molds for progressive feeding can be reduced, and at the same time, the probability of occurrence of uneven feeding (uneven pitch of opening holes 6 of charging grid 5) due to feeding accuracy during progressive feeding can be reduced.

以上のように本実施例によれば、帯電グリッド5に整列
して復列設けられた多数の平行四辺形の開口穴6の配列
を平行四辺形の任意の辺の方向へずらして設けることに
より、順送りのプレス加工法で低コストかつ高精度の帯
電グリッドを加工できるので、スコロトロン帯電装置の
低コスト化と高性能化を達成できることとなる。
As described above, according to the present embodiment, the arrangement of the large number of parallelogram-shaped opening holes 6 arranged in rows on the charging grid 5 is shifted in the direction of an arbitrary side of the parallelogram. Since a low-cost, high-precision charging grid can be fabricated using the progressive pressing method, it is possible to achieve lower cost and higher performance of the scorotron charging device.

なお第1の実施例においては平行四辺形の開口穴6を感
光ドラムの回転方向Aと直交方向にずらした構成とした
が、第2図に示すように一部の平行四辺形の向きを列毎
変えてもよい。また平行四辺形の他の辺方向(従来例第
5図の斜め方向の4個の開口穴列方向)にずらしても良
い。
In the first embodiment, the parallelogram-shaped opening holes 6 are shifted in a direction perpendicular to the rotational direction A of the photosensitive drum, but as shown in FIG. You can change it every time. Alternatively, it may be shifted in another side direction of the parallelogram (in the direction of the row of four opening holes in the diagonal direction in FIG. 5 of the conventional example).

発明の効果 以上のように本発明は、スコロトロン帯電装置の帯電グ
リッドに整列して復列設けられた多数の平行四辺形の開
口穴の配列を平行四辺形の任意の辺の方向へずらして設
けることにより、帯電グリッドの低コスト、高精度化す
なわちスコロトロン帯電装置の低コスト化、高性能化を
達成できる。
Effects of the Invention As described above, the present invention provides an arrangement in which a large number of parallelogram-shaped opening holes arranged in a row in parallel with the charging grid of a scorotron charging device are shifted in the direction of an arbitrary side of the parallelogram. By doing so, it is possible to achieve low cost and high accuracy of the charging grid, that is, low cost and high performance of the scorotron charging device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例におけるスコロトロン帯
電装置の帯電グリッドの一部を示す平面図、第2図は第
1の実施例の変形例を示す平面図、第3図は電子写真装
置における感光ドラムとスコロトロン帯電装置の位置関
係をのみを示す断面図、第4図は従来の第1の帯電グリ
ッドの平面図、第5図は従来の第2の帯電グリッドの一
部を示す平面図、第6図、第7図は帯電グリッドをプレ
ス加工法で加工する際の概略の金型構成を示す断面図で
ある。 1・・・・・・感光ドラム、2・・・・・・スコロトロ
ン帯電装置、5・・・・・・帯電グリッド、6・・・・
・・開口穴、12・・・・・・桟部。 代理人の氏名 弁理士小蝦治 明ほか2名第1図 G−一一開口楚 t2−奥6や 第2図 第 3 図 第4図 第5図 第6図
FIG. 1 is a plan view showing a part of the charging grid of a scorotron charging device according to the first embodiment of the present invention, FIG. 2 is a plan view showing a modification of the first embodiment, and FIG. 3 is an electrophotograph. A sectional view showing only the positional relationship between the photosensitive drum and the scorotron charging device in the device, FIG. 4 is a plan view of a conventional first charging grid, and FIG. 5 is a plan view showing a part of a conventional second charging grid. FIGS. 6, 7, and 7 are cross-sectional views showing a schematic mold configuration for processing a charging grid by a press working method. 1...Photosensitive drum, 2...Scorotron charging device, 5...Charging grid, 6...
... Opening hole, 12... Crosspiece. Name of agent Patent attorney Akira Koeji Akira and two others Figure 1 G-11 Opening Chu t2-Oku 6 and Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 感光ドラムに一様な帯電を与えるための帯電グリッドを
備えたスコロトロン帯電装置において、前記帯電グリッ
ドに整列して復列設けられた多数の平行四辺形の開口穴
の配列を、平行四辺形の任意の辺の方向へずらして設け
たことを特徴とするスコロトロン帯電装置。
In a scorotron charging device equipped with a charging grid for uniformly charging a photosensitive drum, a large number of parallelogram-shaped opening holes arranged in a row in parallel with the charging grid are arranged in an arbitrary manner in the parallelogram. A scorotron charging device characterized by being provided offset in the direction of the side.
JP31724590A 1990-11-20 1990-11-20 Scorotron charging device Pending JPH04186258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31724590A JPH04186258A (en) 1990-11-20 1990-11-20 Scorotron charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31724590A JPH04186258A (en) 1990-11-20 1990-11-20 Scorotron charging device

Publications (1)

Publication Number Publication Date
JPH04186258A true JPH04186258A (en) 1992-07-03

Family

ID=18086101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31724590A Pending JPH04186258A (en) 1990-11-20 1990-11-20 Scorotron charging device

Country Status (1)

Country Link
JP (1) JPH04186258A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668154B2 (en) * 2001-05-02 2003-12-23 Nexpress Solutions Llc Device for charging and discharging of printing media in printing presses and copiers
JP2005338797A (en) * 2004-04-30 2005-12-08 Fuji Xerox Co Ltd Grid electrode, scorotron charger, and image forming apparatus
JP2010175725A (en) * 2009-01-28 2010-08-12 Fuji Xerox Co Ltd Charger and image forming device
JP2012220793A (en) * 2011-04-11 2012-11-12 Fuji Xerox Co Ltd Discharger and image forming apparatus
US20130129387A1 (en) * 2011-11-22 2013-05-23 Fuji Xerox Co., Ltd. Control electrode, charging device, and image forming apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668154B2 (en) * 2001-05-02 2003-12-23 Nexpress Solutions Llc Device for charging and discharging of printing media in printing presses and copiers
JP2005338797A (en) * 2004-04-30 2005-12-08 Fuji Xerox Co Ltd Grid electrode, scorotron charger, and image forming apparatus
JP4595643B2 (en) * 2004-04-30 2010-12-08 富士ゼロックス株式会社 Grid electrode, scorotron charger, and image forming apparatus
JP2010175725A (en) * 2009-01-28 2010-08-12 Fuji Xerox Co Ltd Charger and image forming device
JP2012220793A (en) * 2011-04-11 2012-11-12 Fuji Xerox Co Ltd Discharger and image forming apparatus
US20130129387A1 (en) * 2011-11-22 2013-05-23 Fuji Xerox Co., Ltd. Control electrode, charging device, and image forming apparatus

Similar Documents

Publication Publication Date Title
CA1120606A (en) Lsi semiconductor device and fabrication thereof
BR8400202A (en) ELECTRONIC MATRIX SET, PROCESS FOR YOUR MANUFACTURE, FLAT PANEL INDICATOR AND PROCESS FOR YOUR MANUFACTURE
EP0488707B1 (en) Charged particle beam deflector
US3913223A (en) Method of manufacturing a double-sided circuit
JPH04186258A (en) Scorotron charging device
US4751458A (en) Test pads for integrated circuit chips
US5357073A (en) Electrical discharge machine
CN110187611B (en) Arrangement method of exposure areas on wafer
US5694050A (en) Multiprobing semiconductor test method for testing a plurality of chips simultaneously
US4463218A (en) Switching electrode portion of a circuit board for an electronic watch
CN115377094A (en) Semiconductor device layout structure, forming method and test system
US3108364A (en) Manufacture of information storage matrices
CN111697102B (en) Method for adjusting main and auxiliary grid offset of step-by-step printing solar cell
CN116230606A (en) Method for determining exposure position
US4963953A (en) Charge transfer device and method for producing such a device
JPS62188798A (en) Contact pin for plating
JPH0311097B2 (en)
JPS58125879A (en) Solid element and solid element array
EP0130669A1 (en) Gate turn off thyristor with mesh cathode structure
US5084751A (en) Bipolar transistor
JP3798926B2 (en) Semiconductor package manufacturing panel plating method
KR0172895B1 (en) Structure of electric brush and its manufacturing method
EP0190804B1 (en) Television camera-tube
JPS59168681A (en) Amorphous thin film solar cell
EP0420345B1 (en) Influence probe