JPH04183811A - Method for refining stainless steel or the like - Google Patents

Method for refining stainless steel or the like

Info

Publication number
JPH04183811A
JPH04183811A JP2312861A JP31286190A JPH04183811A JP H04183811 A JPH04183811 A JP H04183811A JP 2312861 A JP2312861 A JP 2312861A JP 31286190 A JP31286190 A JP 31286190A JP H04183811 A JPH04183811 A JP H04183811A
Authority
JP
Japan
Prior art keywords
converter
refining
slag
steels
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2312861A
Other languages
Japanese (ja)
Inventor
Hiroshi Nomura
寛 野村
Katsumi Kurokawa
克美 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2312861A priority Critical patent/JPH04183811A/en
Publication of JPH04183811A publication Critical patent/JPH04183811A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To prevent the erosion of the refractories in a bottom blown converter and to improve the hit rate of heat sizes by using CaCO3, MgCO3, etc., as a slag making agent in the method for reducing and recovering the oxides of the valuable metals in molten slag after subjecting carbon steels and alloy steels to decarburization refining in the converter. CONSTITUTION:The carbon steels, stainless steels, high-alloy steels, etc., are subjected to the oxidation decarburization refining in the converter provided with tuyeres for blowing refining gases under a molten steel surface, such as bottom blowing tuyeres, and thereafter, the Fe and a part of the alloy elements entering as the oxides the inside of the molten slag are reduced to metals by reducing agents, such as Fe-Si. The reduced metals are recovered. An extremely high temp. is generated by the oxidation decarburization and the exothermic reaction by the oxidation of the Fe, Mn, Ni and others during this refining stage and the refractory materials in the converter are eroded and, therefore, carbonates, such as CaCO3 and MgCO3, are used as the slag making agent and the inside of the converter is cooled by the endothermic reaction effected by the pyrolysis thereof, by which the erosion of the refractories is prevented. Since there is no need for using scrap, etc., as the coolant of the superheat converter like heretofore, the hit rate of the heat sizes and the yield of the valuable metals are improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、高合金鋼、ステンレス鋼や高炭素特殊鋼等の
製鋼方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing high alloy steel, stainless steel, high carbon special steel, etc.

〈従来の技術〉 高合金鋼、ステンレス鋼、高炭素特殊調停はAODや上
底吹き転炉(K−OBM/に−BOf))のような浴面
下にil’Jil!ガス吹込用羽口を有する転炉を用い
て脱炭精錬した後に還元精錬されて出鋼されることが多
い。還元精錬を実施すると、脱炭精錬中に酸化されたF
e、 Mn、 Cr等が殆ど100%近くまで還元回収
される。このため、ヒートサイズは装入されたメタル分
の重量そのままの形で表される。
<Prior art> High alloy steel, stainless steel, and high carbon special media are used under the bath surface such as AOD and top-bottom blowing converter (K-OBM/NI-BOf)). Steel is often decarburized and refined using a converter equipped with gas injection tuyeres, then subjected to reduction refining and tapped steel. When reduction refining is carried out, F oxidized during decarburization refining
E, Mn, Cr, etc. are reduced and recovered to almost 100%. Therefore, the heat size is expressed as the weight of the charged metal.

一方、通常の普通鋼の場合は脱炭・脱燐精錬を行った後
、還元精錬されないでそのまま出鋼されるため、脱炭精
錬中に生成するFe、 Mn、 Cr等の酸化物は還元
回収されることなく、スラグ中に移行したままで排滓さ
れる。従って、ヒートサイズは装入されるメタル分のみ
で一義的に決まらず、脱炭中のメタルの酸化の程度に大
きく影響され、バラツキが太き(なる。
On the other hand, in the case of ordinary ordinary steel, after decarburization and dephosphorization refining, it is extracted as is without reduction refining, so oxides such as Fe, Mn, and Cr produced during decarburization refining are reduced and recovered. The sludge remains in the slag without being washed away. Therefore, the heat size is not uniquely determined by the amount of metal charged, but is greatly influenced by the degree of oxidation of the metal during decarburization, and has wide variations.

ところで、脱炭精錬中にはC,Si、 Fe、門n、 
Cr等の酸化が生じるので、その酸化熱によって溶鋼温
度の上昇が住じる。そして、必要以上の溶鋼温度の上昇
は耐火物の損耗を助長するので、溶IIgIa度を下げ
るために吹錬過程で冷却が実施されるのが一般的である
By the way, during decarburization refining, C, Si, Fe,
Since oxidation of Cr etc. occurs, the temperature of the molten steel increases due to the heat of oxidation. Since an increase in the temperature of the molten steel more than necessary promotes wear and tear on the refractories, cooling is generally performed during the blowing process to lower the degree of melt IIgIa.

溶鋼冷却の具体的方法としては、吹錬を一旦中断し炉を
傾動してクレーンによりスクラップを添加する方法や、
例えば特公昭60−22045号公報にあるよう−に炉
頂より吹錬を中断することなく合金鉄やメタルの酸化物
を添加する方法が採られている。
Specific methods for cooling molten steel include temporarily suspending blowing, tilting the furnace, and adding scrap using a crane;
For example, as disclosed in Japanese Patent Publication No. 60-22045, a method is adopted in which ferroalloys or metal oxides are added from the top of the furnace without interrupting the blowing process.

〈発明が解決しようとする課題〉 しかしながら、従来のスクラップや合金鉄を用いて冷却
する方法では、確かに溶鋼温度を低下させる効果はある
ものの、次に述べるような決定的な難点がある。即ち、
生産の根本的な原則は、必要な製品を必要な量だけ作る
ことであるが、溶鋼温度の上昇をスクラップや合金鉄を
用いてコントロールする方法は、その分溶鋼量の増大を
もたらし、余分な製品を作ることになる。
<Problems to be Solved by the Invention> However, although the conventional cooling method using scrap or ferroalloy is effective in lowering the temperature of molten steel, it has the following decisive drawbacks. That is,
The fundamental principle of production is to make the necessary products in the required quantities, but the method of controlling the rise in molten steel temperature by using scrap or ferroalloy leads to an increase in the amount of molten steel, which leads to the production of excess molten steel. You will be making a product.

生産量を目標に連中させるために、あらかしめ吹錬中に
添加される冷却材の重量を見越して、吹錬スタート時の
装入量をコントロールすることも考えられるが、実際に
は吹錬中の溶鋼温度の上昇度合いは吹錬スタート時の溶
銑中のCやSiの濃度、造滓材の添加量、転炉耐火物の
含熱量等々の様々な要因に支配され、大きいバラツキが
あり、この方法で生産量を連中させることは不可能であ
る。
In order to achieve the production target, it is possible to control the amount of coolant added at the start of blowing in anticipation of the weight of coolant added during preliminary blowing, but in reality, the amount of coolant added at the start of blowing may be controlled. The degree of rise in molten steel temperature is controlled by various factors such as the concentration of C and Si in the hot metal at the start of blowing, the amount of slag material added, and the heat content of the converter refractory, and there is a large variation in this temperature. It is impossible to synchronize production volume by method.

即ち、従来のスクランプや合金鉄を冷却材として用いる
精錬方法ではヒートサイズを連中さゼ易いという還元精
錬を含むプロセスの特徴を活かせないことになる。
In other words, the conventional refining method using a scrap or a ferroalloy as a coolant cannot take advantage of the characteristic of the process including reduction refining that the heat size is easily reduced.

本発明の目的は、ステンレス鋼等の還元精錬を含むプロ
セスにおいて、ヒートサイズの連中が容易にできる精錬
方法を提案することである。
An object of the present invention is to propose a refining method that can easily produce heat-sized steel in a process involving reduction refining of stainless steel and the like.

〈課題を解決するための手段〉 即ち、本発明は、浴面下に精錬ガス吹込用羽口を有する
転炉を用いζ、溶鋼を脱炭精錬した後に還元精錬して高
合金鋼、ステンレス鋼又は高炭素特殊鋼等を溶製するプ
ロセスにおいて、少なくともCaCO3、MgC0,及
びそれらの化合物のいずれかを含む造滓材を冷却材とし
て添加することを特徴とするステンレス鋼等の精錬方法
である。
<Means for Solving the Problem> That is, the present invention uses a converter having a tuyere for blowing refining gas under the bath surface, decarburizes molten steel, and then performs reduction refining to produce high alloy steel and stainless steel. Alternatively, a method for refining stainless steel or the like is characterized in that a slag material containing at least one of CaCO3, MgCO, and their compounds is added as a coolant in the process of melting high carbon special steel and the like.

〈作 用〉 CaC01、MgCCh及びそれらの化合物は冷却材と
して溶鋼量に変化を与えないで、かつ無駄にならない材
料である。因みに吹錬中に炉内へ添加する副原料として
、−船釣にスラグの塩基度調整用のCanや耐火物保護
のためのMgOが使われている。
<Function> CaC01, MgCCh and their compounds are materials that do not change the amount of molten steel as a coolant and are not wasted. Incidentally, as auxiliary raw materials added into the furnace during blowing, Can for adjusting the basicity of slag and MgO for protecting refractories are used in boat fishing.

従って、CaCO3、MgC01及びこれらの化合物は
冷却能を有するとともにスラグの塩基度調整や耐火物保
護のために有用であり、かつ溶鋼量に変化を与えない極
めて合理的な材料である。
Therefore, CaCO3, MgC01, and their compounds are extremely rational materials that have cooling ability and are useful for adjusting the basicity of slag and protecting refractories, and do not change the amount of molten steel.

CaC0zやMgC0,及びそれ等の化合物を含む鉱物
例えば石灰石、マグネザイト、ドロマイト等の炭酸塩鉱
物を炉内に投入すると、高温雰囲気下で次式に従っ“ζ
吸熱分解し、かっCaOlMgO,、Co2の加熱に必
要な熱を溶鋼及びスラグから奪うので、冷却材としての
役割を十分に果たす。
When minerals containing CaC0z, MgC0, and their compounds, such as carbonate minerals such as limestone, magnezite, and dolomite, are placed in a furnace, they are converted to "ζ" according to the following formula in a high-temperature atmosphere.
It decomposes endothermically and removes the heat necessary for heating CaOlMgO, Co2 from the molten steel and slag, so it fully fulfills its role as a coolant.

CaCO3−> CaO+CO2 ΔH’ 298 =42.8kcal/moleMgC
O,→MBo+ co□ 八H629B =24.3kcal/mole分解して
生成されるCaOやMgOその他の脈石成分は、スラグ
中に入り、co□はガスとして炉外へ排出されるため転
炉内の溶鋼量及び還元期で回収されるべきスラグ中のF
e、 Mn、 Cr等の絶対量に変化はないので、還元
精錬後に出鋼される溶鋼量つまりヒートサイズのバラツ
キを小さくできる。
CaCO3->CaO+CO2 ΔH' 298 =42.8kcal/moleMgC
O, → MBo+ co□ 8H629B = 24.3 kcal/mole CaO, MgO, and other gangue components produced by decomposition enter the slag, and co□ is discharged outside the furnace as a gas, so it remains inside the converter. amount of molten steel and F in slag to be recovered in the reduction period.
Since there is no change in the absolute amounts of e, Mn, Cr, etc., variations in the amount of molten steel tapped after reduction refining, that is, the heat size, can be reduced.

即ち本方法によれば、従来主として用いられてきたスク
ラップや合金鉄に代わって、スラグへ添加後移行する物
質を冷却材を用いたことにより、ヒートサイズの制御が
容易にできるようになった。
That is, according to the present method, the heat size can be easily controlled by using a coolant as a substance that migrates after being added to the slag, instead of scrap or ferroalloy that has been mainly used in the past.

更にCaCO5やMgCO3のような炭酸化合物の場合
、炉内へ添加すると生成物のCaOやMROが造滓材と
して有用となるほか、発生ずるco□が溶鋼中のCと反
応して次式のように脱炭反応に寄与することにもなる。
Furthermore, in the case of carbonate compounds such as CaCO5 and MgCO3, when added to the furnace, the products CaO and MRO become useful as slag-making materials, and the generated CO□ reacts with C in the molten steel, resulting in the following formula: It also contributes to the decarburization reaction.

更にこの発生ずるCO□ガスやCOガスが脱炭中のスラ
グ−メタル間の攪拌を助長するので、脱炭中に一旦酸化
浮上分離した酸化Cr、酸化Mn及び酸化Pe等の溶鋼
Cによる還元も進行するという補助的なメリットも得ら
れる。
Furthermore, since the generated CO□ gas and CO gas promote the agitation between slag and metal during decarburization, reduction of oxidized Cr, Mn oxide, and oxidized Pe, etc., which were once oxidized and floated during decarburization, by molten steel C is also carried out. You also get the additional benefit of progression.

CO□+C→2CO↑ 次に実施例に基づいて本発明をさらに詳細に説明する。CO□+C→2CO↑ Next, the present invention will be explained in more detail based on examples.

〈実施例〉 85トン上底吹転炉(K−BOP)で行った本発明法に
係る鋼の精錬方法の実施例を従来法と比較して第1表に
示す。従来法とは炉上の副原料投入装置を利用して、吹
錬中に合金鉄や鉄屑を添加する方法である。第1表に示
すように石灰石を投入したヒートでは冷却用の合金鉄は
殆ど無くなり、単に成分調整に必要な合金鉄のみとなっ
た。
<Example> Table 1 shows an example of the steel refining method according to the present invention method performed in an 85-ton top-bottom blowing converter (K-BOP) in comparison with a conventional method. The conventional method is a method in which ferroalloy and iron scraps are added during blowing using an auxiliary material feeding device on the furnace. As shown in Table 1, in the heat in which limestone was added, there was almost no ferroalloy for cooling, and only the ferroalloy needed for component adjustment was left.

本発明の目的であるヒートサイズの連中状況を比較した
のが第1図及び第2図である。ヒート数はそれぞれ50
ヒートである。従来法では炉の状況や吹錬条件の差によ
り、吹錬中の溶鋼温度の上昇に大きなバラツキがあった
ために、吹錬中の冷却用の鉄屑、合金鉄等の添加量によ
り、σ=3.21 )ン/chとヒートサイズ自体に大
きなバラツキが生じていた。一方本発明法の場合は、σ
=1.64)ン/chとバラツキが減少しヒートサイズ
の連中率が大幅に上昇した。
FIG. 1 and FIG. 2 compare the conditions of heat size, which is the object of the present invention. Number of heats is 50 each
It's a heat. In the conventional method, there was a large variation in the temperature rise of molten steel during blowing due to differences in furnace conditions and blowing conditions. 3.21) There were large variations in the number/ch and the heat size itself. On the other hand, in the case of the method of the present invention, σ
= 1.64) n/ch, the variation decreased, and the heat size success rate increased significantly.

第1表 〈発明の効果〉 浴面下に精錬ガス吹込用羽口を有する転炉で脱炭精錬後
還元精錬して出鋼するプロセスで高合金鋼、ステンレス
鋼、高炭素特殊鋼等の鋼の溶製に際し、本発明では溶鋼
の冷却をメタル系の冷却材からCaCO3及び又はMg
C01を含む造滓材系の冷却材へ変更するようにしたの
で、ヒートサイズの連中が容品にできるようになり、余
剰な製品の発生を大幅に減少することができるようにな
った。
Table 1〈Effects of the invention〉 Steels such as high-alloy steel, stainless steel, and high-carbon special steel can be produced through the process of decarburizing, refining, and tapping in a converter with tuyere for blowing refining gas under the bath surface. In the present invention, molten steel is cooled from a metal coolant to CaCO3 and/or Mg.
By changing to a slag-based coolant containing C01, heat-sized products can now be made into containers, and the generation of surplus products can be greatly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法によるヒートサイズのバラツキを示す
グラフ、第2図は従来法によるヒートサイズのバラツキ
を示すグラフである。 特許出願人   川崎製鉄株式会社
FIG. 1 is a graph showing the variation in heat size according to the method of the present invention, and FIG. 2 is a graph showing the variation in heat size according to the conventional method. Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] 浴面下に精錬ガス吹込用羽口を有する転炉を用いて、溶
鋼を脱炭精錬した後に還元精錬して高合金鋼、ステンレ
ス鋼又は高炭素特殊鋼等を溶製するプロセスにおいて、
少なくともCaCO_3、MgCO_3及びそれらの化
合物のいずれかを含む造滓材を冷却材として添加するこ
とを特徴とするステンレス鋼等の精錬方法。
In the process of decarburizing molten steel and then reductively refining it to produce high-alloy steel, stainless steel, high-carbon special steel, etc. using a converter with a tuyere for blowing refining gas under the bath surface.
A method for refining stainless steel, etc., characterized in that a slag material containing at least one of CaCO_3, MgCO_3 and their compounds is added as a coolant.
JP2312861A 1990-11-20 1990-11-20 Method for refining stainless steel or the like Pending JPH04183811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312861A JPH04183811A (en) 1990-11-20 1990-11-20 Method for refining stainless steel or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2312861A JPH04183811A (en) 1990-11-20 1990-11-20 Method for refining stainless steel or the like

Publications (1)

Publication Number Publication Date
JPH04183811A true JPH04183811A (en) 1992-06-30

Family

ID=18034324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312861A Pending JPH04183811A (en) 1990-11-20 1990-11-20 Method for refining stainless steel or the like

Country Status (1)

Country Link
JP (1) JPH04183811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132789A1 (en) * 2011-03-31 2012-10-04 日新製鋼株式会社 Method for manufacturing stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132789A1 (en) * 2011-03-31 2012-10-04 日新製鋼株式会社 Method for manufacturing stainless steel
CN103476953A (en) * 2011-03-31 2013-12-25 日新制钢株式会社 Method for manufacturing stainless steel
TWI491735B (en) * 2011-03-31 2015-07-11 Nisshin Steel Co Ltd Method for producing stainless steel

Similar Documents

Publication Publication Date Title
JPH09176723A (en) Production of stainless steel by refining metallic oxide
US3323907A (en) Production of chromium steels
US4617671A (en) Arrangement for producing metals, such as molten pig iron, steel pre-material and ferroalloys
JPS6250545B2 (en)
JPH04183811A (en) Method for refining stainless steel or the like
JPH0723494B2 (en) Method and apparatus for refining molten metal
JP3063537B2 (en) Stainless steel manufacturing method
JPH0297611A (en) Method for melting cold iron source
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JPH0967608A (en) Production of stainless steel
JPS6247417A (en) Melt refining method for scrap
JPS6152208B2 (en)
JP2713795B2 (en) Stainless steel smelting method
JPS61291911A (en) Production of stainless steel
JPS61139614A (en) Manufacture of steel
JPS59159963A (en) Production of high chromium molten metal
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JPH0762413A (en) Production of stainless steel
JPH01215917A (en) Method for melting stainless steel
JPH02221310A (en) Production of ni-and cr-containing molten metal
KR20150044288A (en) Method for recovering chromium from slag in an electric-arc furnace
SU652222A1 (en) Method of treating rough ferronickel
JPS609814A (en) Production of high chromium alloy unsaturated with carbon by melt reduction
JPS6123244B2 (en)