JPH04184935A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04184935A
JPH04184935A JP31533090A JP31533090A JPH04184935A JP H04184935 A JPH04184935 A JP H04184935A JP 31533090 A JP31533090 A JP 31533090A JP 31533090 A JP31533090 A JP 31533090A JP H04184935 A JPH04184935 A JP H04184935A
Authority
JP
Japan
Prior art keywords
gold
insulating film
inorganic insulating
film
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31533090A
Other languages
Japanese (ja)
Inventor
Kunihiko Kasama
笠間 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31533090A priority Critical patent/JPH04184935A/en
Publication of JPH04184935A publication Critical patent/JPH04184935A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the resit trailing and prevent the generation of shoulder part in a gold-plated wiring, by forming an inorganic insulating film between a gold thin film for an electrode and a positive type resist for a gold-plating mask at the time of gold-plating. CONSTITUTION:After a layer insulating film 102 is deposited on an Si substrate 101, a gold thin film 103 is vapor-deposited, on which an Si oxide film 104 is deposited. Positive type resit 105 is applied, and exposure and development are performed. The film 104 is etched, and, in this case, a little side etching is performed. Gold 109 is grown in a resist aperture part by plating treatment. The resist 105 is eliminated. Finally, when the film 103 is eliminated, a gold wiring pattern 110 is formed. Thereby the trailing of resist can be avoided, so that the generation of shoulder part in the pattern 109 is restrained, and the adhesion to a substratum gold thin film and the shape of gold wiring can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に金めつき法
を用いた微細金配線形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming fine gold wiring using a gold plating method.

〔従来の技術〕[Conventional technology]

近年、コンピュータ用LSIの高速化、高集積化に伴い
、マイグレーション耐性が優れた金を微細配線材料とし
て用いる検討が行なわれている。
In recent years, as computer LSIs have become faster and more highly integrated, studies have been conducted to use gold, which has excellent migration resistance, as a fine wiring material.

その中で金めつき法はパターン形成がめつき用マスクと
して使用されるレジストの解像性によって決定されるの
で比較的容易に微細化できる可能性がある。
Among them, in the gold plating method, pattern formation is determined by the resolution of the resist used as a plating mask, so it may be possible to miniaturize the pattern relatively easily.

第2図に従来の金めつき法による配線パターン形成方法
を示す。第2図(a)は層間絶縁膜202上に金めつき
用電極となる金薄膜203を500〜1000人程度ス
パッタ蒸着した姿態を示す。
FIG. 2 shows a method of forming a wiring pattern using a conventional gold plating method. FIG. 2(a) shows a state in which a thin gold film 203, which will become an electrode for gold plating, is sputter-deposited on an interlayer insulating film 202 by about 500 to 1000 people.

次にめっき用マスクとなるポジ型レジスト204をめっ
きされる金の膜厚を考慮して1〜2μm回転塗布しく第
2図(b))、さらに通常の露光、現像処理を行うと第
2図(c)に示す姿態となる。
Next, a positive resist 204, which will become a plating mask, is spin-coated to a thickness of 1 to 2 μm considering the thickness of the gold to be plated (Fig. 2(b)), and then normal exposure and development are performed as shown in Fig. 2. The position shown in (c) will be obtained.

次に亜硫酸金ナトリウム(A u N a S 04)
等を含むめっき液中で金206を成長させた後(第2図
(d))、レジストをレジスト剥離液あるいは酸素プラ
ズマにより剥離する(第2図(e))。最後に金薄膜2
03をミリング等により除去すると第2図(「)に示す
金配線パターン207が形成される。
Next, sodium gold sulfite (A u Na S 04)
After growing gold 206 in a plating solution containing the like (FIG. 2(d)), the resist is removed using a resist stripping solution or oxygen plasma (FIG. 2(e)). Finally, gold thin film 2
When 03 is removed by milling or the like, a gold wiring pattern 207 shown in FIG. 2 ( ) is formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来の金めつきによる金配線の形成方法では金薄膜
203上にレジストパターンを形成する際めっき液耐性
向上のためポジ型レジストの密着性を上げるとポジ型し
ジスト/金薄幕界面にレジストのスソ引きを生じやすい
という問題点があった。そのため前記レジストパターン
をマスクとして金めつき処理を行うと金めっき界面でく
びれを生じ、1μm前後の配線巾では密着性が低下しは
がれやすい、金配線上に層間絶縁膜をプラズマ成長ある
いは塗布する際にくびれ部に空間が生じ、後の信頼性上
の問題が生じやすい、という問題点があった。
In this conventional method of forming gold wiring by gold plating, when forming a resist pattern on the gold thin film 203, it is necessary to increase the adhesion of the positive resist to improve the resistance to the plating solution. There was a problem in that it was easy to cause stains. Therefore, when gold plating is performed using the resist pattern as a mask, a constriction occurs at the gold plating interface, and when the wiring width is around 1 μm, the adhesion deteriorates and it easily peels off.When plasma growing or coating an interlayer insulating film on the gold wiring, There is a problem in that a space is created at the constriction, which tends to cause later reliability problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の金配線パターンの形成方法は金薄膜とポジ型レ
ジスト間に無機絶縁膜を形成し前記スソ引きを解消する
ものである。
The method for forming a gold wiring pattern of the present invention is to form an inorganic insulating film between a thin gold film and a positive resist to eliminate the streaking.

無機絶縁膜としてはシリコン酸化膜あるいはシリコン窒
化膜を用いる。その際、無機絶縁膜の膜厚としてはレジ
スト/無機絶縁膜界面で多重干渉効果によりスカム残り
を生じない膜厚に設定する。
A silicon oxide film or a silicon nitride film is used as the inorganic insulating film. At this time, the thickness of the inorganic insulating film is set to a thickness that does not cause scum residue due to multiple interference effects at the resist/inorganic insulating film interface.

例えばシリコン酸化膜の場合、g線(436nm)露光
で1500人前後(あるいはその倍数)、i線(365
nm)露光でおよそ1260人(あるいはその倍数)に
膜厚を調整する(シリコン窒化膜ではシリコン酸化膜の
約0.7倍)。この時レジスト/無機絶縁膜界面の露光
光強度が多重干渉効果により増大し、レジストスカム残
りは生じない。
For example, in the case of a silicon oxide film, when exposed to G-line (436 nm), approximately 1500 people (or multiples thereof) and I-line (365 nm)
The film thickness is adjusted to approximately 1260 nm (or a multiple thereof) by exposure (silicon nitride film is approximately 0.7 times that of silicon oxide film). At this time, the exposure light intensity at the resist/inorganic insulating film interface increases due to the multiple interference effect, and no resist scum remains.

また無機絶縁膜エツチング時、サイドエツチングが若干
はいる様等方性エツチングを加えればめっき界面の配線
巾を大きくとれるので密着性は向上する。さらに無機絶
縁膜のサイドエツチング後酸素プラズマ処理を行えば無
機絶縁膜界面部の凸部が除去されるので金めつき配線形
状は改善され密着性はさらに向上する。
Furthermore, when etching the inorganic insulating film, if isotropic etching is performed so that there is some side etching, the wiring width at the plating interface can be increased and the adhesion will be improved. Furthermore, if oxygen plasma treatment is performed after side etching the inorganic insulating film, the protrusions at the interface of the inorganic insulating film are removed, thereby improving the shape of the gold-plated wiring and further improving the adhesion.

〔実旌例〕[Actual example]

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の断面図である。第1図(a
)は層間絶縁膜102を堆積後、金薄膜103を500
〜1000人スパッタ蒸着しさらにその上にシリコン酸
化膜104を約1500人(g線露光の場合)プラズマ
化学気相成長あるいはスパッタ法により堆積した姿態を
示す。次にポジ型レジスト105を1〜2μm回転塗布
しく第1図(b乃、g線ステッパによる露光と現像処理
を行うと第1図(C)に示す姿態となる。この時ポジ型
レジスト/シリコン酸化膜界面の露光光強度は増大しポ
ジ型レジストの溶解性が増大するのでスカム残りが生じ
ない。さらにフッ酸緩衝液によるウェットエツチングあ
るいはCF 4あるいはSF、等の反応ガスプラズマに
よるドライエツチングによりシリコン酸化膜104をエ
ツチングする。その際配線巾寸法を考慮し、若干のサイ
ドエツチングを加える。例えば1μm巾の配線の場合両
側で0.2μm程度サイドエツチングを行う(第1図(
d))。また金めっき前にシリコン酸化膜近傍のレジス
ト凸部108を酸素プラズマ処理により除去すればさら
に金配線形状は改善される(第1図(e乃。
FIG. 1 is a sectional view of an embodiment of the present invention. Figure 1 (a
), after depositing the interlayer insulating film 102, the gold thin film 103 is deposited at a thickness of 500 nm.
This figure shows a state in which a silicon oxide film 104 is deposited by about 1,500 people (in the case of G-line exposure) by plasma chemical vapor deposition or sputtering. Next, a positive resist 105 is spin-coated to a thickness of 1 to 2 μm, and after exposure and development using a stepper (b and g) shown in FIG. 1, the state shown in FIG. The intensity of the exposure light at the oxide film interface increases and the solubility of the positive resist increases, so no scum remains.Furthermore, the silicon is etched by wet etching with a hydrofluoric acid buffer or dry etching with reactive gas plasma such as CF4 or SF. Etch the oxide film 104. At this time, take the wiring width dimension into consideration and add some side etching. For example, in the case of a 1 μm wide wiring, side etching is performed by about 0.2 μm on both sides (see Figure 1).
d)). Furthermore, if the resist protrusions 108 near the silicon oxide film are removed by oxygen plasma treatment before gold plating, the shape of the gold wiring can be further improved (see Fig. 1 (e)).

第1図(「)は亜硫酸ナトリウム(A u N a S
 O4)を含むめっき液中の液温を40〜60℃に保ち
レジスト開口部に金を成長した後の断面構造を示したも
のである。
Figure 1 ('') shows sodium sulfite (A u N a S
This figure shows the cross-sectional structure after gold was grown in the resist openings while keeping the temperature of the plating solution containing O4) at 40 to 60°C.

次にレジストを剥離液あるいは酸素プラズマ処理により
剥離し、さらにシリコン酸化膜をフッ酸緩衝液により除
去する(第1図(g))。最後にArイオン等のミリン
グ処理により金薄膜103が除去されると第1図(h)
に示す金配線パターン109が形成される。
Next, the resist is removed using a removal solution or oxygen plasma treatment, and the silicon oxide film is further removed using a hydrofluoric acid buffer (FIG. 1(g)). Finally, the gold thin film 103 is removed by milling treatment using Ar ions, etc., as shown in Fig. 1 (h).
A gold wiring pattern 109 shown in is formed.

斯くのごとく本発明を微細金配線形式に適用するとポジ
型レジストのスソ引きが解消されるため金配線のくびれ
部の発生が抑えられるとともに、シリコン酸化膜のサイ
ドエツチングおよび酸素プラズマ処理によるポジ型レジ
ストの凸部の除去により下地金薄膜との密着性および金
配線形状を向上させることが可能となる。
As described above, when the present invention is applied to the fine gold wiring format, the streaking of the positive resist is eliminated, thereby suppressing the occurrence of constrictions in the gold wiring, and the positive resist is also formed by side etching of the silicon oxide film and oxygen plasma treatment. By removing the convex portions, it is possible to improve the adhesion with the underlying gold thin film and the shape of the gold wiring.

前実旅例はシリコン酸化膜を用いたが同様な効果はシリ
コン窒化膜を用いても得ることができる。
In the previous example, a silicon oxide film was used, but similar effects can be obtained using a silicon nitride film.

但しシリコン窒化膜を用いる場合多重緩衝効果によりポ
ジ型レジスト/シリコン窒化膜界面にスソ引きが生じな
い膜厚の条件は約1260人(およびその倍数)となる
。またC F 4あるいはCH2F2等のドライエツチ
ング時に若干のサイドエツチングを加える。さらに酸素
プラズマ処理によりシリコン窒化膜界面近傍のレジスト
凸部を除去することにより金めつき配線の密着性、形状
をさらに向上させることができる。
However, when a silicon nitride film is used, the film thickness condition under which streaking does not occur at the positive resist/silicon nitride film interface due to multiple buffering effects is about 1260 (and multiples thereof). Also, some side etching is added during dry etching using CF4 or CH2F2. Furthermore, the adhesion and shape of the gold-plated wiring can be further improved by removing resist protrusions near the silicon nitride film interface by oxygen plasma treatment.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明は金めつき時の電極用金薄膜と
金めっきマスクのポジ型レジストの間に無機絶縁膜を導
入することによりレシストスソ引きを無くし、金めつき
配線のくびれの問題を解消できるという効果をもつ。
As explained above, the present invention eliminates resist warpage by introducing an inorganic insulating film between the gold thin film for electrodes during gold plating and the positive resist of the gold plating mask, and solves the problem of constriction in gold-plated wiring. It has the effect of eliminating

さらに上記無機絶縁膜のサイドエツチング、酸素プラズ
マ処理によるレジスト開口底部の凸部の除去によって、
密着性、形状の優れた金配線を形成できるという効果が
ある。
Furthermore, by side etching the inorganic insulating film and removing the protrusions at the bottom of the resist opening by oxygen plasma treatment,
This has the effect of forming gold wiring with excellent adhesion and shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実旅例を、第2図は従来例を説明し
たものである。 101.201・・・・・・シリコン基板、102゜2
02・・・・・・層間絶縁膜、103,203・・・・
・・金めつき時の電極となる金薄膜、104・・川・シ
リコン酸化膜、105,204・・・・・・ポジ型レジ
スト、106.205・・・・・・レジスト開口部、1
o7・旧・・シリコン酸化膜のサイドエッチ部、1o8
・旧・・ポジ型レジストの凸部、109,206・・川
・めっき処理により成長した金、110,207・・印
・金配線パターン。 代理人 弁理士  内 原   音 (bン (C〕 第1 図 cdン Ce) 第 l 図 (、?) 第1 図 (α) (b) <C) 第2図 (d) Ce> 第2 図
FIG. 1 illustrates an example of the present invention, and FIG. 2 illustrates a conventional example. 101.201...Silicon substrate, 102゜2
02... Interlayer insulating film, 103, 203...
...Gold thin film to serve as an electrode during gold plating, 104...River silicon oxide film, 105,204...Positive resist, 106.205...Resist opening, 1
o7・Old...Side etched part of silicon oxide film, 1o8
- Old: Convex portion of positive resist, 109,206... River: Gold grown by plating process, 110,207... Mark: Gold wiring pattern. Agent Patent Attorney Uchihara Sound (bn (C) Fig. 1 cdn Ce) Fig. l (,?) Fig. 1 (α) (b) <C) Fig. 2 (d) Ce> Fig. 2

Claims (5)

【特許請求の範囲】[Claims] (1)金配線パターンをめっき法を用いて形成する工程
において金めっき電極用金薄膜を形成する工程と、その
上に無機絶縁膜を形成する工程と、ポジ型レジストを塗
布し配線パターン露光、現像する工程とポジ型レジスト
をマスクとして上記無機絶縁膜をエッチングする工程と
めっき法によりレジスト開口部に金を成長する工程とポ
ジ型レジストおよび無機絶縁膜をエッチング後、金めっ
き電極用金薄膜を除去する工程を含むことを特徴とする
半導体装置の製造方法。
(1) In the step of forming a gold wiring pattern using a plating method, a step of forming a gold thin film for a gold plating electrode, a step of forming an inorganic insulating film thereon, a step of applying a positive resist and exposing the wiring pattern, A step of developing, a step of etching the inorganic insulating film using the positive resist as a mask, a step of growing gold in the openings of the resist by a plating method, and after etching the positive resist and the inorganic insulating film, a thin gold film for gold plating electrodes. A method for manufacturing a semiconductor device, comprising a step of removing.
(2)前記無機絶縁膜としてシリコン酸化膜、シリコン
窒化膜を用いることを特徴とする請求項1の半導体装置
の製造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein a silicon oxide film or a silicon nitride film is used as the inorganic insulating film.
(3)前記無機絶縁膜の形成においてポジ型レジスト/
無機絶縁膜界面に多重干渉によるスカム残りが生じない
様に無機絶縁膜の膜厚を設定することを特徴とする請求
項1又は2の半導体装置の製造方法。
(3) In forming the inorganic insulating film, use a positive resist/
3. The method of manufacturing a semiconductor device according to claim 1, wherein the thickness of the inorganic insulating film is set so that no scum remains at the interface of the inorganic insulating film due to multiple interference.
(4)前記無機絶縁膜のエッチングにおいて等方性エッ
チングを加えて一定量のサイドエッチングを行うことを
特徴とする請求項1、2又は3の半導体装置の製造方法
(4) The method of manufacturing a semiconductor device according to claim 1, 2 or 3, characterized in that in etching the inorganic insulating film, isotropic etching is added to perform a certain amount of side etching.
(5)前記無機絶縁膜のサイドエッチング後、ポジ型レ
ジスト/無機絶縁膜界面領域のポジ型レジストの凸部を
酸素プラズマ処理により除去することを特徴とする請求
項4の半導体装置の製造方法。
(5) After the side etching of the inorganic insulating film, a convex portion of the positive resist in the positive resist/inorganic insulating film interface region is removed by oxygen plasma treatment.
JP31533090A 1990-11-20 1990-11-20 Manufacture of semiconductor device Pending JPH04184935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31533090A JPH04184935A (en) 1990-11-20 1990-11-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31533090A JPH04184935A (en) 1990-11-20 1990-11-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04184935A true JPH04184935A (en) 1992-07-01

Family

ID=18064113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31533090A Pending JPH04184935A (en) 1990-11-20 1990-11-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04184935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379871B1 (en) 1998-06-10 2002-04-30 Nec Corporation Method for fabricating a mask for a LIGA process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379871B1 (en) 1998-06-10 2002-04-30 Nec Corporation Method for fabricating a mask for a LIGA process

Similar Documents

Publication Publication Date Title
KR0170949B1 (en) Metal layer forming method
JP2606900B2 (en) Pattern formation method
KR930001956B1 (en) Forming method of fine pattern
JP2000124203A (en) Fine pattern formation method
TW451363B (en) Solution to prevent the generation of metal fiber
JPH04184935A (en) Manufacture of semiconductor device
JP2570735B2 (en) Multi-layer wiring formation method
JPH07321091A (en) Etching and wiring forming method
JPS614233A (en) Etching method of transparent electrically conductive film
JP2521329B2 (en) Method for manufacturing semiconductor device
JPS583232A (en) Forming method for pattern
KR960013140B1 (en) Fabricating method of semiconductor device
JPH0416009B2 (en)
JPH058856B2 (en)
JP3354959B2 (en) Photomask manufacturing method
JP2699498B2 (en) Method for manufacturing semiconductor device
JPS59926A (en) Method for selective etching of aluminum film
JPS5984444A (en) Pattern formation
KR100615822B1 (en) Method for eliminating the particle of semiconductor device
JPS6030101B2 (en) Pattern formation method
JPS6332935A (en) Method for reversing pattern
JPH0629318A (en) Manufacture of thin film transistor
JPS5863149A (en) Manufacture of electrode for semiconductor device
JPS6193629A (en) Manufacture of semiconductor device
JPS6286714A (en) Forming method for electrode of semiconductor device