JPH04184820A - Manufacture of tape-shaped oxide superconductor - Google Patents

Manufacture of tape-shaped oxide superconductor

Info

Publication number
JPH04184820A
JPH04184820A JP2313579A JP31357990A JPH04184820A JP H04184820 A JPH04184820 A JP H04184820A JP 2313579 A JP2313579 A JP 2313579A JP 31357990 A JP31357990 A JP 31357990A JP H04184820 A JPH04184820 A JP H04184820A
Authority
JP
Japan
Prior art keywords
oxide superconductor
layer
metal
sheet
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2313579A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Kiyoshi Nemoto
清 根本
Masanao Mimura
三村 正直
Naoki Uno
直樹 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2313579A priority Critical patent/JPH04184820A/en
Publication of JPH04184820A publication Critical patent/JPH04184820A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To efficiently produce an excellent tape-shaped oxide superconductor by a coat metal layer on a superconductor layer by the use of molten metal having a lower melting point than the melting starting temperature of an oxide superconductor constituting an oxide superconducting layer. CONSTITUTION:A metal sheet-shaped body 10 is made to run in one direction at a constant speed, then a specified amount of raw material for oxide superconductor 14 is discharged on one surface of the sheet-shaped body 10 from a dispenser 12 arranged at a higher position than the position where the body 10 travels, and it is rolled by a roller 16 positioned at the rear stage of the dispenser 12, whereby a raw material-coated layer for oxide superconductor with a specified thickness can be prepared. Namely, in forming such metal layer on the oxide superconductor layer, a sheet-shaped member 22 is travelled in a fixed direction at a constant speed, then a molten metal 28 heated 26 is supplied by a specified amount from a nozzle 24 positioned at a higher position than the position where the sheet-shaped member 22 onto the oxide conductor layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、テープ状酸化物超電導導体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a tape-shaped oxide superconductor.

[従来の技術] Y−Ba−Cu−0系、B1−8r−Ca−Cu−0系
、TI −Ba−Ca−Cu−0系等の酸化物超電導体
は、Tc(臨界温度)が液体窒素温度を超えるため種々
の用途への応用が期待されいる。特に、このような酸化
物超電導体を種々の形状に成型することが検討されてい
る。
[Prior art] Oxide superconductors such as Y-Ba-Cu-0 series, B1-8r-Ca-Cu-0 series, and TI-Ba-Ca-Cu-0 series have Tc (critical temperature) of liquid. Because it exceeds the nitrogen temperature, it is expected to be used in a variety of applications. In particular, molding such oxide superconductors into various shapes is being considered.

例えば、酸化物超電導体をバルク状に成型するためには
、まず酸化物超電導体用原料を所望形状および所望寸法
に圧縮成型し、その後得られた成゛型体に熱処理を施す
For example, in order to mold an oxide superconductor into a bulk shape, a raw material for the oxide superconductor is first compressed into a desired shape and size, and then the resulting molded body is heat-treated.

また、酸化物超電導体を線状体に成型する方法として、
従来金属シース法が用いられている。この方法は、酸化
物超電導体の原料をシース材である金属パイプ内に充填
して複合ビレットを作製し、次いでこの複合ビレットを
塑性加工により所望形状、所望寸法に仕上げ、その後こ
れに酸化物超電導体用原料を酸化物超電導体に反応させ
るための熱処理を施して酸化物超電導線状体を得るもの
である。
In addition, as a method of forming an oxide superconductor into a linear body,
Conventionally, a metal sheath method has been used. In this method, raw materials for the oxide superconductor are filled into a metal pipe as a sheath material to create a composite billet, and then this composite billet is finished into the desired shape and dimensions by plastic processing, and then the oxide superconductor is An oxide superconducting wire is obtained by subjecting a raw material for body use to a heat treatment to react with an oxide superconductor.

ここで、酸化物超電導体用原料は、例えば以下のように
して調製する。まず、酸化物超電導体の構成元素の酸化
物、炭酸塩等のような一次原料粉末を所望の酸化物超電
導体組成となるように配合し、これを充分に混合する。
Here, the raw material for the oxide superconductor is prepared, for example, as follows. First, primary raw material powders such as oxides, carbonates, etc. of the constituent elements of the oxide superconductor are blended to give a desired oxide superconductor composition, and mixed thoroughly.

次いで、この混合粉末を仮焼成して仮焼成体を得るか、
もしくはこの混合粉末を加熱溶融し、その後急冷して塊
状体を得る。次いで、得られた仮焼成体もしくは塊状体
を粉砕して酸化物超電導体用原料とする。
Next, this mixed powder is calcined to obtain a calcined body, or
Alternatively, this mixed powder is heated and melted, and then rapidly cooled to obtain a lump. Next, the obtained pre-calcined body or block is pulverized to obtain a raw material for an oxide superconductor.

塑性加工としては、線状体、テープ状体の形状に応じて
それぞれ押出、圧延、引き抜き、スウエージング等が用
いられる。この塑性加工により、断面形状が円形、楕円
形、矩形、またはテープ形状のものを容易に製造するこ
とができる。
As the plastic working, extrusion, rolling, drawing, swaging, etc. are used depending on the shape of the linear object or tape-like object. By this plastic working, it is possible to easily manufacture a material having a circular, elliptical, rectangular, or tape-shaped cross section.

また、この方法を利用して、線状体を複数本束ね、その
外側に金属シースを施した多芯線、径が異なる複数個の
金属パイプを同心円状に配置しそのパイプ間隙部に酸化
物超電導体を充填してなる同心円筒状体、または断面に
おいて金属層と酸化物超電導体層とが渦巻状に配置され
ている多層線状体等も試作検討されている。
In addition, using this method, multiple wire bodies are bundled together, a multicore wire with a metal sheath on the outside, and multiple metal pipes with different diameters are arranged concentrically, and oxide superconducting is conducted in the gaps between the pipes. Prototype production of concentric cylindrical bodies formed by filling a solid body, or multilayer linear bodies in which metal layers and oxide superconductor layers are spirally arranged in cross section, is also being considered.

この方法において、酸化物超電導体となすための熱処理
温度は、用いる酸化物超電導体用原料の種類により決定
される。例えば、Y系の酸化物超電導体用原料の場合は
900〜950℃であり、Bi系の酸化物超電導体用原
料の場合は850〜900℃である。
In this method, the heat treatment temperature for forming an oxide superconductor is determined by the type of raw material for the oxide superconductor used. For example, in the case of a Y-based oxide superconductor raw material, the temperature is 900 to 950°C, and in the case of a Bi-based oxide superconductor raw material, it is 850 to 900°C.

シース材に用いられる金属材料としては、熱伝導性、電
気伝導性に優れたAg、Ag合金、Cu。
Metal materials used for the sheath material include Ag, Ag alloy, and Cu, which have excellent thermal conductivity and electrical conductivity.

Cu合金等が用いられる。なかでも酸素透過性に′優れ
るAgSAg合金が特に好ましい。
A Cu alloy or the like is used. Among these, AgSAg alloys, which have excellent oxygen permeability, are particularly preferred.

このような金属シース法を用いてテープ状酸化物超電導
導体を製造する場合は、酸化物超電導体力原料を金属パ
イプ内に充填して複合ビレットを作製し、この複合ビレ
ットに圧延を中心とした塑性加工を施した後に熱処理を
施す。
When manufacturing a tape-shaped oxide superconductor using such a metal sheath method, a composite billet is created by filling a metal pipe with the oxide superconductor raw material, and the composite billet is subjected to plasticity mainly through rolling. Heat treatment is performed after processing.

[発明が解決しようとする課題] しかしながら、上記の如くして得られた複合線状体に酸
化物超電導体となすべき所定の条件下で熱処理を施すと
、その熱処理過程で酸化物超電導体用原料からガスが発
生し、第3図に示すようにシース材30と酸化物超電導
体32の間に空隙34ができ、このためシース材30が
変形してしまう。この結果、テープ状酸化物超電導導体
として可撓性が低下し、取扱いが非常に困難になる。
[Problems to be Solved by the Invention] However, when the composite linear body obtained as described above is heat-treated under predetermined conditions to form an oxide superconductor, in the heat treatment process Gas is generated from the raw material, and a gap 34 is created between the sheath material 30 and the oxide superconductor 32 as shown in FIG. 3, resulting in deformation of the sheath material 30. As a result, the flexibility of the tape-shaped oxide superconducting conductor decreases, making it extremely difficult to handle.

また、テープ状酸化物超電導導体として見掛は上のJc
(臨界電流密度)値が低下するという問題点がある。
In addition, as a tape-shaped oxide superconducting conductor, the appearance is Jc
There is a problem that the (critical current density) value decreases.

本発明はかかる点に鑑みてなされたものであり、優れた
超電導体特性を発揮することができるテープ状酸化物超
電導導体を空隙の発生を防止しつつ効率よく製造するこ
とができるテープ状酸化物超電導導体の製造方法を提供
することを目的とする。
The present invention has been made in view of these points, and provides a tape-shaped oxide superconductor that can efficiently produce a tape-shaped oxide superconductor that can exhibit excellent superconducting properties while preventing the generation of voids. The purpose of the present invention is to provide a method for manufacturing a superconducting conductor.

[課題を解決するための手段] 本発明は、金属製のシート状体上に酸化物超電導体用原
料を被覆し、これに所定の熱処理を施して酸化物超電導
体層を形成し、次いで該酸化物超電導体層を構成する酸
化物超電導体の溶融開始温度より低い温度の融点を有す
る金属の融液を用いて前記超電導体層上に被覆金属層を
形成することを特徴とするテープ状酸化物超電導導体の
製造方法を提供する。
[Means for Solving the Problems] The present invention involves coating a metal sheet with a raw material for an oxide superconductor, subjecting it to a predetermined heat treatment to form an oxide superconductor layer, and then coating the metal sheet with a raw material for an oxide superconductor. A tape-shaped oxidation method comprising forming a coating metal layer on the superconductor layer using a melt of a metal having a melting point lower than the melting start temperature of the oxide superconductor constituting the oxide superconductor layer. A method for manufacturing a superconducting conductor is provided.

ここで、金属製のシート状体上に酸化物超電導体用原料
を被覆する方法としては、例えば第1図に示すように、
金属製のシート状体10を一定の速度で一方向に走行さ
せ、シート状体10が走行する位置よりも高い位置に設
置されたデイスペンサー12からシート状体10の一方
の表面上に一定量で酸化物超電導体用原料14を吐出し
、デイスペンサー12の後段に設置されたローラー16
゛で圧延することにより、所定の厚さの酸化物超電導体
用原料被覆層を得る方法が挙げられる。また、この方法
において酸化物超電導体用原料14をデ、イスペンサー
12から吐出して供給する代わりに酸化物超電導体用原
料の融液をデイスペンサー12から吐出して供給しても
よい。また、酸化物超電導体用原料とバインダーとを充
分に混練して得られたペーストをシート状体上に塗布す
ることにより酸化物超電導体用原料被覆層を形成しても
よい。
Here, as a method for coating a metal sheet with a raw material for an oxide superconductor, for example, as shown in FIG.
A metal sheet-like body 10 is made to travel in one direction at a constant speed, and a certain amount is applied onto one surface of the sheet-like body 10 from a dispenser 12 installed at a higher position than the position where the sheet-like body 10 is traveling. The raw material 14 for oxide superconductor is discharged by the roller 16 installed at the rear stage of the dispenser 12.
A method for obtaining a coating layer of a raw material for an oxide superconductor having a predetermined thickness by rolling the oxide superconductor at a predetermined thickness can be mentioned. Furthermore, in this method, instead of discharging and supplying the oxide superconductor raw material 14 from the dispenser 12, a melt of the oxide superconductor raw material may be discharged from the dispenser 12 and supplied. Alternatively, the oxide superconductor raw material coating layer may be formed by applying a paste obtained by sufficiently kneading the oxide superconductor raw material and a binder onto the sheet-like body.

シート状体に用いられる金属としては、酸化物超電導体
との反応性に乏しいものが用いられる。
As the metal used for the sheet-like body, a metal having poor reactivity with the oxide superconductor is used.

このような金属としてAg SA u s P t 、
あるいはこれらの合金が好ましい。
Such metals include Ag SA u s P t ,
Alternatively, alloys thereof are preferred.

シート状体の片側に被覆された酸化物超電導体用原料を
酸化物超電導体となすと同時に酸化物超電導体用原料が
酸化物超電導体となる際に発生するガスを除去ための熱
処理の温度は、例えば、Y系の酸化物超電導体用原料の
場合は900〜950℃であり、Bi系の酸化物超電導
体用原料の場合は850〜900℃である。なお、酸化
物超電導体用原料とバインダーとを充分に混練して得ら
れたペーストを用いる場合には、熱処理工程で脱バイン
ダー処理を行うことが好ましい。
The temperature of the heat treatment for converting the oxide superconductor raw material coated on one side of the sheet-like body into an oxide superconductor and simultaneously removing the gas generated when the oxide superconductor raw material transforms into an oxide superconductor is For example, in the case of Y-based raw material for oxide superconductor, the temperature is 900 to 950°C, and in the case of Bi-based raw material for oxide superconductor, it is 850 to 900°C. In addition, when using a paste obtained by sufficiently kneading the raw material for an oxide superconductor and a binder, it is preferable to perform a binder removal treatment in the heat treatment step.

走行させて酸化物超電導体層を設けたシート状体は、酸
化物超電導体層に悪影響を与えない程度の曲げの許容範
囲内で巻き取っておくことが好ましい。
It is preferable that the sheet-shaped body provided with the oxide superconductor layer by running is wound up within an allowable bending range that does not adversely affect the oxide superconductor layer.

酸化物超電導体層上に金属層を形成する方法としては、
例えば第2図に示すように、酸化物超電導体層20を設
けたシート状体22を一定の速度で一方向に走行させ、
シート状体22が走行する位置よりも高い位置に設置さ
れたノズル24からあらかじめヒータ等の加熱手段26
により加熱溶融された金属融液28を酸化物超電導体層
上に一定゛量で供給することにより、所定の厚さ?金馬
−層を得る方法が挙げられる。
As a method for forming a metal layer on an oxide superconductor layer,
For example, as shown in FIG. 2, a sheet-like body 22 provided with an oxide superconductor layer 20 is run in one direction at a constant speed,
Heating means 26 such as a heater is supplied in advance from a nozzle 24 installed at a higher position than the position where the sheet-like body 22 travels.
By supplying a constant amount of the metal melt 28 heated and melted onto the oxide superconductor layer, a predetermined thickness is obtained. A method for obtaining a gold horse layer is mentioned.

この場合、金属融液28が酸化物超電導体層20上に供
給されたときに金属融液28の温度により酸化物超電導
体が溶融しないように、酸化物′超電導体が溶融を開始
する温度よりも高い温度の融点を有する金属を選択する
必要がある。酸化物超電導体が溶融を開始する温度は、
酸化物超電導体の種類により異なるが、例えばBi系酸
化物超電導体の場合は840℃、Y系酸化物超電導体の
場合は950℃である。また、金属融液28として用い
る金属は、酸化物超電導体との反応性に乏しいものを選
択する必要がある。しかしながら、金属融液28を酸化
物超電導体層20上に供給した後急冷することにより、
金属融液28の金属と酸化物超電導体との反応を防止す
ることができる。
In this case, in order to prevent the oxide superconductor from melting due to the temperature of the metal melt 28 when the metal melt 28 is supplied onto the oxide superconductor layer 20, the temperature is lower than the temperature at which the oxide' superconductor starts melting. It is also necessary to choose a metal that has a high melting point. The temperature at which an oxide superconductor begins to melt is
Although it differs depending on the type of oxide superconductor, the temperature is, for example, 840°C in the case of a Bi-based oxide superconductor, and 950°C in the case of a Y-based oxide superconductor. Further, the metal used as the metal melt 28 needs to be selected from a metal that has poor reactivity with the oxide superconductor. However, by supplying the metal melt 28 onto the oxide superconductor layer 20 and then rapidly cooling it,
Reaction between the metal in the metal melt 28 and the oxide superconductor can be prevented.

このような金属として、Ag、Au5Ptをベース金属
としその融点を下げるために他の金属を添加した合金等
が用いられる。その添加する金属としては、Pb、Sn
S In5SbSBtqおよびこれらの合金等を用いる
ことができる。また、金属融液28を酸化物超電導体層
20上に供給した後急冷する方法を採用する場合には、
A1−Ag、AI −8iSAM−Cu合金等のA1合
金等を金属融液の金属として使用することができる。
As such a metal, an alloy or the like is used in which Ag or Au5Pt is used as a base metal and other metals are added to lower the melting point. The metals added include Pb, Sn
S In5SbSBtq, alloys thereof, and the like can be used. Further, when adopting a method of supplying the metal melt 28 onto the oxide superconductor layer 20 and then rapidly cooling it,
A1 alloys such as A1-Ag and AI-8iSAM-Cu alloys can be used as the metal of the metal melt.

[作 用] 本発明のテープ状酸化物超電導導体の製造方法によれば
、ま−ず金属製のシート状体上に酸化物超電導体層を形
成し、次いで、超電導体層上に被覆金属層を形成してい
る。
[Function] According to the method for manufacturing a tape-shaped oxide superconductor of the present invention, an oxide superconductor layer is first formed on a metal sheet, and then a coating metal layer is formed on the superconductor layer. is formed.

得られる酸化物超電導体層は外界に接しているので、酸
化物超電導体用原料を酸化物超電導体となすための熱処
理の際に酸化物超電導体用原料から発生するガスを充分
に外界に放出することができる。
Since the obtained oxide superconductor layer is in contact with the outside world, gas generated from the oxide superconductor raw material during heat treatment to make the oxide superconductor raw material into an oxide superconductor is sufficiently released to the outside world. can do.

したがって、ガスの発生による空隙の形成を防止するこ
とができ、結果として変形のない酸化物超電導導体を作
製することができる。
Therefore, the formation of voids due to gas generation can be prevented, and as a result, an oxide superconducting conductor without deformation can be manufactured.

C実施例コ 以下、本発明の実施例について具体的に説明する。C Example Examples of the present invention will be specifically described below.

□実施例1 第1図に示す装置にシート状体10として幅0.5mm
、厚さ0.1mmのAg製のシートをセットした。デイ
スペンサー12内には、所゛定量の原料粉末を混合し、
これを仮婢成し、−られた仮焼成体を粉砕して調製され
たBi25rz CaCu20xの仮焼成粉末をあら−
かしめ装填した。Ag製シートを走行させ、このAg製
シート上に一定量でデイスペンサー12から仮焼成粉末
を吐出し、デイスペンサー12の後段に配置されている
ローラー16により圧延して厚さ0.15■lの複合シ
ートを作製した。次いで、この複合シートに850℃、
50時間の熱処理を施して仮焼成粉末をBi系酸化物超
電導体とした。
□Example 1 A sheet material 10 having a width of 0.5 mm was placed in the apparatus shown in FIG.
, an Ag sheet with a thickness of 0.1 mm was set. In the dispenser 12, a predetermined amount of raw material powder is mixed,
The pre-fired powder of Bi25rz CaCu20x was prepared by calcining this and pulverizing the calcined body.
It was caulked and loaded. A sheet made of Ag is run, and a fixed amount of calcined powder is discharged from the dispenser 12 onto the sheet made of Ag, and the powder is rolled to a thickness of 0.15 μl by a roller 16 placed after the dispenser 12. A composite sheet was prepared. Next, this composite sheet was heated at 850°C.
The calcined powder was heat-treated for 50 hours to form a Bi-based oxide superconductor.

このとき、仮焼成粉末が酸化物超電導体になる際に発生
するガスを充分に除去した。さらに、この複合シートを
外径1mのボビンに巻き付けた。
At this time, gas generated when the calcined powder becomes an oxide superconductor was sufficiently removed. Furthermore, this composite sheet was wound around a bobbin having an outer diameter of 1 m.

次いで、第2図に示す装置に得られた複合シートをセッ
トした。ノズル24内には、Ag−Pb合金を装填し、
ヒータにより加熱して溶融状態にした。複合シートを走
行させ、この複合シート上にノズル24からAg−Pb
融液を供給して厚さ0.25mの金属層を形成した。こ
のようにして、実施例1のテープ状Bi系酸化物超電導
導体を作製した。
Next, the obtained composite sheet was set in the apparatus shown in FIG. The nozzle 24 is loaded with Ag-Pb alloy,
It was heated to a molten state using a heater. The composite sheet is run, and Ag-Pb is applied from the nozzle 24 onto the composite sheet.
A metal layer having a thickness of 0.25 m was formed by supplying the melt. In this way, the tape-shaped Bi-based oxide superconducting conductor of Example 1 was produced.

得られた実施例1のテープ状Bi系酸化物超電導導体に
ついて、Jc(臨界電流密度)およびシース材の変形の
有無を調べた。その結果を下記第1表に示す。なお、J
cは、液体窒素温度、0磁場において測定した。また、
超電導導体の変形の有無は、目視により判断した。
The obtained tape-shaped Bi-based oxide superconducting conductor of Example 1 was examined for Jc (critical current density) and the presence or absence of deformation of the sheath material. The results are shown in Table 1 below. In addition, J
c was measured at liquid nitrogen temperature and zero magnetic field. Also,
The presence or absence of deformation of the superconducting conductor was determined visually.

実施例2〜8、比較例1 被覆金属としてAg−Pbの代わりに第1表に示す各々
の被覆金属を用いること以外は実施例1と同様にして実
施例2〜8および比較例1のテープ状のBi系酸化物超
電導導体を作製した。
Examples 2 to 8, Comparative Example 1 The tapes of Examples 2 to 8 and Comparative Example 1 were prepared in the same manner as in Example 1, except that each coating metal shown in Table 1 was used instead of Ag-Pb as the coating metal. A Bi-based oxide superconductor was fabricated.

得られた実施例2〜8および比較例1のテープ状酸化物
超電導導体のJcおよびシース材の変形の有無を実施例
1と同様にして調べた。その結果を下記第1表に併記す
る。
Jc of the obtained tape-shaped oxide superconducting conductors of Examples 2 to 8 and Comparative Example 1 and presence or absence of deformation of the sheath material were examined in the same manner as in Example 1. The results are also listed in Table 1 below.

比較例2 外径が10鰭φ、内径が8m■φであるAg製のバイブ
内に実施例1で使用した Bi25r2 CaCu20xの仮焼成粉末を充填゛し
て複合ビレットを作製した。得られた複合ビレットに溝
ロール圧延加工および平ロール圧延加工を施して、幅が
1.0器、厚さが0.4鰭の複合、テープ線材を作製し
た。得られた複合テープ線材に大気中で850℃、50
時間の熱処理を施して比較例2のテープ状Bi系酸化物
超電導導体を得た。
Comparative Example 2 A composite billet was prepared by filling the pre-sintered powder of Bi25r2CaCu20x used in Example 1 into an Ag vibrator having an outer diameter of 10 fins and an inner diameter of 8 m.phi. The obtained composite billet was subjected to groove roll rolling and flat roll rolling to produce a composite tape wire having a width of 1.0 mm and a thickness of 0.4 fin. The obtained composite tape wire was heated at 850°C and 50°C in the atmosphere.
A tape-shaped Bi-based oxide superconducting conductor of Comparative Example 2 was obtained by performing heat treatment for a period of time.

得られた比較例2のテープ状Bi系酸化物超電導導体の
Jcおよびシース材の変形の有無を実施例1と同様にし
て調べた。その結果を下記第1表に併記する。
The Jc of the obtained tape-shaped Bi-based oxide superconducting conductor of Comparative Example 2 and the presence or absence of deformation of the sheath material were examined in the same manner as in Example 1. The results are also listed in Table 1 below.

第   1   表 第1表から明らかなように、本発明の方法により得られ
たテープ状Bi系酸化物超電導導体(実施例1〜8)は
、いずれも優れた超電導体特性を発揮し、しかもシース
材に変形がないものであった。これに対してBi系酸化
物超電導体用原料の溶融開始温度(840℃)高い融点
を有する被覆金属を用いて得られたテープ状Bi系酸化
物超電導導体(比較例1)は、Jc値が低いものであり
光。また、従来の方法により得られたテープ状Bi系酸
化物超電導導体(比較例2)は、Jc値が低くしかもシ
ース材に変形があった。
Table 1 As is clear from Table 1, the tape-shaped Bi-based oxide superconducting conductors (Examples 1 to 8) obtained by the method of the present invention all exhibited excellent superconducting properties, and moreover, There was no deformation in the material. On the other hand, the tape-shaped Bi-based oxide superconductor (Comparative Example 1) obtained using a coating metal having a melting point higher than the melting start temperature (840°C) of the raw material for Bi-based oxide superconductor has a Jc value of It is low and light. Further, the tape-shaped Bi-based oxide superconductor (Comparative Example 2) obtained by the conventional method had a low Jc value and had deformation in the sheath material.

[発明の効果] 以上説明した如く本発明のテープ状酸化物超電導導体の
製造方法は、優れた超電導体特性を発揮することができ
るテープ状酸化物超電導導体を空隙の発生を防止しつつ
効率よく製造することができる。このようにして得られ
たテープ状酸化物超電導導体は、ケーブル、マグネット
、電流リード等の導体として適用することができる。
[Effects of the Invention] As explained above, the method for manufacturing a tape-shaped oxide superconducting conductor of the present invention efficiently produces a tape-shaped oxide superconducting conductor that can exhibit excellent superconducting properties while preventing the generation of voids. can be manufactured. The tape-shaped oxide superconductor thus obtained can be used as a conductor for cables, magnets, current leads, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明にかかる方法の一実施例を
示す概略説明図、第3図は従来のテープ状酸化物超電導
導体を示す説明図である。 10.22・・・シート状体、12・・・デイスペンサ
ー、14・・・酸化物超電導体用原料、16・・・ロー
ラー、20・・・酸化物超電導体層、24・・・ノズル
、26・・・加熱手段、28・・・金属融液、30・・
・シース材、32・・・酸化物超電導体、34・・・空
隙。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図
FIGS. 1 and 2 are schematic explanatory diagrams showing one embodiment of the method according to the present invention, and FIG. 3 is an explanatory diagram showing a conventional tape-shaped oxide superconducting conductor. 10.22... Sheet-shaped body, 12... Dispenser, 14... Raw material for oxide superconductor, 16... Roller, 20... Oxide superconductor layer, 24... Nozzle, 26... Heating means, 28... Metal melt, 30...
-Sheath material, 32...Oxide superconductor, 34...Void. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 金属製のシート状体上に酸化物超電導体用原料を被覆し
、これに所定の熱処理を施して酸化物超電導体層を形成
し、次いで該酸化物超電導体層を構成する酸化物超電導
体の溶融開始温度より低い温度の融点を有する金属の融
液を用いて前記超電導体層上に被覆金属層を形成するこ
とを特徴とするテープ状酸化物超電導導体の製造方法。
A raw material for an oxide superconductor is coated on a metal sheet, a predetermined heat treatment is performed on the material to form an oxide superconductor layer, and then the oxide superconductor constituting the oxide superconductor layer is coated. A method for manufacturing a tape-shaped oxide superconductor, comprising forming a coating metal layer on the superconductor layer using a melt of a metal having a melting point lower than a melting start temperature.
JP2313579A 1990-11-19 1990-11-19 Manufacture of tape-shaped oxide superconductor Pending JPH04184820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2313579A JPH04184820A (en) 1990-11-19 1990-11-19 Manufacture of tape-shaped oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2313579A JPH04184820A (en) 1990-11-19 1990-11-19 Manufacture of tape-shaped oxide superconductor

Publications (1)

Publication Number Publication Date
JPH04184820A true JPH04184820A (en) 1992-07-01

Family

ID=18043011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2313579A Pending JPH04184820A (en) 1990-11-19 1990-11-19 Manufacture of tape-shaped oxide superconductor

Country Status (1)

Country Link
JP (1) JPH04184820A (en)

Similar Documents

Publication Publication Date Title
JP2711358B2 (en) Superconducting wire manufacturing method
JPH01140520A (en) Manufacture of composite oxide ceramic superconductive wire
US5360784A (en) Method for manufacturing an oxide superconducting tape
JPH04184820A (en) Manufacture of tape-shaped oxide superconductor
JPS63308810A (en) Superconductor which can be taken up by winding and manufacture of the same
EP0304076A2 (en) Method of manufacturing superconductive products
JP2604379B2 (en) Manufacturing method of ceramic superconducting wire
US6604273B1 (en) Method of manufacturing an oxide superconducting wire
JP2610033B2 (en) Method for producing oxide-based superconducting molded body
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
JPH04342911A (en) Manufacture of tape-like ceramic superconductive conductor
JPH04192223A (en) Manufacture of ceramics superconductor
JPH01281612A (en) Manufacture of oxide superconducting wire material
JPH01265415A (en) Manufacture of oxide superconductive wire rod
JPH02183918A (en) Manufacture of oxide superconductor
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JPH02152115A (en) Manufacture of oxide superconducting filament material
JPH0668729A (en) Manufacture of multilayer ceramic superconducting conductor
JP2638601B2 (en) Superconducting wire manufacturing method
JP2507745B2 (en) Method for producing single-core and multi-core oxide superconducting wires
JPH01144524A (en) Manufacture of ceramic-based superconductive wire
JPH02192619A (en) Manufacture of oxide superconductor
JPH0197322A (en) Manufacture of oxide superconductor wire
JPH01281613A (en) Manufacture of oxide superconducting wire material
JPH01264116A (en) Manufacture of oxide superconducting wire rod