JPH04184453A - Coating liquid - Google Patents

Coating liquid

Info

Publication number
JPH04184453A
JPH04184453A JP31564490A JP31564490A JPH04184453A JP H04184453 A JPH04184453 A JP H04184453A JP 31564490 A JP31564490 A JP 31564490A JP 31564490 A JP31564490 A JP 31564490A JP H04184453 A JPH04184453 A JP H04184453A
Authority
JP
Japan
Prior art keywords
group
phthalocyanine
water
compounds
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31564490A
Other languages
Japanese (ja)
Other versions
JP2899834B2 (en
Inventor
Akihiko Itami
明彦 伊丹
Akira Kinoshita
木下 昭
Kazumasa Watanabe
一雅 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP31564490A priority Critical patent/JP2899834B2/en
Publication of JPH04184453A publication Critical patent/JPH04184453A/en
Application granted granted Critical
Publication of JP2899834B2 publication Critical patent/JP2899834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To improve a preservable property by incorporating titanyl phthalocyanine having a peak at a specific Bragg angle in X-ray diffraction spectra and specific metal phthalocyanine having coordinate water or water of crystallization into the above coating liquid. CONSTITUTION:The phthalocyanine having the coordinate water or water of crystallization expressed by formula I is incorporated into the titanyl phthalocyanine having the peak at 27.2+ or -0.2 deg. of the Bragg angle 2theta of the charac teristic X-ray (1.541Angstrom ) of the CuKalpha ray in the X-ray spectra, more preferably the titanyl phthalocyanine dispersion having the peaks at 9.5+ or -0.2, 24.1+ or -0.2 deg. and 27.2+ or -0.2 deg. of the Bragg angle 2theta is incorporated into this coating liquid. In the formula I, M denotes a metal atom; X1 to X4 denote a hydrogen atom, etc. Y denotes a halogen atom; k, l, m, n denote 0 to 4 integer; p denotes 0 to 2 integer; q denotes >=1 integer. The ratio at which the metal phthalocyanine having the coordinate water or water of crystallization is incorporated into the titanyl phthalocyanine is preferably >=0.01% and <=20%. The preservable property is improved in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特定の結晶型をもつチタニルフタロンアニン
と配位水もしくは結晶水を有する金属フタロシアニンを
含有する塗布液に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a coating liquid containing titanyl phthalonanine having a specific crystal type and a metal phthalocyanine having coordination water or water of crystallization.

〔従来技術〕[Prior art]

近年、光導電性の材料の研究が盛んに行われており、電
子写真感光体をはじめとして太陽電池、イメージセンサ
なとの光電変換素子として応用されている。従来、これ
らの光導電性材料には主として無機系の材料が用いられ
てきた。例えば、電子写真感光体においては、セレン、
酸化亜鉛、硫化カドミウム等の無機光導電材料を主成分
とする感光層を設けた無機感光体が広く使用されてきた
In recent years, research on photoconductive materials has been actively conducted, and they are being applied as photoelectric conversion elements such as electrophotographic photoreceptors, solar cells, and image sensors. Conventionally, inorganic materials have been mainly used as these photoconductive materials. For example, in electrophotographic photoreceptors, selenium,
Inorganic photoreceptors provided with a photosensitive layer mainly composed of an inorganic photoconductive material such as zinc oxide or cadmium sulfide have been widely used.

しかしながら、このような無機感光体は複写機等の電子
写真感光体として要求される光感度、熱安定性、耐湿性
、耐久性等の特性において必ずしも満足できるものでは
なかった。例えば、セレンは熱や指紋の汚れ等によって
結晶化するために電子写真感光体としての特性が劣化し
やすい。
However, such inorganic photoreceptors do not always satisfy the characteristics such as photosensitivity, thermal stability, moisture resistance, and durability required of electrophotographic photoreceptors for copying machines and the like. For example, selenium crystallizes due to heat, fingerprint stains, etc., so its properties as an electrophotographic photoreceptor tend to deteriorate.

又、硫化カドミウムを用いた電子写真感光体は耐湿性、
耐久性に劣り、又、酸化亜鉛を用いた電子写真感光体も
耐久性に問題かある。
In addition, electrophotographic photoreceptors using cadmium sulfide are moisture resistant,
Durability is poor, and electrophotographic photoreceptors using zinc oxide also have durability problems.

更に近年、環境問題が特に重要視されているがセレン、
硫化カドミウムの電子写真感光体は毒性の点で製造上、
取扱上の制約が太きいという欠点を有している。
Furthermore, in recent years, environmental issues have become particularly important, and selenium,
Due to the toxicity of cadmium sulfide electrophotographic photoreceptors,
The disadvantage is that there are severe restrictions on handling.

このような無機光導電性物質の欠点を改善するために、
種々の有機光導電性物質か注目されるようになり電子写
真感光体の感光層等に使用することが試みられ、近年活
発に研究が行われている。
In order to improve the drawbacks of such inorganic photoconductive materials,
Various organic photoconductive substances have attracted attention, and attempts have been made to use them in photosensitive layers of electrophotographic photoreceptors, and active research has been conducted in recent years.

例えば特公昭50−10496号にはポリビニル力ルバ
ゾールトトリニトロフルオレノンを含有した感光層を有
する有機感光体が記載されている。しかし、この感光体
は感度及び耐久性において十分なものではない。そのた
め、キャリア発生機能とキャリア輸送機能を異なる物質
に個別に分担させた機能分離型の電子写真感光体が開発
された。
For example, Japanese Patent Publication No. 50-10496 describes an organic photoreceptor having a photosensitive layer containing polyvinyl rubazole trinitrofluorenone. However, this photoreceptor does not have sufficient sensitivity and durability. Therefore, a functionally separated electrophotographic photoreceptor has been developed in which the carrier generation function and the carrier transport function are assigned to different substances.

このような電子写真感光体においては材料を広い範囲で
選択できるもので任意の特性を得やすく、そのため高感
度、高耐久性の優れた有機感光体か得られることが期待
されている。
In such an electrophotographic photoreceptor, materials can be selected from a wide range, making it easy to obtain arbitrary characteristics, and it is therefore expected that an organic photoreceptor with excellent high sensitivity and high durability can be obtained.

このような機能分離型の電子写真感光体のキャリア発生
物質及びキャリア輸送物質として種々の有機化合物が提
案されているか、特にキャリア発生物質は感光体の基本
的な特性を支配する重要な機能を担っている。そのキャ
リア発生物質としてはこれまでジブロモアンスアンスロ
ン!=代表される多環キノン化合物、ピリリウム化合物
及びピリリウム化合物の共晶錯体、スクェアリウム化合
物、フタロシアニン化合物、アゾ化合物などの光導電性
物質が実用化されてきた。又、一般にキャリア発生物質
の塗布は、有機溶媒に分散あるいは溶解して塗布する方
法が用いられるので、良好な電子写真感光体を得るため
にはキャリア発生物質の良好な分散性及び高い分散安定
性が要求される。
Various organic compounds have been proposed as carrier-generating substances and carrier-transporting substances for such functionally separated electrophotographic photoreceptors. ing. Until now, the carrier-generating substance used was dibromoanthrone! = Photoconductive substances such as representative polycyclic quinone compounds, pyrylium compounds, eutectic complexes of pyrylium compounds, squareium compounds, phthalocyanine compounds, and azo compounds have been put into practical use. Furthermore, in general, the carrier-generating substance is applied by dispersing or dissolving it in an organic solvent. Therefore, in order to obtain a good electrophotographic photoreceptor, the carrier-generating substance must have good dispersibility and high dispersion stability. is required.

更に電子写真感光体により高い感度を与える高いキャリ
ア発生効率をもつキャリア発生物質も必要である。この
点について近年、フタロシアニン化合物は優れた光導電
材料として注目され、活発に研究が行われている。
Furthermore, there is also a need for a carrier-generating material with high carrier-generating efficiency that provides higher sensitivity to electrophotographic photoreceptors. In this regard, in recent years, phthalocyanine compounds have attracted attention as excellent photoconductive materials, and active research is being conducted.

フタロシアニン化合物は、中心金属の種類や結晶型の違
いによりスペクトルや光導電性などの各種物性が変化す
ることが知られている。例えば、銅フタロシアニンには
σ、β、γ、ε型の結晶型が存在し、これらの結晶型が
異なることにより電子写真特性に大きな差があることが
報告されている(澤田学、「染料と薬品」、24 (6
) 、122 (1979))。
It is known that various physical properties of phthalocyanine compounds, such as spectra and photoconductivity, change depending on the type of central metal and crystal type. For example, copper phthalocyanine has σ, β, γ, and ε crystal types, and it has been reported that there are large differences in electrophotographic properties depending on these crystal types (Manabu Sawada, “Dye and "Drugs", 24 (6
), 122 (1979)).

又、特に近年、チタニルフタロシアニンが注目されてい
るが、チタニル7タロシアニンについてもA、B、C,
Y型と呼ばれる4つの主な結晶型が報告されている。
In addition, especially in recent years, titanyl phthalocyanine has attracted attention, but titanyl 7-thalocyanine also has A, B, C,
Four main crystal forms called Y-forms have been reported.

しかしながら特開昭62−67094号記載のA型、特
開昭61−239248号記載のB型、特開昭62−2
56865’号記IRのCmチタニルフタロシアニンは
電子写真感度や耐久性等の点で未だ不十分な点がある。
However, type A described in JP-A No. 62-67094, type B described in JP-A 61-239248, and JP-A 62-2
Cm titanyl phthalocyanine of No. 56865' IR still has insufficient points in terms of electrophotographic sensitivity, durability, etc.

最近発表されたY型チタニルフタロシアニン(木1等、
Japan Hardcopy ’89、E P 26
 (1989))は高感度であるが、その特性を十分に
発揮させ、かつ安定に生産するためには分散液の調製技
術が重要である。
Recently announced Y-type titanyl phthalocyanine (Tree 1st grade,
Japan Hardcopy '89, E P 26
(1989)) is highly sensitive, but dispersion preparation techniques are important in order to fully utilize its properties and to produce it stably.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記問題点を克服しt;耐久性に優れ
た塗布液及びこれを塗布した電子写真感光体を提供する
ことにある。
An object of the present invention is to overcome the above-mentioned problems and provide a coating liquid with excellent durability and an electrophotographic photoreceptor coated with the coating liquid.

〔発明の構成及び作用効果〕[Structure and effects of the invention]

本発明の上記の目的は、X線スペクトルにおいて、Cu
Ka線(波長1.541人)のブラッグ角2θの27.
2±0.2°にピークを有するチタニル7タロシアニン
、望ましくはブラッグ角209.5±0.2°、24.
1±0.2°、27.2±0.2°にピークを有するチ
タニルフタロシアニン分散液に下記一般式CI)で表さ
れる配位水もしくは結晶水をもつタロシアニンを含有す
ることによって達成することができる。
The above object of the present invention is to
The Bragg angle 2θ of Ka line (wavelength 1.541) is 27.
Titanyl 7-thalocyanine having a peak at 2±0.2°, preferably a Bragg angle of 209.5±0.2°, 24.
This can be achieved by containing talocyanine having coordination water or crystal water represented by the following general formula CI) in a titanyl phthalocyanine dispersion having peaks at 1±0.2° and 27.2±0.2°. I can do it.

一般式(I) 式中、Mは金属原子を表し、X1〜X4は水素原子、ハ
ロゲン原子或は置換、無置換の銃把8種の基;アルキル
基、アリール基、アルコキシ基、アリールオキシ基、ア
ルキルチオ基、アリールチオ基、アミノ基又は複素環基
を表し、Yはノ\ロゲン原子、酸素原子、水酸基、置換
もしくは無置換の絖記5種の基:アルコキシ基、アリー
ルオキシ基、アルキルチオ基、アリールチオ基、シロキ
シ基を表す。又、k、ρ、m、nはθ〜4の整数を表し
、pはθ〜2の整数、qは1以上の整数を表す。
General formula (I) In the formula, M represents a metal atom, and X1 to X4 are a hydrogen atom, a halogen atom, or substituted or unsubstituted eight types of groups; an alkyl group, an aryl group, an alkoxy group, an aryloxy group. , represents an alkylthio group, an arylthio group, an amino group, or a heterocyclic group, and Y is a norogen atom, an oxygen atom, a hydroxyl group, substituted or unsubstituted five types of groups: an alkoxy group, an aryloxy group, an alkylthio group, Represents an arylthio group or a siloxy group. Furthermore, k, ρ, m, and n represent integers of θ to 4, p represents an integer of θ to 2, and q represents an integer of 1 or more.

本発明で用いられるチタニルフタロシアニンは次の一般
式(II)で表される。
The titanyl phthalocyanine used in the present invention is represented by the following general formula (II).

一般式(I[) 但し、X 1. X Z、 X 3. X 4は水素原
、子、ノ10ゲン原子、アルキル基、或いはアルコキシ
基を表し、n、m、(2,にはθ〜4の整数を表す。
General formula (I[) However, X 1. X Z, X 3. X 4 represents a hydrogen atom, a hydrogen atom, an alkyl group, or an alkoxy group, and n, m, (2, and 2 represent integers from θ to 4).

X線回折スペクトルは次の条件で測定され、ここでピー
クとはノイズとは異なった明瞭な鋭角の突出部のことで
ある。
The X-ray diffraction spectrum is measured under the following conditions, where a peak is a distinct sharp protrusion that is different from noise.

X線管球    Cu 電   圧        40.OKV電    流
       100     m Aスタート角度 
  6.Odeg。
X-ray tube Cu voltage 40. OKV current 100 m A start angle
6. Odeg.

ストップ角度   35.0  deg。Stop angle 35.0 deg.

ステップ角度   0.02  deg。Step angle 0.02 deg.

測定時間     0−50  sec。Measurement time: 0-50 sec.

本発明に用いられるチタニルフタロシアニンの合成には
種々の方法を用いることができるが、代表的には次の反
応式(1)或は(2)に従って合成することができる。
Although various methods can be used to synthesize titanyl phthalocyanine used in the present invention, it can typically be synthesized according to the following reaction formula (1) or (2).

r4 式中、R、−R、は脱離基を表す。r4 In the formula, R and -R represent a leaving group.

上記のようにして得られたチタニルフタロシアニンは次
に示すような処理を行うことにより、本発明に用いられ
る結晶型に変換することができる。
The titanyl phthalocyanine obtained as described above can be converted into the crystal form used in the present invention by performing the following treatment.

例えば任意の結晶型のチタニルフタロシアニンを濃硫酸
に溶解し、その硫酸溶液を水にあけて析出した結晶を濾
取する。この操作によりチタニルフタロシアニンはアモ
ルファス状態に変換される。
For example, any crystalline form of titanyl phthalocyanine is dissolved in concentrated sulfuric acid, the sulfuric acid solution is poured into water, and the precipitated crystals are collected by filtration. This operation converts titanyl phthalocyanine into an amorphous state.

次いでこのアモルファスのチタニルフタロシアニンを水
分の存在下、特定の有機溶媒で処理することによって本
発明に用いられる結晶型を得ることができる。しかしな
がら、結晶変換の方法はこのような方法に限定されるも
のではない。
Next, the crystal form used in the present invention can be obtained by treating this amorphous titanyl phthalocyanine with a specific organic solvent in the presence of water. However, the crystal conversion method is not limited to this method.

次に一般式CI)で与えられ、本発明に用いられる金属
フタロシアニンは配位水もしくは結晶水を有する。金属
フタロシアニンの例としては、クロロアルミニウムフタ
ロシアニン、ヒドロキシアルミニウムフタロシアニン、
クロロガリウムフタロシアニン、ヒドロキシガリウムフ
タロシアニン、ジクロロシリコンフタロシアニン、ジヒ
ドロキシシリコン7りロシアニン、ジクロロゲルマニウ
ム7りロノアニン、ジヒドロキシゲルマニウムフタロシ
アニン、チタニルフタロシアニン、バナジルフタロシア
ニン、タロロインジウムフタロンアニン、ジヒドロキシ
インジウムフタロシアニン、ジクロロジルコニウムフタ
ロシアニン、ジヒドロキシジルコニウムフタロシアニン
、ジヒドロキ/スズフタロシアニン、ジヒドロキンマン
ガンフタロシアニン、銅フタロシアニン、鉄フタロンア
ニンなどが挙げられる。
Next, the metal phthalocyanine given by the general formula CI) and used in the present invention has coordination water or water of crystallization. Examples of metal phthalocyanines include chloroaluminum phthalocyanine, hydroxyaluminum phthalocyanine,
Chlorogallium phthalocyanine, hydroxygallium phthalocyanine, dichlorosilicon phthalocyanine, dihydroxysilicon 7-polycyanine, dichlorogermanium 7-lyronoanine, dihydroxygermanium phthalocyanine, titanyl phthalocyanine, vanadyl phthalocyanine, thaloloindium phthalocyanine, dihydroxyindium phthalocyanine, dichlorozirconium phthalocyanine, dihydroxy Examples include zirconium phthalocyanine, dihydroxy/tin phthalocyanine, dihydroquine manganese phthalocyanine, copper phthalocyanine, iron phthalonanine, and the like.

これらの金属フタロンアニンの合成は、モザー及びトー
マス著の「フタロシアニン化合物」に記載されている公
知の方法により達成され、例えばo−7タロニトリルあ
るいは1.3−ジイミノイソインドリンと金属塩をσ−
タロルナフタレン等の不活性溶媒中で反応させることに
より得られる金属フタロシアニンに適当な処理を行うこ
とによって得ることができる。
Synthesis of these metal phthalonanines is achieved by known methods described in "Phthalocyanine Compounds" by Moser and Thomas, for example, by combining o-7 talonitrile or 1,3-diiminoisoindoline and a metal salt with σ-
It can be obtained by appropriately treating metal phthalocyanine obtained by reacting in an inert solvent such as talolnaphthalene.

本発明の特定の結晶型のチタニルフタロシアニン塗布液
に配位水もしくは結晶水を有する金属フタロ7アニンを
含有させる方法はいくつか考えられるが、例えばそれぞ
れの化合物を固体状態で混合してもよしIL、チタニル
7タロンアニンの分散液中に金属フタロシアニンを添加
する方法でもよい。又、それぞれのフタロンアニンをア
シッドペースト処理等で一旦均一な溶解状態とし、混晶
又は錯体等を形成させた後、分散してもよい。又用途に
応じては例えば同−素子中などではそれぞれが異なった
層中に含゛有されていてもかまわない。
There are several possible ways to incorporate metal phthalocyanine having coordination water or crystallization water into the specific crystal type titanyl phthalocyanine coating solution of the present invention. For example, each compound may be mixed in a solid state. Alternatively, metal phthalocyanine may be added to a dispersion of titanyl-7-talonanine. Alternatively, each phthalonanine may be once dissolved into a uniform state by acid paste treatment or the like to form a mixed crystal or complex, and then dispersed. Also, depending on the application, they may be contained in different layers, for example in the same device.

しかしながら含有させる方法はこれらの方法に限定され
るものではない。
However, the method of containing it is not limited to these methods.

又、チタニル7りロシアニンに対する配位水もしくは結
晶水を有する金属フタロシアニンを含有させる割合は通
常0.0001%以上100%以下であり、望ましくは
0.001%以上50%以下、更に望ましくは0.01
%以上20%以下である。
The ratio of metal phthalocyanine having coordination water or crystallization water to titanyl 7-lycyanine is usually 0.0001% or more and 100% or less, preferably 0.001% or more and 50% or less, and more preferably 0.0001% or more and 100% or less. 01
% or more and 20% or less.

本発明の塗布液及び本発明の塗布液を塗布して得られる
電子写真感光体は上記のフタロシアニンのほかに他の光
導電性物質を併用してもよい。
The coating liquid of the present invention and the electrophotographic photoreceptor obtained by coating the coating liquid of the present invention may contain other photoconductive substances in addition to the above-mentioned phthalocyanine.

他の光導電性物質としては、本発明に用いられるチタニ
ル7タロンアニンとは結晶型において異なるA、B、C
,アモルファス及びAB混合型などのチタニルフタロシ
アニンをはじめ、他のフタロシアニン化合物、ナフタロ
シアニン化合物、その他ポルフィリン誘導体、アゾ化合
物、ジブロモアンスアンスロンに代表される多環キノン
化合物、ピリリウム化合物及びビリリウム化合物の共晶
錯体、スクェアリウム化合物等が挙げられる。
Other photoconductive substances include A, B, and C, which are different in crystal form from the titanyl 7-talonanine used in the present invention.
, amorphous, and AB mixed type titanyl phthalocyanine, other phthalocyanine compounds, naphthalocyanine compounds, other porphyrin derivatives, azo compounds, polycyclic quinone compounds represented by dibromoanthron, pyrylium compounds, and eutectic complexes of biryllium compounds. , squarium compounds, and the like.

次に本発明の塗布液を塗布することによって得られる電
子写真感光体はキャリア輸送物質を併用してもよい。キ
ャリア輸送物質としては種々のものが使用できるが、代
表的なものとして例えばオキサゾール、オキサジアゾー
ル、チアゾール、チアジアゾール、イミダゾール等に代
表される含窒票複素環核及びその縮合環核を有する化合
物、ポリアリールアルカン系の化合物、ピラゾリン系化
合物、ヒドラゾン系化合物、トリアリールアミン系化合
物、スチリル系化合物、ポリス(ビス)スチリル系化合
物、スチリルトリフェニルアミン系化合物、β−フェニ
ルスチリルトリフェニルアミン系化合物、ブタジェン系
化合物、ヘキサトリエン系化合物、カルバゾール系化合
物、縮合多環系化合物等が挙げられる。
Next, the electrophotographic photoreceptor obtained by coating the coating liquid of the present invention may be used in combination with a carrier transporting substance. Various carrier transport substances can be used, but representative examples include compounds having a nitrogen-containing heterocyclic nucleus and its condensed ring nucleus, such as oxazole, oxadiazole, thiazole, thiadiazole, imidazole, etc. Polyarylalkane compounds, pyrazoline compounds, hydrazone compounds, triarylamine compounds, styryl compounds, poly(bis)styryl compounds, styryltriphenylamine compounds, β-phenylstyryltriphenylamine compounds, Examples include butadiene compounds, hexatriene compounds, carbazole compounds, and fused polycyclic compounds.

これらのキャリア輸送物質の具体例としては例えは特開
昭61−107356号等に記載のキャリア輸送物質を
挙げることができるが、特に代表的なものの構造を次に
示す。
Specific examples of these carrier transporting substances include carrier transporting substances described in JP-A-61-107356 and the like, and the structures of particularly typical ones are shown below.

(lO) ― 2Hs 感光体の構成層は種々の形態が知られている。(lO) ― 2Hs Various forms of the constituent layers of the photoreceptor are known.

本発明の感光体はそれらのいずれの形態もとりうるが、
積層型もしくは分散型の機能分離型感光体とするのが望
ましい。この場合、通常は第1図から第6図のような構
成となる。笑1図1;示す層構成は、導電性支持体1上
にキャリア発生層2を形成し、これにキャリア輸送層3
を積層して感光層4を形成したものであるe第2図はこ
れらのキャリア発生層2とキャリア輸送層3を逆にした
感光層4′を形成したものてあり、第3図は第1図の層
構成の感光層4と導電性支持体lの間に中間層5を設け
たものである・。第5図の層構成はキャリア発生物質6
とキャリア輸送物質7を含有する感光層4″を形成した
ものであり、第6図はこのような感光層4″と導電性支
持体1との間に中間層5を設けたものである。第1図か
ら第6図の構成において、最表層にはさらに保護層を設
けることができる。
Although the photoreceptor of the present invention can take any of these forms,
It is preferable to use a laminated or dispersed functionally separated photoreceptor. In this case, the configuration is usually as shown in FIGS. 1 to 6. Figure 1: The layer structure shown is that a carrier generation layer 2 is formed on a conductive support 1, and a carrier transport layer 3 is formed on this.
Figure 2 shows a photosensitive layer 4' formed by laminating these carrier generation layer 2 and carrier transport layer 3, and Figure 3 shows a photosensitive layer 4' formed by laminating the carrier generation layer 2 and carrier transport layer 3. An intermediate layer 5 is provided between the photosensitive layer 4 and the conductive support l having the layer structure shown in the figure. The layer structure in FIG. 5 is a carrier-generating substance 6.
A photosensitive layer 4'' containing a carrier transport material 7 and a carrier transport substance 7 is formed, and FIG. 6 shows an intermediate layer 5 provided between such a photosensitive layer 4'' and a conductive support 1. In the configurations shown in FIGS. 1 to 6, a protective layer can be further provided on the outermost layer.

感光層の形成においてはキャリア発生物質或はキャリア
輸送物質を単独でもしくはバインダや添加剤とともに溶
解させた溶液を塗布する方法が有効である。しかし、一
般にキャリア発生物質の溶解度は低いため、そのような
場合キャリア発生物質を超音波分散機、ボールミル、サ
ンドミル、ホモミキサー等の分散装置を用いて適当な分
散媒中に微粒子分散させた液を塗布する方法か有効とな
る。この場合、バインダや添加剤は分散液中に添加して
用いられるのが通常である。
In forming the photosensitive layer, it is effective to apply a solution in which a carrier-generating substance or a carrier-transporting substance is dissolved alone or together with a binder and an additive. However, the solubility of the carrier-generating substance is generally low, so in such cases, a liquid in which the carrier-generating substance is dispersed into fine particles in an appropriate dispersion medium using a dispersion device such as an ultrasonic dispersion machine, a ball mill, a sand mill, or a homomixer is used. The coating method is effective. In this case, the binder and additives are usually added to the dispersion.

感光層の形成に使用される溶剤或は分散媒としては広く
任意のものを用いることかできる。
A wide variety of solvents or dispersion media can be used to form the photosensitive layer.

例えば、ブチルアミン、エチレンジアミン、N。For example, butylamine, ethylenediamine, N.

N−ジメチルホルムアミド、アセトン、メチルエチルケ
トン、メチルイソプロピルケトン、メチルイソブチルケ
トン、シクロヘキサノン、4−メトキシ−4−メチル−
2−ペンタノン、テトラヒドロフラン、ジオキサン、酢
酸エチル、酢酸ブチル、酢酸−t−ブチル、メチルセロ
ソルブ、エチルセロソルブ、ブチルセロソルブ、エチレ
ングリコールジメチルエーテル、トルエン、キシレン、
アセトフェノン、クロロホルム、ジクロルメタン、ジク
ロルエタン、トリクロルエタン、メタノール、エタノー
ル、プロパツール、ブタノール等が挙げられる。
N-dimethylformamide, acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, cyclohexanone, 4-methoxy-4-methyl-
2-pentanone, tetrahydrofuran, dioxane, ethyl acetate, butyl acetate, t-butyl acetate, methyl cellosolve, ethyl cellosolve, butyl cellosolve, ethylene glycol dimethyl ether, toluene, xylene,
Examples include acetophenone, chloroform, dichloromethane, dichloroethane, trichloroethane, methanol, ethanol, propatool, butanol, and the like.

キャリア発生層もしくはキャリア輸送層の形成にバイン
ダを用いる場合に、このバインダとじて任意のものを選
ぶことかできるか、特に疎水性でかつフィルム形成能を
有する高分子重合体か望ましい。このような重合体とし
ては例えは次のものを挙げることかできるが、これらに
限定されるものではない。
When a binder is used to form the carrier generation layer or the carrier transport layer, any binder can be selected as the binder, and it is particularly desirable to use a hydrophobic polymer having film-forming ability. Examples of such polymers include, but are not limited to, the following:

ポリカーボイ・−ト ポリカーポオ・−トZ樹脂 アクリル樹脂 メタクリル樹脂 ポリ塩化ビニル ポリ塩化ビニリデン ポリスチレン スチレン−ブタジェン共重合体 ポリ酢酸ビニル ポリビニルホルマール ポリヒニルブチラール ポリビニルアセクール ポリビニルカルバゾール スチレン−アルキッド樹脂 ンリコーン樹脂 シリコーン−アルキッド樹脂 シリコーン−ブチラール樹脂 ポリエステル ポリウレタン ボリアミド エポキシ樹脂 フェノール樹脂 塩化ビニリデン−アクリロニトリル共重合体塩化ビニル
−酢酸ビニル共重合体 塩化ビニル−酢酸ビニル−無水マレイン酸共重合体 バインダに対するキャリア発生物質の割合は10〜60
0wt%が望ましく、更には、50〜400wt%とす
るのが望ましい。バインダに対するキャリア輸送物質の
割合は10〜500wt%とするのが望ましい。
Polycarboy-toPolycarpo-Z resinAcrylic resinMethacrylic resinPolyvinyl chloridePolyvinylidenePolystyreneStyrene-butadiene copolymerPolyvinyl acetatePolyvinyl formalPolyhinyl butyralPolyvinyl acecoolPolyvinylcarbazoleStyrene-alkyd resinLicone resinSilicone-alkyd resinSilicone - Butyral resin polyester polyurethane polyamide epoxy resin phenolic resin vinylidene chloride-acrylonitrile copolymer vinyl chloride-vinyl acetate copolymer vinyl chloride-vinyl acetate-maleic anhydride copolymer The ratio of carrier-generating substance to binder is 10 to 60
The content is preferably 0 wt%, and more preferably 50 to 400 wt%. The ratio of the carrier transport substance to the binder is preferably 10 to 500 wt%.

キャリア発生層の厚さは0.01〜20μ脂とされるが
、さらには0.05〜5μmが好ましい。キャリア輸送
層の厚みはl−100μmであるが、さらには5〜30
μmが好ましい。
The thickness of the carrier generation layer is 0.01 to 20 μm, more preferably 0.05 to 5 μm. The thickness of the carrier transport layer is 1-100 μm, but more preferably 5-30 μm.
μm is preferred.

上記感光層には感度の向上や残留電位の減少、或は反復
使用時の疲労低減等を目的として電子受容物質を含有さ
せることかできる。このような電子受容性物質としては
例えば、無水琥珀酸、無水マレイン酸、ジブロム無水琥
珀酸、無水7タル酸、テトラクロル無水フタル酸、テト
ラブロム無水7タル酸、3−二トロ無水フタル酸、4−
ニトロ無水フタル酸、無水ピロメリット酸、無水メリッ
ト酸、テトラシアノエチレン、テトラシアノキノジメタ
ン、0−ジニトロベンセン、m−ジニトロベンゼン、1
.3.5− トリニトロベンゼン、p−ニトロベンゾニ
トリル、ピクリルクロライド、キノンクロルイミド、ク
ロラニル、クロラニル、ジクロルジシアノ−p−ベンゾ
キノン、アントラキノン、ジニトロアントラキノン、9
−フルオレニリデンマロノジニトリル、ポリニトロ−9
〜フルオレニリデンマロノジニトリル、ピクリン酸、0
−ニトロ安息香酸、p−ニトロ安息香酸、3.5−ジニ
トロ安息香酸、ペンタフルオロ安息香酸、5−ニトロサ
リチル酸、3.5−ジニトロサリチル酸、フタル酸、メ
リット酸、その他の電子親和力の大きい化合物を挙げる
ことができる。
The photosensitive layer may contain an electron-accepting substance for the purpose of improving sensitivity, reducing residual potential, or reducing fatigue during repeated use. Examples of such electron-accepting substances include succinic anhydride, maleic anhydride, dibromo succinic anhydride, 7-thalic anhydride, tetrachlorophthalic anhydride, tetrabromo-7-thalic anhydride, 3-ditrophthalic anhydride, 4-
Nitrophthalic anhydride, pyromellitic anhydride, mellitic anhydride, tetracyanoethylene, tetracyanoquinodimethane, 0-dinitrobenzene, m-dinitrobenzene, 1
.. 3.5- Trinitrobenzene, p-nitrobenzonitrile, picryl chloride, quinone chlorimide, chloranil, chloranil, dichlorodicyano-p-benzoquinone, anthraquinone, dinitroanthraquinone, 9
-Fluorenylidenemalonodinitrile, polynitro-9
~Fluorenylidene malonodinitrile, picric acid, 0
-Nitrobenzoic acid, p-nitrobenzoic acid, 3.5-dinitrobenzoic acid, pentafluorobenzoic acid, 5-nitrosalicylic acid, 3.5-dinitrosalicylic acid, phthalic acid, mellitic acid, and other compounds with high electron affinity. can be mentioned.

電子受容性物質の添加割合はキャリア発生物質の重量1
00に対して0.01〜200が望ましく、更lこは0
.1〜100が好ましい。
The addition ratio of the electron-accepting substance is 1 weight of the carrier-generating substance.
00 to 0.01 to 200 is desirable;
.. 1 to 100 is preferred.

又、上記感光層中には保存性、耐久性、耐環境依存性を
向上させる目的で酸化防止剤や光安定剤等の劣化防止剤
を含有させることができる。そのような目的に用いられ
る化合物としては例えばトコフェロール等のクロマノー
ル誘al1体及ヒそのエーテル化化合物もしくはエステ
ル化化合物、ポリアリールアルカン化合物、ハイドロキ
ノン誘導体及びそのモノ及びジエーテル化化合物、ベン
ゾフェノン誘導体、ベンゾトリアゾール訴導体、チオエ
ーテル化合物、ホスホン酸エステル、亜燐酸エステル、
フェニレンジアミン誘導体、フェノール化合物、ヒンダ
ードフェノール化合物、直鎖アミン化合物、環状アミン
化合物、ヒンダードアミン化合物などが有効である。特
に有効な化合物の具体例としてはrlRGANOX l
0IOJ 、rlRGANOX 565J(チバ・ガイ
ギー社製)、[スミライザーBHTJ、rスル−)ll
−Ilh11I++lしさ丁膏沖飢)答のにングートフ
ェノール化合物、[サノールLS−2626J、[サノ
ール LS〜622LDJ (三基社製)等のヒンダー
ドアミン化合物が挙げられる。
Further, the photosensitive layer may contain deterioration inhibitors such as antioxidants and light stabilizers for the purpose of improving storage stability, durability, and environmental dependence resistance. Compounds used for such purposes include, for example, chromanol derivatives such as tocopherol and their etherified or esterified compounds, polyarylalkane compounds, hydroquinone derivatives and their mono- and di-etherified compounds, benzophenone derivatives, and benzotriazole derivatives. conductors, thioether compounds, phosphonates, phosphorous esters,
Effective examples include phenylenediamine derivatives, phenol compounds, hindered phenol compounds, linear amine compounds, cyclic amine compounds, and hindered amine compounds. Specific examples of particularly effective compounds include rlRGANOX l
0IOJ, rlRGANOX 565J (manufactured by Ciba Geigy), [Sumilizer BHTJ, rThru-)ll
-Ilh11I++1 -Ilh11I++1 -Hindered amine compounds such as phenol compounds such as Sanol LS-2626J and Sanol LS-622LDJ (manufactured by Sankisha) are mentioned.

中間層、保護層等に用いられるバインダとしては、上記
のキャリア発生層及びキャリア輸送層用に挙げたものを
用いることができるが、そのほかにナイロン樹脂、エチ
レン−酢酸ビニル共重合体、エチレン−酢酸ビニル−無
水マレイン酸共重合体、エチレン−酢酸ビニル−メタク
リル酸共重合体等のエチレン系樹脂、ポリビニルアルコ
ール、セルロース誘導体等が有効である。又、メラミン
、エポキシ、イソシアネート等の熱硬化或は化学的硬化
を利用した硬化型のバインダを用いることができる。
As the binder used for the intermediate layer, protective layer, etc., those listed above for the carrier generation layer and carrier transport layer can be used, but in addition, nylon resin, ethylene-vinyl acetate copolymer, ethylene-acetic acid Ethylene resins such as vinyl-maleic anhydride copolymers and ethylene-vinyl acetate-methacrylic acid copolymers, polyvinyl alcohol, cellulose derivatives, and the like are effective. Further, a hardening type binder using thermosetting or chemical hardening such as melamine, epoxy, isocyanate, etc. can be used.

導電性支持体としては金属板、金属ドラムが用いられる
他、導電性ポリマーや酸化インジウム等の導電性化合物
、もしくはアルミニウム、パラジウム等の金属の薄層を
塗布、蒸着、ラミネート等の手段により紙やプラスチッ
クフィルム等の基体の上に設けてなるものを用いること
ができる。
Metal plates and metal drums are used as conductive supports, and thin layers of conductive polymers, conductive compounds such as indium oxide, or metals such as aluminum and palladium are coated, vapor-deposited, laminated, etc. A material provided on a base such as a plastic film can be used.

又、本発明の塗布液を塗布して得られる光導電性組成物
は光キャリアの生成効率か高いため、光センサや光記録
材料として用いられた場合、非常に高感度のものを得る
ことができる。更に太陽電池をはじめとする光発電材料
として用いられた場合は、エネルギー変換効率の高Q・
ものを得ることかできる。
Furthermore, since the photoconductive composition obtained by applying the coating liquid of the present invention has a high photocarrier production efficiency, when used as an optical sensor or an optical recording material, it is possible to obtain one with extremely high sensitivity. can. Furthermore, when used as photovoltaic materials such as solar cells, it has high energy conversion efficiency.
You can get things.

このような素子を作成する場合には例えば本発明の特定
の結晶型のチタニルフタロンアニンと配位水もしくは結
晶水を有するフタロシアニンを適当な溶媒中に分散し、
必要に応してバインダ、キャリア輸送物質、増感剤、耐
久性向上剤等を加えて電極上に塗布することによって光
電変換層を形成し、更にその上に電極層を設けることに
よって光電変換セルとすることかてきる。あるいは又、
光電変換層と電極との間にn型半導体層もしくはp型半
導体層を設けて、光電変換層との間にp−n接合を形成
させた素子としてもよい。
When producing such an element, for example, a specific crystal type of titanyl phthalonanine of the present invention and a phthalocyanine having coordination water or crystal water are dispersed in an appropriate solvent,
A photoelectric conversion layer is formed by adding a binder, a carrier transport substance, a sensitizer, a durability improver, etc. as necessary and coating it on the electrode, and then an electrode layer is provided on top of that to form a photoelectric conversion cell. You can also do that. Or again,
It is also possible to use an element in which an n-type semiconductor layer or a p-type semiconductor layer is provided between the photoelectric conversion layer and the electrode, and a pn junction is formed between the photoelectric conversion layer and the photoelectric conversion layer.

各層の間及び電極との間には接着性の向上の!こめもし
くは接合領域の改良のために中間層を設けることかでき
る。又変換効率の向上を目的として光電変換層!:隣接
したキャリア移動層を設け、キーリア再結合を防止させ
る方法も有効である。又セルの作成にあたっての分散媒
、バインダ、キャリア輸送物質、電子受容性化合物等は
電子写真感光体作成に用いられるものと同様のものを用
いることかできる。
Improved adhesion between each layer and between electrodes! Intermediate layers can be provided to improve the joint or joint area. Also, a photoelectric conversion layer for the purpose of improving conversion efficiency! : A method of providing adjacent carrier movement layers to prevent Keyliar recombination is also effective. Further, the dispersion medium, binder, carrier transport substance, electron-accepting compound, etc. used in producing the cell may be the same as those used in producing the electrophotographic photoreceptor.

〔実施例〕〔Example〕

実施例1−1 本発明のブラッグ角2θの27.2°にピークを有する
第7図に示したチタニルフタロンアニン1部、クロロア
ルミニウムフタロンアニン水H物0.01!、及びバイ
ンタ樹脂としてンリコーン樹脂(rKR−5240,1
5%キンレン、ブタノール溶液」信越化学社製)1部、
分散媒としてメチルエチルケトン100部をサンドミル
を用いて分散し、分散液を得た。
Example 1-1 1 part of titanyl phthalonanine and 0.01 part of chloroaluminum phthalonanine hydrate shown in FIG. 7 having a peak at 27.2° of the Bragg angle 2θ of the present invention! , and lincone resin (rKR-5240,1
1 part of 5% quintessence, butanol solution (manufactured by Shin-Etsu Chemical Co., Ltd.),
A dispersion liquid was obtained by dispersing 100 parts of methyl ethyl ketone as a dispersion medium using a sand mill.

これをアルミニウムを蒸着したポリエステルベース上に
ワイヤーバーを用いて塗布して膜厚0.2μmのキャリ
ア発生層を形成した。
This was applied onto a polyester base on which aluminum was vapor-deposited using a wire bar to form a carrier generation layer having a thickness of 0.2 μm.

次いで、キャリア輸送物質(1)1部とポリカーボイ・
−ト樹脂[ニーピロンZ200J(三菱瓦斯化学社製)
1.3部及び微量のシリコーンオイルrKF−54J(
信越化学社製)を1.2−ジクロルエタン10部に溶解
した液をブレード塗布機を用いて塗布、乾燥の後、膜厚
20μmのキャリア輸送層を形成した。このようにして
得られた感光体をサンプル1とする。
Next, 1 part of carrier transport substance (1) and polycarboy
-T resin [Kneepilon Z200J (manufactured by Mitsubishi Gas Chemical Co., Ltd.)
1.3 parts and a trace amount of silicone oil rKF-54J (
A solution prepared by dissolving 1.2-dichloroethane (manufactured by Shin-Etsu Chemical Co., Ltd.) in 10 parts of 1,2-dichloroethane was coated using a blade coater, and after drying, a carrier transport layer having a thickness of 20 μm was formed. The photoreceptor thus obtained is referred to as sample 1.

実施例1−2 実施例klで得られた分散液を6000にて1力月間暗
所で放置した後、実施例1−1と同様にして感光体を作
成した。これをサンプル1′とする。
Example 1-2 The dispersion obtained in Example kl was left in a dark place for one month at a temperature of 6000, and then a photoreceptor was prepared in the same manner as in Example 1-1. This will be referred to as sample 1'.

実施例2−1 実施例1−1において、クロロアルミニウムフタロシア
ニン水和物の代わりにヒドロキノガリウムフタロシアニ
ン水和物を用いたほかは全く同様にして感光体を作成し
た。これをサンプル2とする。
Example 2-1 A photoreceptor was prepared in exactly the same manner as in Example 1-1 except that hydroquinogallium phthalocyanine hydrate was used instead of chloroaluminum phthalocyanine hydrate. This is called sample 2.

実施例2−2 実施例2−」で得られた分散液を実施例1−2と同様1
力間放置した後、感光体を作成した。これをサンプル2
′とする。
Example 2-2 The dispersion obtained in “Example 2-” was prepared in the same manner as in Example 1-2.
After being left for a while, a photoreceptor was prepared. This is sample 2
'.

実施例3−1 実施例1−1において、クロロアルミニウムフタロンア
ニン水和物を0,01部用いる代わりに0.05部用い
た他は実施例1−1と同様にして感光体を作成した。こ
れをサンプル3とする。
Example 3-1 A photoreceptor was prepared in the same manner as in Example 1-1 except that 0.05 part of chloroaluminum phthalonanine hydrate was used instead of 0.01 part in Example 1-1. . This is called sample 3.

実施例3−2 実施例3−1で得られた分散液を実施例1−2と同様1
力月間放置した後、感光体を作成した。
Example 3-2 The dispersion obtained in Example 3-1 was prepared in the same manner as in Example 1-2.
After leaving it for a month, a photoreceptor was prepared.

これをサンプル3′とする。This will be referred to as sample 3'.

実施例4−1 実施例1−1において、第7図に示したチタニルフタロ
シアンを用いる代わりに第11図に示したチタニルフタ
ロシアンを用い、キャリア輸送物質(1)を用いる代り
にキャリア輸送物質(22)を用いたほかは全く同様に
して感光体を作成した。
Example 4-1 In Example 1-1, the titanyl phthalocyanine shown in FIG. 11 was used instead of the titanyl phthalocyanine shown in FIG. 7, and the carrier transport material (1) was used instead of the carrier transport material (1). A photoreceptor was prepared in exactly the same manner except that (22) was used.

これをサンプル4とする。This is called sample 4.

実施例4−2 実施例4−1で得られた分散液を実施例1−2と同様1
力月間放置した後、感光体を作成した。
Example 4-2 The dispersion obtained in Example 4-1 was prepared in the same manner as in Example 1-2.
After leaving it for a month, a photoreceptor was prepared.

これをサンプル4′とする。This will be referred to as sample 4'.

比較例1−1 実施例1−1においてクロロアルミニウムフタロシアニ
ン水和物を用いない他は全く同様にして感光体を作成し
た。これを比較サンプル(1)とする。
Comparative Example 1-1 A photoreceptor was prepared in exactly the same manner as in Example 1-1 except that chloroaluminum phthalocyanine hydrate was not used. This will be referred to as comparative sample (1).

比較例1−2 比較例1−1で得られた分散液を実施例1−2と同様1
力月間放置した後、感光体を作成した。
Comparative Example 1-2 The dispersion obtained in Comparative Example 1-1 was prepared in the same manner as in Example 1-2.
After leaving it for a month, a photoreceptor was prepared.

これを比較例サンプル(1′)とする。This is referred to as a comparative example sample (1').

評価1 以上のようにして得られt;サンプルは、ペーパアナラ
イザEPA−8100(川口電気社製)を用いて以下の
ような評価を行った。まず、−80μAの条件で5秒間
のコロナ帯電を行い、帯電直後の表面電位Va及び5秒
間放置後の表面電位Viを求め、続いて表面照度が2 
(lux)となるような露光を行い、表面電位を1/2
V iとするのに必要な露光量Ey、1表面電位を一6
00vから一100vまで低下させるのに必要な露光量
E6゜。7、。。を求めた。
Evaluation 1 The samples obtained as described above were evaluated as follows using Paper Analyzer EPA-8100 (manufactured by Kawaguchi Electric Co., Ltd.). First, corona charging was performed for 5 seconds under the condition of -80 μA, and the surface potential Va immediately after charging and the surface potential Vi after being left for 5 seconds were determined.
(lux), and the surface potential is reduced to 1/2.
Exposure amount Ey required to make Vi, 1 surface potential 16
The exposure amount E6° required to lower the voltage from 00v to -100v. 7. . I asked for

又、D=100(Va−Vi)/Va(%)の式より暗
減衰率りを求めた。結果を表1に示した。
Further, the dark decay rate was determined from the formula D=100(Va-Vi)/Va(%). The results are shown in Table 1.

以上の結果から、本発明の塗布液は優れた液保存性を示
すことが判った。
From the above results, it was found that the coating liquid of the present invention exhibits excellent liquid storage stability.

実施例5 アルミニウムドラム上に、塩化ビニル−酢酸ビニル−無
水マレイン酸共重合体「エスレンク MF−IOJ  
(種水化学社製)からなる厚さ0.1μmの中間層を形
成した。一方、本発明に用いられる第7図のチタニルフ
タロシアニン1部及びヒドロキシアルミニウムフタロシ
アニン水和物0.01部をボールミル粉砕した後、ポリ
カーボネート樹脂「パンライトL −1250J 3部
、モノクロルベンゼン15部、■。
Example 5 Vinyl chloride-vinyl acetate-maleic anhydride copolymer "Eslenc MF-IOJ" was placed on an aluminum drum.
(manufactured by Tanezu Kagaku Co., Ltd.) with a thickness of 0.1 μm was formed. On the other hand, 1 part of titanyl phthalocyanine and 0.01 part of hydroxyaluminum phthalocyanine hydrate as shown in FIG.

2−ジクロルエタン35部の液を加えて分散を行った。Dispersion was carried out by adding 35 parts of 2-dichloroethane.

得られた分散液に、更にキャリア輸送物質(1)2部を
添加して、先の中間層の上浸漬塗布法により塗布、乾燥
して、厚さ20μmの感光層を形成した。
To the obtained dispersion, 2 parts of carrier transport substance (1) was further added, and the mixture was coated on top of the intermediate layer by dip coating and dried to form a photosensitive layer with a thickness of 20 μm.

このようにして得られた感光体をサンプル5とする。The photoreceptor thus obtained is designated as sample 5.

又、実施例1−2と同様に得られた分散液をlカ月間放
置した後、同様にして感光体を作成した。
Further, the dispersion obtained in the same manner as in Example 1-2 was left to stand for one month, and then a photoreceptor was prepared in the same manner.

これをサンプル5′とする。This will be referred to as sample 5'.

比較例2、 実施例5においてヒドロキシアルミニウムフタロシアニ
ンを用いない他は全く同様にして感光体を作成した。こ
れを比較サンプル(2)とし、この感光体を1力月放置
した後作成した感光体を比較サンプル(2′)とする。
Photoreceptors were prepared in exactly the same manner as in Comparative Example 2 and Example 5, except that hydroxyaluminum phthalocyanine was not used. This is referred to as Comparative Sample (2), and the photoreceptor prepared after leaving this photoreceptor for one month is referred to as Comparative Sample (2').

こうして得られたサンプルを、帯電極性をプラス極性と
した他は評価lと同様にして評価した。
The thus obtained sample was evaluated in the same manner as in Evaluation 1, except that the charging polarity was changed to positive polarity.

結果を表2に示した。The results are shown in Table 2.

本発明の塗布液はプラス帯電の評価においても良好な液
保存性を示した。
The coating liquid of the present invention also showed good liquid storage stability in the evaluation of positive charge.

実施例6 本発明に用いられる第7図のチタニルフタロ・/アニン
2g1及びヒドロキシアルミニウム7りロシアニン水和
物0.02gとンリフーン樹脂(rKR−5240,1
5%キシレン、ブタノール溶液」信越化学社IL)30
gを2−プロパツール50mQ中でサンドミルを用いて
分散し、これをアルミニウムを蒸着したガラスプレート
上にスピナーで塗布して厚さ0.5μ口とし、その上に
金電極を蒸着して本発明のセルを得た。
Example 6 2 g of titanyl phthalo/anine shown in FIG.
5% xylene, butanol solution” Shin-Etsu Chemical IL) 30
g was dispersed using a sand mill in 50 mQ of 2-proper tool, and this was coated with a spinner onto a glass plate on which aluminum was vapor-deposited to give a thickness of 0.5μ, and a gold electrode was vapor-deposited thereon to form the present invention. cells were obtained.

このようにして得られたセルの光電変換効率は1.7%
と高い値を示した。
The photoelectric conversion efficiency of the cell thus obtained was 1.7%.
showed a high value.

〔発明の効果〕〔Effect of the invention〕

本発明の塗布液は優れた液保存性を示すため、長期間塗
布液の性能を劣化させることなく保存することができる
Since the coating liquid of the present invention exhibits excellent liquid storage properties, it can be stored for a long period of time without deteriorating the performance of the coating liquid.

又、本発明の塗布液を塗布して得られる電子写真感光体
は塗布液が劣化しないことから製造上安定でありかつ高
い感度を保つことができる。
Further, the electrophotographic photoreceptor obtained by coating the coating liquid of the present invention is stable in production and can maintain high sensitivity because the coating liquid does not deteriorate.

【図面の簡単な説明】 第1区〜1g6図は本発明の感光体の層構成の具体例を
示した各断面図である。 1・・・導電性支持体 2・・・キャリア発生層 3・・・キャリア輸送層 4.4’、4“・・・感光層 5・・・中間層 第7図〜第11図は本発明に用いられるチタニルフタロ
シアニンのX線回折スペクトル図である。
BRIEF DESCRIPTION OF THE DRAWINGS Figures 1 to 1g6 are cross-sectional views showing specific examples of the layer structure of the photoreceptor of the present invention. 1... Conductive support 2... Carrier generation layer 3... Carrier transport layer 4.4', 4''... Photosensitive layer 5... Intermediate layer FIGS. 7 to 11 are according to the present invention FIG. 2 is an X-ray diffraction spectrum diagram of titanyl phthalocyanine used for.

Claims (2)

【特許請求の範囲】[Claims] (1)X線回折スペクトルにおいて、CuKα線(波長
1.541Å)のブラッグ角2θの27.2±0.2゜
にピークを有するチタニルフタロシアニンと、下記一般
式〔 I 〕で表される配位水もしくは結晶水を有する金
属フタロシアニンを含有することを特徴とする塗布液。 一般式〔 I 〕 ▲数式、化学式、表等があります▼ 式中、Mは金属原子を表し、X_1〜X_4は水素原子
、ハロゲン原子或は置換、無置換の続記8種の基;アル
キル基、アリール基、アルコキシ基、アリールオキシ基
、アルキルチオ基、アリールチオ基、アミノ基又は複素
環基を表し、Yはハロゲン原子、酸素原子、水酸基、置
換もしくは無置換の続記5種の基;アルコキシ基、アリ
ールオキシ基、アルキルチオ基、アリールチオ基、シロ
キシ基を表す。又、k、l、m、nは0〜4の整数を表
し、pは0〜2の整数、qは1以上の整数を表す。〕
(1) In the X-ray diffraction spectrum, titanyl phthalocyanine has a peak at 27.2 ± 0.2° of the Bragg angle 2θ of CuKα rays (wavelength 1.541 Å) and the coordination represented by the following general formula [I] A coating liquid characterized by containing a metal phthalocyanine having water or water of crystallization. General formula [I] ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ In the formula, M represents a metal atom, and X_1 to X_4 are hydrogen atoms, halogen atoms, or substituted or unsubstituted 8 types of groups; alkyl groups , represents an aryl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an amino group or a heterocyclic group, and Y is a halogen atom, an oxygen atom, a hydroxyl group, a substituted or unsubstituted group of the following five types; an alkoxy group , represents an aryloxy group, an alkylthio group, an arylthio group, or a siloxy group. Moreover, k, l, m, and n represent integers of 0 to 4, p represents an integer of 0 to 2, and q represents an integer of 1 or more. ]
(2)前記請求項1に記載の塗布液を塗布することによ
って得られる電子写真感光体。
(2) An electrophotographic photoreceptor obtained by coating the coating liquid according to claim 1.
JP31564490A 1990-11-20 1990-11-20 Coating liquid Expired - Lifetime JP2899834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31564490A JP2899834B2 (en) 1990-11-20 1990-11-20 Coating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31564490A JP2899834B2 (en) 1990-11-20 1990-11-20 Coating liquid

Publications (2)

Publication Number Publication Date
JPH04184453A true JPH04184453A (en) 1992-07-01
JP2899834B2 JP2899834B2 (en) 1999-06-02

Family

ID=18067848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31564490A Expired - Lifetime JP2899834B2 (en) 1990-11-20 1990-11-20 Coating liquid

Country Status (1)

Country Link
JP (1) JP2899834B2 (en)

Also Published As

Publication number Publication date
JP2899834B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
EP0795791A1 (en) Electrophotographic photoreceptor
EP0405420B1 (en) Electrophotographic photoreceptor
JP2934983B2 (en) Coating liquid
JP2961562B2 (en) Electrophotographic photoreceptor and mixed crystal manufacturing method
JPH04221962A (en) Electrophotographic sensitive body
JPH03200790A (en) Titanylphthalocyanine
JP2899833B2 (en) Coating liquid
JPH04184452A (en) Coating liquid
JP2899834B2 (en) Coating liquid
JPH06118678A (en) Electrophotographic sensitive body
JPH04184454A (en) Coating liquid
JPH04361269A (en) Electrophotographic sensitive material
JP3506071B2 (en) Electrophotographic photoreceptor
JPH04184450A (en) Coating liquid
JP3099149B2 (en) Electrophotographic photoreceptor
JP2657839B2 (en) Electrophotographic photoreceptor
JPH052278A (en) Electrophotographic sensitive material
JPH04184451A (en) Coating liquid
US6214504B1 (en) Photoconductive imaging members
JPH05346672A (en) Coating liquid for photoconductive layer and electorophotographic sensitive body
JP3103990B2 (en) Electrophotographic photoreceptor
JP2707303B2 (en) Electrophotographic photoreceptor
JPH04371962A (en) Electrophotographic sensitive body
JPH052279A (en) Electrophotographic sensitive material
JP2808308B2 (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12