JPH04184052A - Multiple effect absorption type freezer - Google Patents

Multiple effect absorption type freezer

Info

Publication number
JPH04184052A
JPH04184052A JP2309558A JP30955890A JPH04184052A JP H04184052 A JPH04184052 A JP H04184052A JP 2309558 A JP2309558 A JP 2309558A JP 30955890 A JP30955890 A JP 30955890A JP H04184052 A JPH04184052 A JP H04184052A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature regenerator
condenser
ejector
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2309558A
Other languages
Japanese (ja)
Inventor
Akio Chikasawa
近沢 明夫
Takeshi Watanabe
剛 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2309558A priority Critical patent/JPH04184052A/en
Publication of JPH04184052A publication Critical patent/JPH04184052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To raise the temperature of refrigerant in a condenser and enhance heat exchange efficiency by introducing condensed refrigerant water into a driving fluid inlet for an ejector and further introducing refrigerant vapor generated in the final process of a low temperature generator into a sucked up fluid of the ejector. CONSTITUTION:A condensed refrigerant water supply passage 52 is connected with a driving fluid inlet 51 of an ejector 50 connected with a refrigerant vapor inlet 41 of a condenser 4 where the vapor generated in a high temperature regenerator 2 is condensed in a low temperature regenerator 3 and introduced into a drive fluid inlet 51 of the ejector 50 still in a high pressure condition. A refrigerant vapor supply passage 54 is connected with a sucked up fluid inlet 53 of the ejector 50 where the refrigerant vapor generated in a low temperature regenerator 3 is introduced. More specifically, the condensed refrigerant water is jetted out toward a condenser 4 at a high pressure where the refrigerant vapor is sucked up with the low temperature regenerator 3 as a suction side. In the condenser 4, the pressure of the vapor is increased and its internal temperature is also increased, thereby increasing the differentce in temperature between the vapor and the open air. It is, therefore, possible to enhance heat exchange efficiency at this site.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温再生器から凝縮器への冷媒供給路に低温
再生器を設けた多重効用吸収式冷凍機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a multi-effect absorption refrigerator in which a low-temperature regenerator is provided in a refrigerant supply path from a high-temperature regenerator to a condenser.

〔従来の技術〕[Conventional technology]

このような多重効用吸収式冷凍機の一例としての二重効
用吸収式冷凍機(1)の系統説明図及び、デユーリング
線図を第6図、及び第7図に示した。系統説明図に基づ
いてこの冷凍機(1)の冷房作動時の系統を以下に説明
する。ここで、この冷凍機(1)は、高温再生器(2)
及び低温再生器(3)、さらに低温再生器(3)の蒸気
路下流側に設けられる凝縮器(4)、さらに室内機の冷
却系(5)との熱交換をおこなう蒸発器(6)、さらに
、蒸発機(6)からの水蒸気を吸収液に吸収させる吸収
器(7)、溶液循環ポンプ(8)、低温熱交換器(9)
、高温熱交換器(10)を備えて構成されている。
A system explanatory diagram and a Dueling diagram of a dual-effect absorption refrigerator (1) as an example of such a multiple-effect absorption refrigerator (1) are shown in FIGS. 6 and 7. The system during cooling operation of this refrigerator (1) will be described below based on a system explanatory diagram. Here, this refrigerator (1) is a high temperature regenerator (2)
and a low-temperature regenerator (3), a condenser (4) provided on the downstream side of the steam path of the low-temperature regenerator (3), and an evaporator (6) that performs heat exchange with the indoor unit cooling system (5). Furthermore, an absorber (7) that absorbs water vapor from the evaporator (6) into an absorption liquid, a solution circulation pump (8), and a low-temperature heat exchanger (9).
, a high temperature heat exchanger (10).

ここで、第7図に示されるデユーリング線図との対象に
おいて各機器の作動を以下に説明する。
Here, the operation of each device will be explained below in relation to the Duering diagram shown in FIG. 7.

高温再生器(2)において冷媒吸収状態の吸収液(以後
溶液と呼ぶ)はバーナ(20)によって加熱され、冷媒
の一部が蒸気となって高温再生器蒸気路(21)に流れ
込む(線図、3−4−5(液側)及び13(蒸気側))
。さらに低温再生器(3)においては、前述の高温再生
器蒸気路(21)から流れ込む蒸気によって低温再生器
(3)内の溶液か加熱され、さらに冷媒の一部が蒸気と
なって凝縮器(4)に流れ込む(線図、6−7−8(器
側)及び12(蒸気側))。そして、前述の高温再生器
蒸気路(21)の蒸気は、低温再生器(3)、第一減圧
弁(31)、冷媒タンク(32)、第二減圧弁(33)
、蒸発器(6)に至る工程において、冷却、低圧の状態
とされるのである(線図、13−12−11)。一方、
低温再生器(3)て生成される蒸気は、低温再生器蒸気
路(34)を通って凝縮器(4)に送り込まれ、ここて
、保有する熱量を外気側に放出することとなる。(線図
、12−11)。
In the high-temperature regenerator (2), the absorption liquid (hereinafter referred to as solution) in a refrigerant-absorbing state is heated by the burner (20), and a portion of the refrigerant turns into steam and flows into the high-temperature regenerator steam path (21) (see diagram). , 3-4-5 (liquid side) and 13 (steam side))
. Furthermore, in the low-temperature regenerator (3), the solution in the low-temperature regenerator (3) is heated by the steam flowing from the high-temperature regenerator steam path (21) mentioned above, and a part of the refrigerant turns into steam, and the condenser ( 4) (diagram, 6-7-8 (vessel side) and 12 (steam side)). The steam in the high temperature regenerator steam path (21) is transferred to the low temperature regenerator (3), the first pressure reducing valve (31), the refrigerant tank (32), and the second pressure reducing valve (33).
In the process leading to the evaporator (6), it is cooled and brought into a low pressure state (diagram 13-12-11). on the other hand,
The steam generated in the low temperature regenerator (3) is sent to the condenser (4) through the low temperature regenerator steam path (34), where it releases the retained heat to the outside air. (Diagram, 12-11).

さらにこの冷媒は、前述の冷媒タンク(32)、第二減
圧弁(33)、蒸発器(6)に至る工程において、冷却
されるとともに低圧の状態とされるのである。
Further, this refrigerant is cooled and brought to a low pressure state in the process of reaching the refrigerant tank (32), the second pressure reducing valve (33), and the evaporator (6).

蒸発器(6)においては、前述の室内冷却系(5)の室
外器側熱交換器(51)から熱量を与えられ、蒸発する
こととなる(線図、11)。ここで、生成される蒸気は
吸収器(7)において吸収液に吸収され、さらに溶液循
環ポンプ(8)によって高圧状態とされる゛とともに、
低温及び高温熱交換器(9)、 (10)により昇温操
作をうけることとなるのである(線図、1−2−3)。
The evaporator (6) receives heat from the outdoor heat exchanger (51) of the indoor cooling system (5), and evaporates (diagram 11). Here, the generated vapor is absorbed by the absorption liquid in the absorber (7), and is further brought into a high pressure state by the solution circulation pump (8).
The temperature will be increased by the low-temperature and high-temperature heat exchangers (9) and (10) (diagram 1-2-3).

さらに、溶液は、高温再生器(2)、低温再生器(3)
、低温熱交換器(9)、吸収器(7)、溶液循環ポンプ
(8)、低温熱交換器(9)、高温熱交換器(10)で
構成される回路を循環する。
Furthermore, the solution is transferred to a high temperature regenerator (2), a low temperature regenerator (3)
, a low temperature heat exchanger (9), an absorber (7), a solution circulation pump (8), a low temperature heat exchanger (9), and a high temperature heat exchanger (10).

〔発明か解決しようとする課題〕[Invention or problem to be solved]

従来、高温再生器(2)から発生した蒸気は低温再生器
(3)で凝縮するのであるか、これは低温再生器(3)
より下流側にもうけられた第一減圧弁(31)によりそ
のまま減圧されて冷媒タンク(32)に回収されていた
。即ち、ここで、この部位において冷媒が保持する圧力
エネルギーは利用されることなく、虚しく捨てられてい
た。
Conventionally, the steam generated from the high temperature regenerator (2) is condensed in the low temperature regenerator (3), or is this the low temperature regenerator (3)?
The pressure of the refrigerant was directly reduced by the first pressure reducing valve (31) provided on the downstream side, and the refrigerant was recovered in the refrigerant tank (32). That is, here, the pressure energy held by the refrigerant at this location was wasted without being utilized.

さらに一方、凝縮器(4)における熱交換を容易にする
ためには、凝縮器(4)の温度を上げてやるのが得策で
あるか、この温度は冷媒の蒸発温度であるため、この部
位における圧力状態を変化させない限り、それ自身を制
御することは困難であった。
Furthermore, in order to facilitate heat exchange in the condenser (4), it is advisable to raise the temperature of the condenser (4), since this temperature is the evaporation temperature of the refrigerant. It was difficult to control itself without changing the pressure state at.

したがって、本願の目的は低温再生器で凝縮する冷媒の
保有する圧力エネルギーを有効に利用できるとともに、
凝縮器における熱交換を効率よくおこなうために、この
凝縮器内の冷媒の温度を高めることが可能な多重効用吸
収式冷凍機を得ることである。
Therefore, the purpose of the present application is to make it possible to effectively utilize the pressure energy possessed by the refrigerant condensed in the low-temperature regenerator, and to
The object of the present invention is to obtain a multi-effect absorption refrigerator capable of increasing the temperature of refrigerant in the condenser in order to efficiently exchange heat in the condenser.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するための本発明による多重効用吸収式
冷凍機の特徴構成は、冷房作動状態で作動される低湿再
生器の最終段のものに接続される凝縮器の冷媒蒸気入口
側にエジェクターを配置し、低温再生器で生成した凝縮
冷媒水をエジェクターの駆動流体流入口に導入する凝縮
冷媒水供給路を備えるとともに、低温再生器の最終段の
もので発生した冷媒蒸気をエジェクターの被吸引流体流
入口に導入する冷媒蒸気供給路を備えたことにあり、そ
の作用・効果は次の通りである。
The characteristic structure of the multi-effect absorption chiller according to the present invention to achieve this purpose is that an ejector is installed on the refrigerant vapor inlet side of the condenser connected to the final stage of the low-humidity regenerator operated in the cooling operation state. It is equipped with a condensed refrigerant water supply path that introduces the condensed refrigerant water generated in the low-temperature regenerator into the driving fluid inlet of the ejector, and also supplies the refrigerant vapor generated in the last stage of the low-temperature regenerator to the fluid to be drawn into the ejector. The refrigerant vapor supply path introduced into the inlet is provided, and its functions and effects are as follows.

〔作 用〕[For production]

このような構成を採用すると、低温再生器で生成する冷
媒水は、凝縮冷媒水供給路を介してエジェクターの駆動
流体流入口に導かれ、噴出させられるため、このエジェ
クターの被吸引流体流入口に接続されている冷媒蒸気供
給路を介して低温再生器の最終段のもので発生する水蒸
気か吸引され、低温再生器の最終のもの内の水蒸気圧は
若干低下することとなるのである。これを第3図に示さ
れる線図で二重効用吸収式冷凍機について説明すると、
同図破線で示すように、7.8で示す低温再生器におけ
る溶液の加熱温度(冷媒の蒸発温度)が低下することと
なるのである。一方、凝縮器側においては、エジェクタ
ーで供給される凝縮冷媒水の容量分だけ、冷媒が余分に
押し込まれることとなるため、圧力は若干上昇する。こ
れか第3図における線図における12の点(凝縮器部に
おける状態を示す。)を、飽和線にそって上部へ移動さ
せることとなるのである。
When such a configuration is adopted, the refrigerant water generated in the low-temperature regenerator is guided to the driving fluid inlet of the ejector via the condensed refrigerant water supply path and is ejected. The water vapor generated in the final stage of the low-temperature regenerator is sucked through the connected refrigerant vapor supply path, and the water vapor pressure in the final stage of the low-temperature regenerator is slightly lowered. This can be explained using the diagram shown in Figure 3 for a double-effect absorption refrigerator.
As shown by the broken line in the figure, the heating temperature of the solution (refrigerant evaporation temperature) in the low-temperature regenerator shown in 7.8 decreases. On the other hand, on the condenser side, an extra amount of refrigerant is pushed in by the volume of condensed refrigerant water supplied by the ejector, so the pressure increases slightly. This means that the 12 points on the diagram in FIG. 3 (indicating the state in the condenser section) are moved upward along the saturation line.

〔発明の効果〕〔Effect of the invention〕

したがって、本願の冷凍機においては、凝縮器内温度を
若干上げて運転することができるため、例えばこの部位
を空冷方式の熱交換系とした場合においても空冷を効率
よく、良好におこなうことが可能となる。さらに、冷凍
機としての冷却側能力が同じなら凝縮器を小型化するこ
とが可能となる。
Therefore, the refrigerator of the present application can be operated with the temperature inside the condenser slightly raised, so even if this part is used as an air-cooled heat exchange system, for example, air cooling can be performed efficiently and favorably. becomes. Furthermore, if the cooling capacity of the refrigerator is the same, the condenser can be made smaller.

一方、低温再生器内圧が下がるため、高温再生器から発
生する冷媒蒸気温度を下げることか可能となり(線図、
13で示される破線位置まで蒸発状態が下がる。)、高
温再生器内度も低下させることができる。この温度はこ
の高温再生器内で発生する腐食と密接な関係があり、温
度降下させることにより腐食対策として有利な状態を実
現することが可能となる。結果メンテナンス性が向上す
る。
On the other hand, since the internal pressure of the low-temperature regenerator decreases, it becomes possible to lower the refrigerant vapor temperature generated from the high-temperature regenerator (see the diagram below).
The evaporation state decreases to the position indicated by the broken line 13. ), the internal temperature of the high temperature regenerator can also be reduced. This temperature is closely related to the corrosion that occurs within the high-temperature regenerator, and by lowering the temperature, it is possible to realize an advantageous state as a countermeasure against corrosion. As a result, maintainability is improved.

〔実施例〕〔Example〕

本願の実施例を図面に基づいて説明する。第1図には本
願の特徴構成を採用した多重効用吸収式冷凍機の一例と
しての空冷式の二重効用吸収式冷凍機(1)の系統説明
図が、そして、第2図にはこの冷凍機(1)における凝
縮器(4)付近の拡大図が示されている。さらに、前述
のように第3図にこの冷凍機(1)に対応した線図か示
されている。第3図の説明については、前述の説明と同
じである。
Embodiments of the present application will be described based on the drawings. Fig. 1 shows a system diagram of an air-cooled double-effect absorption refrigerating machine (1) as an example of a multi-effect absorption refrigerating machine adopting the characteristic configuration of the present application, and Fig. 2 shows a system diagram of this refrigerating machine. An enlarged view of the vicinity of the condenser (4) in the machine (1) is shown. Furthermore, as mentioned above, FIG. 3 shows a diagram corresponding to this refrigerator (1). The explanation of FIG. 3 is the same as that described above.

さて第1図、2図に示すように、この冷凍機(1)の凝
縮器(4)の冷媒蒸気入口(41)側にはエジェクター
(50)が接続されている。そして、このエジェクター
(50)の駆動流体流入口(51)には凝縮冷媒水供給
路(52) (前述の高温再生型蒸気路(21)に相当
)か接続されており、高温再生器(2)で生成される蒸
気か低温再生器(3)部位で、熱交換に伴って凝縮され
、高圧状態のまま、前述のエジェクター(5o)の駆動
流体流入口(51)に導かれるのである。さらに、この
エジェクター(50)の被吸引流体流入口(53)には
冷媒蒸気供給路(54) (前述の低温再生器内圧路(
34)に相当)か接続されており、低温再生器(3)で
発生した冷媒蒸気か導かれるように構成されているので
ある。
As shown in FIGS. 1 and 2, an ejector (50) is connected to the refrigerant vapor inlet (41) side of the condenser (4) of the refrigerator (1). The driving fluid inlet (51) of this ejector (50) is connected to a condensed refrigerant water supply path (52) (corresponding to the high temperature regeneration type steam path (21) described above), and the high temperature regenerator (2 ) is condensed through heat exchange in the low-temperature regenerator (3), and is led to the driving fluid inlet (51) of the ejector (5o) in a high pressure state. Furthermore, a refrigerant vapor supply path (54) (the above-mentioned low temperature regenerator internal pressure path) is connected to the suction fluid inlet (53) of this ejector (50).
34)), and is configured so that the refrigerant vapor generated in the low-temperature regenerator (3) is guided thereto.

即ち、運転状態においては、このエジェクター(50)
において凝縮冷媒水が高圧で凝縮器(4)側に向かって
吹き出し、低温再生器(3)側をサクション側として、
冷媒蒸気を吸い込むこととなるのである。ここで、この
低温再生器(3)は、従来よりも低圧、低温の状態とな
る。いっぽう、凝縮器(4)側においては、凝縮冷媒水
、冷媒蒸気か詰めこまれることとなるため高圧の状態と
なり、その内部温度も従来より上昇することとなるので
ある。
That is, in the operating state, this ejector (50)
The condensed refrigerant water is blown out at high pressure toward the condenser (4) side, and the low temperature regenerator (3) side is used as the suction side.
This results in inhalation of refrigerant vapor. Here, this low-temperature regenerator (3) is in a state of lower pressure and lower temperature than before. On the other hand, the condenser (4) side is filled with condensed refrigerant water and refrigerant vapor, resulting in a high pressure state, and its internal temperature is also higher than before.

結果、この凝縮器(4)における外気との温度差が従来
より大きくなり、この部位における熱交換を良好におこ
なうことが可能となるのである。
As a result, the temperature difference between the condenser (4) and the outside air becomes larger than before, making it possible to perform heat exchange well in this region.

さて以上の説明においては、この二重効用吸収式冷凍機
(1)を冷房に使用する場合について説明したが、この
冷凍機(1)か暖房装置とじて使用される場合は、低温
再生器(3)、凝縮器(4)、冷媒タンク(32)が使
用されることなく、高温再生器(2)から蒸発器(6)
に接続される暖房用供給路(60)を冷暖房切換弁(6
1)により切り換え操作して使用することにより、前述
の蒸発器(6)が凝縮器として作動することとなるので
ある。
Now, in the above explanation, we have explained the case where this dual effect absorption refrigerator (1) is used for cooling, but when this refrigerator (1) is used as a heating system, the low temperature regenerator ( 3), from the high temperature regenerator (2) to the evaporator (6) without the condenser (4) and refrigerant tank (32) being used.
The heating supply line (60) connected to the heating/cooling switching valve (6
By switching and using 1), the above-mentioned evaporator (6) will operate as a condenser.

〔別実施例〕[Another example]

前述の実施例においては、空冷式のものを示したが、こ
れは、第4図に系統説明図が示されている水冷式の二重
効用吸収式冷凍機にも適用することが可能である。この
場合もまた凝縮器(4)において同様の効果を得ること
かできる。
In the above embodiment, an air-cooled type was shown, but this can also be applied to a water-cooled dual-effect absorption refrigerator whose system diagram is shown in FIG. . In this case as well, a similar effect can be obtained in the condenser (4).

この場合の凝縮器(4)の例が第5図に示されている。An example of the condenser (4) in this case is shown in FIG.

さらにここで、多重効用式吸収式冷凍機とは、高温再生
機に対して単一の低温再生器を備えた吸収式冷凍機及び
複数の低温再生器を備えたものを含むものとする。
Furthermore, here, the multi-effect absorption refrigerating machine includes an absorption refrigerating machine equipped with a single low-temperature regenerator for a high-temperature regenerator, and one equipped with a plurality of low-temperature regenerators.

尚、特許請求の範囲の項に図面との対照を便利にするた
めに符号を記すが、該記入により本発明は添付図面の構
成に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings by the reference numerals.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明及び従来例に係る多重効用吸収式冷凍機の
構成を示し、第1図は本発明の一例としての空冷式の二
重効用吸収式冷凍機の系統説明図、第2図は第1図に示
す冷凍機の凝縮器近傍の詳細図、第3図は第1図に示す
冷凍機のサイクル図、第4図は水冷式の二重効用吸収式
冷凍機の系統説明図、第5図は第4図に示す冷凍機の凝
縮機を示す図、第6図は従来構成の二重効用吸収式冷凍
機の系統説明図、第7図は従来構成の二重効用吸収式冷
凍機のサイクル図である。 (3)・・・・・・低温再生器、(4)・・・・・・凝
縮器、(41)・・・・・・冷媒蒸気入口、(50)・
・川・エジェクター、(51)・・・・・・駆動流体流
入口、(52)・・・・・・凝縮冷媒水供給路、(53
)・・・・・・被吸引流体流入口、(54)・・・・・
・冷媒蒸気供給路。
The drawings show the configurations of multiple-effect absorption refrigerators according to the present invention and conventional examples. Figure 1 is a detailed view of the vicinity of the condenser of the refrigerator, Figure 3 is a cycle diagram of the refrigerator shown in Figure 1, Figure 4 is a system explanatory diagram of the water-cooled dual-effect absorption refrigerator, and Figure 5 is a detailed diagram of the vicinity of the condenser of the refrigerator. The figure shows the condenser of the refrigerator shown in Figure 4, Figure 6 is an explanatory diagram of the system of a dual-effect absorption refrigerator with a conventional configuration, and Figure 7 shows the system of a double-effect absorption refrigerator with a conventional configuration. It is a cycle diagram. (3)...Low temperature regenerator, (4)...Condenser, (41)...Refrigerant vapor inlet, (50)...
・River ejector, (51)... Drive fluid inlet, (52)... Condensed refrigerant water supply path, (53
)...Suctioned fluid inlet, (54)...
・Refrigerant vapor supply path.

Claims (1)

【特許請求の範囲】 多重効用吸収式冷凍機において、 冷房作動状態で作動される低温再生器(3)の最終段の
ものに接続される凝縮器(4)の冷媒蒸気入口(41)
側にエジェクター(50)を配置し、前記低温再生器(
3)で生成した凝縮冷媒水を前記エジェクター(50)
の駆動流体流入口(51)に導入する凝縮冷媒水供給路
(52)を備えるとともに、前記低温再生器(3)の最
終段のもので発生した冷媒蒸気を前記エジェクター(5
0)の被吸引流体流入口(53)に導入する冷媒蒸気供
給路(54)を備えた多重効用吸収式冷凍機。
[Claims] In a multi-effect absorption refrigerator, a refrigerant vapor inlet (41) of a condenser (4) connected to the final stage of a low-temperature regenerator (3) operated in a cooling operating state.
An ejector (50) is placed on the side, and the low temperature regenerator (
The condensed refrigerant water generated in step 3) is transferred to the ejector (50).
A condensed refrigerant water supply path (52) is provided to introduce the driving fluid inlet (51) into the driving fluid inlet (51) of the refrigerant vapor generated in the last stage of the low temperature regenerator (3).
A multi-effect absorption refrigerating machine equipped with a refrigerant vapor supply path (54) introduced into the suction fluid inlet (53) of 0).
JP2309558A 1990-11-14 1990-11-14 Multiple effect absorption type freezer Pending JPH04184052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2309558A JPH04184052A (en) 1990-11-14 1990-11-14 Multiple effect absorption type freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2309558A JPH04184052A (en) 1990-11-14 1990-11-14 Multiple effect absorption type freezer

Publications (1)

Publication Number Publication Date
JPH04184052A true JPH04184052A (en) 1992-07-01

Family

ID=17994466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2309558A Pending JPH04184052A (en) 1990-11-14 1990-11-14 Multiple effect absorption type freezer

Country Status (1)

Country Link
JP (1) JPH04184052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236162A (en) * 2014-09-29 2014-12-24 河南科技大学 Refrigeration/heating device of locomotive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236162A (en) * 2014-09-29 2014-12-24 河南科技大学 Refrigeration/heating device of locomotive
CN104236162B (en) * 2014-09-29 2017-01-25 河南科技大学 Refrigeration/heating device of locomotive

Similar Documents

Publication Publication Date Title
KR100732228B1 (en) Hybrid absorption chiller
JPH08159594A (en) Multiple effect absorption refrigerator
JP2005003312A (en) Triple effect absorption refrigerating plant
JPH04184052A (en) Multiple effect absorption type freezer
KR101127521B1 (en) Single-effect, double stage generator, hot water driven absorption chiller
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
KR102144935B1 (en) absorption chiller using non-heat type recycling process
KR102144934B1 (en) absorption chiller using non-heat type recycling process
JPH0783530A (en) Water and lithium bromide absorption refrigerator
JPH06185830A (en) Absorption type refrigerator, cold/warm water machine and heat pump provided with steam turbine and compressor at absorber
JP3948548B2 (en) Exhaust gas driven absorption chiller / heater
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JP3300962B2 (en) Absorption chiller / heater
JP3429906B2 (en) Absorption refrigerator
JP3429905B2 (en) Absorption refrigerator
JP4282225B2 (en) Absorption refrigerator
JP3988016B2 (en) Absorption refrigerator
JPH0621730B2 (en) Single-double-effect absorption refrigerator
JPH0886531A (en) Dual-effect absorption refrigerator as well as hot and chilled water generator
JP2003121021A (en) Double effect absorption refrigerating machine
JPH11337233A (en) Absorption refrigerating machine
JPH11201580A (en) Absorption refrigerating machine
CN113566447A (en) Rapid crystal melting device for lithium bromide absorption type air conditioning unit and operation method
JPS5852466Y2 (en) Heat exchanger for absorption refrigerator
JPH0198865A (en) Absorption refrigerator