JPH04183733A - Polypropylene composition for high stiffness part - Google Patents

Polypropylene composition for high stiffness part

Info

Publication number
JPH04183733A
JPH04183733A JP31280090A JP31280090A JPH04183733A JP H04183733 A JPH04183733 A JP H04183733A JP 31280090 A JP31280090 A JP 31280090A JP 31280090 A JP31280090 A JP 31280090A JP H04183733 A JPH04183733 A JP H04183733A
Authority
JP
Japan
Prior art keywords
weight
parts
polypropylene
modified
elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31280090A
Other languages
Japanese (ja)
Other versions
JP2885507B2 (en
Inventor
Takao Nomura
孝夫 野村
Takesumi Nishio
西尾 武純
Shinya Kawamura
信也 河村
Akane Okada
岡田 茜
Osamu Fukui
福井 修
Kiyoshi Tsutsui
筒井 清
Tomohiko Akagawa
智彦 赤川
Ikunori Sakai
郁典 酒井
Takashi Deguchi
隆 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Ube Corp
Original Assignee
Toyota Motor Corp
Ube Industries Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Ube Industries Ltd, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP31280090A priority Critical patent/JP2885507B2/en
Priority to EP19910307451 priority patent/EP0472344A3/en
Publication of JPH04183733A publication Critical patent/JPH04183733A/en
Application granted granted Critical
Publication of JP2885507B2 publication Critical patent/JP2885507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a polypropylene composition for high stiffness parts, containing a thermoplastic reinforced elastomer in which a clay mineral-modified polyamide is finely dispersed and inorganic filler and having excellent stiffness, heat resistance, scar resistance and impact resistance. CONSTITUTION:The composition for high stiffness parts is obtained by blending 100 pts.wt. composition consisting of (A) 98-50 pts.wt. polypropylene resin, preferably a polypropylene which is subjected to graft modification with an unsaturated carboxylic acid (derivative) or a crystalline polypropylene containing the above-mentioned modified resin at an amount of >=2wt.% and (B) 2-50 pts.wt. elastomer composition consisting of B1: elastomer, preferably one or more kind of elastomer selected form ethylene-alpha-olefin copolymer rubber, hydrogenated diene rubber and their modification products with an unsaturated carboxylic acid (derivative) and B2: a clay mineral-modified polyamide with (C) >=15 pts.wt. to <70 pts.wt. inorganic filler.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、自動車のインストルメントパネルやセンター
コンソール等の大型高剛性部品用に好適に用いられる高
剛性ポリプロピレン組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a highly rigid polypropylene composition that is suitably used for large, highly rigid parts such as automobile instrument panels and center consoles.

更に詳しくは、本発明はポリプロピレンに、粘土鉱物で
ハイブリッド化された変性ポリアミドをあらかじめ微分
散させた熱可塑性の強化エラストマーと無機充填剤とを
配合した、剛性、耐熱性、耐受傷性、及び耐衝撃性に優
れた高剛性部品用ポリプロピレン組成物に関する。
More specifically, the present invention combines polypropylene with a thermoplastic reinforcing elastomer in which a modified polyamide hybridized with clay minerals is finely dispersed and an inorganic filler, which has high rigidity, heat resistance, scratch resistance, and resistance. This invention relates to a polypropylene composition for highly rigid parts with excellent impact resistance.

〔従来の技術〕[Conventional technology]

結晶性ポリプロピレンは表面光沢、耐熱性、耐受傷性、
及び機械的強度に優れ射出成形が容易なため、従来から
各種用途に幅広く用いられてきた。
Crystalline polypropylene has surface gloss, heat resistance, scratch resistance,
Since it has excellent mechanical strength and is easy to injection mold, it has been widely used for various purposes.

しかし、工業部品用途、特に大型の工業部品用途として
は剛性、耐熱性、寸法安定性等が不十分である。ポリプ
ロピレンの剛性、耐熱性、寸法安定性を改良するために
、結晶性ポリプロピレンにタルクやガラス繊維等の無機
充填剤を配合する方法が知られているが、これらの方法
はポリプロピレンの耐衝撃性、特に面衝撃性を著しく低
下させる。また無機充填剤とエチレン・α−オレフィン
共重合体ゴムやスチレン系エラストマー等を併用したポ
リプロピレン組成物も知られている。
However, rigidity, heat resistance, dimensional stability, etc. are insufficient for use in industrial parts, especially for large-sized industrial parts. In order to improve the rigidity, heat resistance, and dimensional stability of polypropylene, it is known to add inorganic fillers such as talc and glass fiber to crystalline polypropylene. In particular, it significantly reduces surface impact resistance. Polypropylene compositions containing inorganic fillers and ethylene/α-olefin copolymer rubber, styrene elastomers, etc. are also known.

しかしながら、これら通常のゴム成分を配合した組成物
は、耐衝撃性の改良効果が小さい上に、表面硬度を低下
させるため、成形加工品表面に傷が付き易く、外観を損
なうという欠点があった。
However, compositions containing these ordinary rubber components not only have a small effect on improving impact resistance, but also have the disadvantage that the surface hardness of the molded product is easily scratched and the appearance is impaired. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ポリプロピレンやその組成物の剛性、耐熱性、耐受傷性
及び耐衝撃性を同時に、且つ大幅に改良するためには耐
衝撃性改良効果の高いエラストマー等の選択と、それの
ポリプロピレンマトリックスへの分散技術が非常に重要
であり、それらを改良する必要があった。
In order to simultaneously and significantly improve the rigidity, heat resistance, scratch resistance, and impact resistance of polypropylene and its compositions, it is necessary to select an elastomer with a high impact resistance improvement effect and to disperse it into a polypropylene matrix. were very important and needed to be improved.

そこで、本発明者等はポリプロピレンと無機充填剤から
なる組成物において耐衝撃改良効果が大きく、且つ剛性
の低下が極めて小さい耐衝撃改良剤とその分散技術につ
いて鋭意研究した。その結果、粘土鉱物でハイブリッド
化された変性ポリアミドをエラストマー中にあらかじめ
微細、均一分散し、硬質、且つ強靭にした熱可塑性の強
化エラストマーを耐衝撃改良剤として用いた場合、ポリ
プロピレンマトリックスへの分散が該強化エラストマー
の一成分である変性ポリアミドと変性ポリプロピレンの
相溶性による分散に加え、更に該強化エラストマーでは
ポリアミド分子鎖が粘土鉱物を中心に三次元的に広がり
、エラストマーとのグラフト結合によりSem1− I
PN的な分散構造を形成していることより、ポリプロピ
レンに配合したとき、エラストマーが変性ポリアミドの
微細粒子を取り囲むサラミ的形態でポリプロピレンマト
リックスに分散し、耐衝撃性を大幅に高めるとともに、
変性ポリアミドの高い凝集力によりタルク等無機充填剤
の配合によっても、その分散構造が破壊されることがな
く、剛性、耐熱性、耐受傷性及び耐衝撃性のバランスが
これまでの組成物よりはるかに優れた高剛性部品用ポリ
プロピレン組成物を得ることができることを見い出し、
本発明に至った。
Therefore, the present inventors have conducted intensive research on an impact modifier that has a large impact improving effect and extremely little decrease in rigidity in a composition consisting of polypropylene and an inorganic filler, and a technique for dispersing the impact modifier. As a result, when a reinforced thermoplastic elastomer made by finely and uniformly dispersing modified polyamide hybridized with clay minerals into an elastomer to make it hard and tough is used as an impact modifier, it is difficult to disperse it into a polypropylene matrix. In addition to dispersion due to the compatibility of the modified polyamide and modified polypropylene, which are one component of the reinforced elastomer, in the reinforced elastomer, the polyamide molecular chain spreads three-dimensionally around the clay mineral, and due to graft bonding with the elastomer, Sem1-I
Because it forms a PN-like dispersion structure, when blended with polypropylene, the elastomer disperses in the polypropylene matrix in a salami-like form surrounding fine particles of modified polyamide, greatly increasing impact resistance.
Due to the high cohesive strength of modified polyamide, its dispersed structure is not destroyed even when inorganic fillers such as talc are added, and the balance of rigidity, heat resistance, scratch resistance, and impact resistance is far greater than that of conventional compositions. discovered that it is possible to obtain a polypropylene composition for highly rigid parts with excellent
This led to the present invention.

本発明のポリプロピレン組成物は不飽和カルボン酸及び
/又はその誘導体で変性されたポリプロピレン中への分
散性が通常のエラストマーに比べはるかに優れ、且つそ
の分散形態が無機充填剤の配合によっても破壊しない硬
質で強靭な強化エラストマーを用いることにより剛性、
耐熱性、耐受傷性、及び耐衝撃性を改良した点に大きな
特徴がある。
The polypropylene composition of the present invention has far better dispersibility in polypropylene modified with unsaturated carboxylic acids and/or derivatives thereof than that of ordinary elastomers, and its dispersion form is not destroyed even by the addition of inorganic fillers. Rigidity is achieved by using a hard and strong reinforced elastomer.
The major feature is that it has improved heat resistance, scratch resistance, and impact resistance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に従えば、(a)ポリプロピレン系樹脂98〜5
0重量部及び(b)粘土鉱物変性ポリアミドとエラスト
マーとからなる熱可塑性の強化エラストマー組成物2〜
50重量部からなるポリプロピレン樹脂組成物100重
量部に対し、(c)無機充填剤15重量部以上70重量
部未満配合して成る高剛性部品用ポリプロピレン組成物
が提供される。
According to the present invention, (a) polypropylene resin 98-5
0 parts by weight and (b) thermoplastic reinforced elastomer composition 2 consisting of clay mineral modified polyamide and elastomer
There is provided a polypropylene composition for highly rigid parts, which contains 15 parts by weight or more and less than 70 parts by weight of (c) an inorganic filler with respect to 100 parts by weight of a polypropylene resin composition comprising 50 parts by weight.

本発明に従った高剛性部品用ポリプロピレン組成物の好
ましい態様では、前記ポリプロピレン系樹脂として、不
飽和カルボン酸及び/又はその誘導体でグラフト変性さ
れた変性ポリプロピレン及び/又は上記変性ポリプロピ
レンを少なくとも2重量%含有する結晶性ポリプロピレ
ンを使用する。
In a preferred embodiment of the polypropylene composition for highly rigid parts according to the present invention, the polypropylene resin contains at least 2% by weight of a modified polypropylene graft-modified with an unsaturated carboxylic acid and/or a derivative thereof and/or the modified polypropylene described above. Use crystalline polypropylene containing.

また熱可塑性の強化エラストマー組成物としてエチレン
・α−オレフィン共重合体ゴム、上記のエチレン・α−
オレフィン共重合体ゴムを不飽和カルボン酸及び/又は
その誘導体で変性した変性エチレン・α−オレフィン共
重合体ゴム、ジエン系ゴムを水素添加した水添ゴム、上
記の水添ゴムを不飽和カルボン酸及び/又はその誘導体
で変性した変性水添ゴムからなる群から選ばれた少なく
とも一種のエラストマーと、粘土鉱物変性ポリアミドか
らなるものを使用するか、又は(i)エラストマー40
〜95重量部及び粘土鉱物で変性したポリアミド5〜6
0重量部を配合したエラストマー組成物100重量部に
、更に(ii)エチレン及び/又はα−オレフィンと、
不飽和カルボン酸及び/又はその誘導体との共重合体1
〜20重量部を配合したものを使用する。
In addition, as thermoplastic reinforced elastomer compositions, ethylene/α-olefin copolymer rubber, the above-mentioned ethylene/α-olefin copolymer rubber,
Modified ethylene/α-olefin copolymer rubber obtained by modifying olefin copolymer rubber with unsaturated carboxylic acid and/or its derivatives, hydrogenated rubber obtained by hydrogenating diene rubber, hydrogenated rubber obtained by hydrogenating the above hydrogenated rubber with unsaturated carboxylic acid and/or at least one elastomer selected from the group consisting of modified hydrogenated rubber modified with a derivative thereof and a clay mineral modified polyamide, or (i) Elastomer 40
~95 parts by weight and polyamide 5-6 modified with clay minerals
To 100 parts by weight of the elastomer composition containing 0 parts by weight, further (ii) ethylene and/or α-olefin,
Copolymer with unsaturated carboxylic acid and/or its derivative 1
~20 parts by weight is used.

本発明において使用される変性ポリプロピレンは結晶性
ポリプロピレンをグラフト変性して得る事ができる。
The modified polypropylene used in the present invention can be obtained by graft-modifying crystalline polypropylene.

結晶性ポリプロピレンは、メルトインデックス(AST
M 01238.230°c 、 2160g)が0.
3〜70 g /10分のポリプロピレンの結晶性単独
重合体、エチレンとのランダム又はブロック共重合体及
びこれらの混合物のいずれの結晶性ポリプロピレンでも
よい。エチレン・プロピレン共重合体は、エチレン含有
率がランダム共重合体では6重量%以下、ブロック共重
合体では3〜15重量%であるものが好ましい。
Crystalline polypropylene has a melt index (AST
M 01238.230°c, 2160g) is 0.
Any crystalline polypropylene of 3-70 g/10 min polypropylene homopolymer, random or block copolymer with ethylene, and mixtures thereof may be used. The ethylene/propylene copolymer preferably has an ethylene content of 6% by weight or less in the case of a random copolymer, and 3 to 15% by weight in the case of a block copolymer.

上記結晶性ポリプロピレンのうち、特に好ましいものは
メルトインデックスが0.3〜50g/10分でエチレ
ン含有率が3〜10重量%のエチレン・プロピレンブロ
ック共重合体である。
Among the above crystalline polypropylenes, particularly preferred are ethylene-propylene block copolymers having a melt index of 0.3 to 50 g/10 minutes and an ethylene content of 3 to 10% by weight.

グラフト変性原料の七ツマ−としては不飽和カルボン酸
及びその誘導体が用いられる。
Unsaturated carboxylic acids and derivatives thereof are used as the graft-modified raw material.

不飽和カルボン酸及びその誘導体としてはアクリル酸、
メタアクリル酸、マレイン酸、イタコン酸、フマル酸、
シトラコン酸、クロトン酸、グリシジルメタクリレート
、2−ヒドロキシエチルメタクリレート、ポリエチレン
グリコールジメタクリレート、N−メチロールメタクリ
ルアミド、メタクリル酸カルシウム、T−メタクリロキ
シプロピルトリメトキシシラン、アクリルアミド、メタ
クリルアミド等や無水マレイン酸、無水イタコン酸、無
水シトラコン酸等を用いる。好ましくは無水マレイン酸
、無水イタコン酸等の酸無水物が良い。
Unsaturated carboxylic acids and their derivatives include acrylic acid,
Methacrylic acid, maleic acid, itaconic acid, fumaric acid,
Citraconic acid, crotonic acid, glycidyl methacrylate, 2-hydroxyethyl methacrylate, polyethylene glycol dimethacrylate, N-methylolmethacrylamide, calcium methacrylate, T-methacryloxypropyltrimethoxysilane, acrylamide, methacrylamide, etc., maleic anhydride, anhydride, etc. Itaconic acid, citraconic anhydride, etc. are used. Preferred are acid anhydrides such as maleic anhydride and itaconic anhydride.

グラフト変性の反応開始剤としては、有機過酸化物等の
ラジカル発生化合物を用いることができる。場合によっ
ては反応開始剤を用いることなく加熱処理によってグラ
フト変性を起こさせてもよい。反応開始剤は、特に制限
されるものではなく、1分半減期を有し、該半減期を得
るための分解温度が、250℃以下のものであればよい
。このような反応開始剤としては、ヒドロペルオキシド
、ジアルキルペルオキシド、ペルオキシエステル等の有
機過酸化物等がある。本発明で使用される有機過酸化物
としては、例えばL−ブチルペルオキシベンゾエート、
シクロヘキサノンペルオキシド、2.5−ジメチル−2
,5−ジ(ベンゾイルペルオキシ)ヘキサン、L−ブチ
ルペルオキシアセテート、メチルエチルケトンペルオキ
シド、ジクミルペルオキシド、2,5−ジメチル−2,
5−ジ(t−ブチルペルオキシ)ヘキサン等をあげるこ
とができる。使用に際しては、反応条件等に応じて適宜
選択することができる。
As a reaction initiator for graft modification, a radical generating compound such as an organic peroxide can be used. In some cases, graft modification may be caused by heat treatment without using a reaction initiator. The reaction initiator is not particularly limited as long as it has a half-life of 1 minute and the decomposition temperature for obtaining the half-life is 250° C. or lower. Examples of such reaction initiators include organic peroxides such as hydroperoxides, dialkyl peroxides, and peroxy esters. Examples of the organic peroxide used in the present invention include L-butyl peroxybenzoate,
Cyclohexanone peroxide, 2,5-dimethyl-2
, 5-di(benzoylperoxy)hexane, L-butylperoxyacetate, methyl ethyl ketone peroxide, dicumyl peroxide, 2,5-dimethyl-2,
Examples include 5-di(t-butylperoxy)hexane. When used, it can be appropriately selected depending on the reaction conditions and the like.

グラフト変性結晶性ポリプロピレンは、前記結晶性ポリ
プロピレンと前記変性原料モノマー及び前記反応開始剤
とを混合し、窒素雰囲気中又は空気中で溶融混練するこ
とによって得る事もできるし、結晶性ポリプロピレンを
トルエン又はキシレン中に加圧、加熱溶解し前記変性原
料モノマー及び前記反応開始剤を滴下しながら撹拌混合
することによっても得ることができる。溶融混練は2軸
押出機、ニーダ−、バンバリーミキサ−等の混練機を用
いてもよいが、通常は単軸押出機で行うことができる。
Graft-modified crystalline polypropylene can also be obtained by mixing the crystalline polypropylene, the modified raw material monomer, and the reaction initiator, and melt-kneading the mixture in a nitrogen atmosphere or air, or by mixing the crystalline polypropylene with toluene or It can also be obtained by dissolving the modified raw material monomer and the reaction initiator in xylene under pressure and heating, and stirring and mixing while dropping the modified raw material monomer and the reaction initiator. Melt-kneading may be performed using a kneading machine such as a twin-screw extruder, a kneader, or a Banbury mixer, but usually a single-screw extruder can be used.

混合温度は原料ポリプロピレンの融点以上の温度で通常
175〜280°Cで行う。溶融混合時間は、原料等に
よって異なるが、一般に約1〜20分間で行うことがで
きる。
The mixing temperature is usually 175 to 280°C, which is higher than the melting point of the raw material polypropylene. The melt-mixing time varies depending on the raw materials, etc., but it can generally be carried out for about 1 to 20 minutes.

原料の混合割合は原料ポリプロピレン100重量部に対
し原料変性モノマー約0.05〜5重量部、反応開始剤
約0.002〜1重量部である。モノマーが約0.05
重量部より少ない場合には変性の効果が得られず、一方
5重量部を超える場合にはモノマーのグラフト効率が極
端に低下し未反応上ツマ−が増加するため好ましくない
The mixing ratio of the raw materials is approximately 0.05 to 5 parts by weight of the raw material modified monomer and approximately 0.002 to 1 part by weight of the reaction initiator per 100 parts by weight of the raw material polypropylene. Monomer is about 0.05
If it is less than 5 parts by weight, no modification effect can be obtained, while if it exceeds 5 parts by weight, the monomer grafting efficiency will be extremely reduced and the amount of unreacted polymers will increase, which is not preferable.

上記のようにして得る変性ポリプロピレンは、モノマー
グラフト率が約0.03重量%以上、好ましくは約0.
1〜5重量%であって、メルトインデックスが約0.5
〜200 g/10分であるものがよい。
The modified polypropylene obtained as described above has a monomer graft ratio of about 0.03% by weight or more, preferably about 0.03% by weight or more.
1 to 5% by weight and a melt index of about 0.5
~200 g/10 minutes is preferable.

メルトインデックスが0.5/10分より小さい場合は
、成形加工性を低下させる場合があり、一方、200g
/10分を超えると分子量が低下しすぎるため、所望の
性能を有する材料が得られない。
If the melt index is smaller than 0.5/10 minutes, molding processability may be reduced;
If the heating time exceeds 10 minutes, the molecular weight decreases too much, making it impossible to obtain a material with the desired performance.

これら変性ポリプロピレンは単独で用いてもよいし、ま
た変性ポリプロピレンを少なくとも2重量%含有する未
変性の結晶性ポリプロピレンを用いてもよい。
These modified polypropylenes may be used alone, or unmodified crystalline polypropylene containing at least 2% by weight of modified polypropylene may be used.

本発明において使用する熱可塑性の強化エラストマー組
成物はエラストマーと粘土鉱物変性ポリアミド又はエラ
ストマーと粘土鉱物変性ポリアミドにエチレン及び/又
はα−オレフィンと、不飽和カルボン酸及び/又はその
誘導体との共重合体を配合したものからなる。これらの
組成物を構成するエラストマーはエチレン・α−オレフ
ィン共重合体ゴムやジエン系ゴムを水素添加した水添ゴ
ム、更にはこれらを不飽和カルボン酸又はその誘導体で
変性した変性ゴムの単独及び/又は混合物のいずれでも
よい。
The thermoplastic reinforced elastomer composition used in the present invention is a copolymer of an elastomer and a clay mineral-modified polyamide, or an elastomer and a clay mineral-modified polyamide, ethylene and/or α-olefin, and an unsaturated carboxylic acid and/or a derivative thereof. Consists of a combination of. The elastomers constituting these compositions include hydrogenated rubbers obtained by hydrogenating ethylene/α-olefin copolymer rubbers and diene rubbers, and modified rubbers obtained by modifying these with unsaturated carboxylic acids or derivatives thereof, alone and/or or a mixture.

エチレン・α−オレフィン共重合体ゴムは、エチレン含
有率が30〜95重量%、好ましくは60〜90重量%
のエチレン・α−オレフィン共重合体ゴムである。α−
オレフィン成分としては炭素数3〜20のものがあり、
例えばプロピレン、1−ブテン、1−ペンテン、1−ヘ
キセン、4−メチル−1−ペンテン、1−デセンなどを
挙げることができる。
The ethylene/α-olefin copolymer rubber has an ethylene content of 30 to 95% by weight, preferably 60 to 90% by weight.
This is an ethylene/α-olefin copolymer rubber. α−
There are olefin components with 3 to 20 carbon atoms,
Examples include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, and 1-decene.

α−オレフィン成分は単独でもよくまた2種類以上の混
合物でもよい。さらに場合によっては微量のジエン成分
を含有しても差しつかえない。
The α-olefin component may be used alone or in a mixture of two or more types. Furthermore, depending on the case, it may contain a trace amount of a diene component.

変性エチレン・α−オレフィン共重合体ゴムは上記エチ
レン・α−オレフィン共重合体ゴムをグラフト変性して
得る事ができる。グラフト変性原料のモノマーは前記変
性ポリプロピレンのグラフト変性モノマーと同様の不飽
和カルボン酸及びその誘導体が用いられる。またグラフ
ト変性の反応開始剤も前記の有機過酸化物等のラジカル
発生化合物を同様に用いることができる。場合によって
は反応開始剤を用いることなく加熱処理によってグラフ
ト変性を起こさせてもよい。
The modified ethylene/α-olefin copolymer rubber can be obtained by graft-modifying the above-mentioned ethylene/α-olefin copolymer rubber. As the monomer of the graft-modified raw material, the same unsaturated carboxylic acid and its derivatives as the graft-modified monomer of the modified polypropylene are used. Further, as a reaction initiator for graft modification, radical generating compounds such as the above-mentioned organic peroxides can be similarly used. In some cases, graft modification may be caused by heat treatment without using a reaction initiator.

変性エチレン・α−オレフィン共重合体ゴムは、原料エ
チレン・α−オレフィン共重合体ゴムとグラフト変性原
料モノマーとを開始剤の存在下、溶液中で加熱混合撹拌
するか、又は原料エチレン・α−オレフィン共重合体ゴ
ムとグラフト変性原料モノマーとを加熱溶融混練するこ
とによって製造される。この様にして製造される変性エ
チレン・α−オレフィン共重合体ゴムは、原料上ツマー
グラフト率が約0.01〜10重量%、好ましくは約0
.1〜3.0重量%であってメルトインデックスが約0
.01〜50g/10分、好ましくは0.05〜15g
/10分となる様に各原料割合、反応条件を適宜選択す
る。
The modified ethylene/α-olefin copolymer rubber is produced by heating and stirring the raw material ethylene/α-olefin copolymer rubber and the graft-modified raw material monomer in a solution in the presence of an initiator, or by heating and stirring the raw material ethylene/α-olefin copolymer rubber in a solution in the presence of an initiator. It is produced by heating, melting, and kneading an olefin copolymer rubber and a graft-modified raw material monomer. The modified ethylene/α-olefin copolymer rubber produced in this way has a Zimmer graft ratio of about 0.01 to 10% by weight based on the raw material, preferably about 0.
.. 1 to 3.0% by weight and a melt index of approximately 0
.. 01-50g/10 minutes, preferably 0.05-15g
The ratio of each raw material and reaction conditions are appropriately selected so that the reaction time is 10 minutes.

変性エチレン・α−オレフィン共重合体ゴムのモノマー
グラフト率が0.01重量%未満では変性の効果が得ら
れず、また10重量%を超えるとグラフト変性時にゴム
の架橋度が高くなり変性ポリアミ′ ドとの溶融混合が
困難となる。
If the monomer graft ratio of the modified ethylene/α-olefin copolymer rubber is less than 0.01% by weight, no modification effect will be obtained, and if it exceeds 10% by weight, the degree of crosslinking of the rubber will increase during graft modification, resulting in a modified polyamide It becomes difficult to melt mix with the metal.

また、ジエン系水添ゴムは、例えば−数式がA−(B−
A)、で表されるブロック共重合体を水素添加処理して
得られる水素添加誘導体である。ここで上記−数式にお
いて、Aはモノビニル置換芳香族炭化水素の重合体ブロ
ック、Bは共役ジエンのエラストマー性重合体ブロック
であり、nは1〜5の整数である。
In addition, diene-based hydrogenated rubber, for example, has the formula A-(B-
It is a hydrogenated derivative obtained by hydrogenating a block copolymer represented by A). Here, in the above formula, A is a monovinyl-substituted aromatic hydrocarbon polymer block, B is a conjugated diene elastomeric polymer block, and n is an integer from 1 to 5.

重合体ブロックAを構成する単量体のモノビニル置換芳
香族炭化水素は、好ましくはスチレンであるが、α−メ
チルスチレン、ビニルトルエンの他の低級アルキル置換
スチレン、ビニルナフタレン基も用いられる。
The monovinyl-substituted aromatic hydrocarbon monomer constituting the polymer block A is preferably styrene, but lower alkyl-substituted styrenes other than α-methylstyrene and vinyltoluene, and vinylnaphthalene groups can also be used.

重合体Bにおける共役ジエン単量体はブタジェンもしく
はイソプレンが好ましく、また、両者の混合物でもよい
。重合体プロ・ツクBを形成するためにブタジェンが単
一の共役ジエン単量体として用いられる場合には、プロ
・ツク共重合体が水素添加されて二重結合が飽和された
後にエラストマー性を保持しているためには、ポリブタ
ジェンブロックにおけるミクロ構造中、1,2−ミクロ
構造が20〜50%となる重合条件を採用する事が好ま
しい。よす好ましくは1.2−ミクロ構造力35〜45
%のものである。
The conjugated diene monomer in Polymer B is preferably butadiene or isoprene, or may be a mixture of both. When butadiene is used as the single conjugated diene monomer to form polymer Pro-Tsuk B, the elastomeric properties are obtained after the Pro-Tsuk copolymer is hydrogenated to saturate the double bonds. In order to maintain this property, it is preferable to adopt polymerization conditions such that the 1,2-microstructure accounts for 20 to 50% of the microstructure in the polybutadiene block. Preferably 1.2-microstructural force 35-45
%belongs to.

ブロック共重合体中の重合体ブロックAの重量平均分子
量は5,000〜125,000 、重合体プロ・ツク
Bのそれは15,000〜250,000の範囲にある
ことが好ましい。
Preferably, the weight average molecular weight of polymer block A in the block copolymer is in the range of 5,000 to 125,000, and that of polymer block B is in the range of 15,000 to 250,000.

これらのブロック共重合体の製造方法としては、数多く
の方法が提案されている。代表的な方法として、例えば
特公昭40 − 23798号公報に記載された方法が
あって、リチウム溶媒又はチーグラー型触媒を用いて不
活性溶媒中でブロック共重合を行わせる。
Many methods have been proposed for producing these block copolymers. A typical method is, for example, the method described in Japanese Patent Publication No. 40-23798, in which block copolymerization is carried out in an inert solvent using a lithium solvent or a Ziegler type catalyst.

これらのブロック共重合体の水素添加処理は、例えば特
公昭42 − 8704号、同43 − 6636号又
は同46−20814号等の各公報に記載された方法に
より、不活性溶媒中で触媒の存在下に水素添加すること
によって行われる。この水素添加では、重合体フ゛ロッ
クB中のオレフィン基二重結合の少なくとも50%、好
ましくは80%以上が水素添加され、重合体ブロックA
中の芳香族性不飽和結合の25%以下が水素添加される
。上記のプロ・ツク共重合体としては、具体的にはスチ
レン・ブタジェン・スチレン共重合体(SBS)を水素
添加した共重合体(SEBS)、スチレン・イソプレン
・スチレン共重合体(SIS)を水素添加した共重合体
(SEPS)等が挙げられる。
Hydrogenation treatment of these block copolymers is carried out by the method described in Japanese Patent Publication No. 42-8704, Japanese Patent Publication No. 43-6636, or Japanese Patent Publication No. 46-20814, etc., in the presence of a catalyst in an inert solvent. This is done by hydrogenating the bottom. In this hydrogenation, at least 50%, preferably 80% or more of the olefin group double bonds in polymer block B are hydrogenated, and polymer block A is hydrogenated.
Up to 25% of the aromatic unsaturated bonds in the polyester are hydrogenated. Specifically, the above-mentioned Pro-Tsuku copolymers include a copolymer obtained by hydrogenating styrene-butadiene-styrene copolymer (SBS) (SEBS), and a hydrogenated copolymer obtained by hydrogenating styrene-isoprene-styrene copolymer (SIS). Examples include added copolymers (SEPS) and the like.

また、上記のジエン系水添プロ・ツク共重合体をグラフ
ト変性して得られる変性水添プロ・ツク共重合体のグラ
フト変性原料モノマー、グラフト変性反応開始剤、製造
方法及びグラフト変性原料モノマー、グラフト率等は前
記変性エチレン・α−オレフィン共重合体ゴムと同様で
ある。
In addition, a graft-modified raw material monomer, a graft-modified reaction initiator, a manufacturing method, and a graft-modified raw material monomer of a modified hydrogenated PRO-TSUK copolymer obtained by graft-modifying the above-mentioned diene-based hydrogenated PRO-TSUK copolymer, The graft ratio and the like are the same as those of the modified ethylene/α-olefin copolymer rubber.

これら変性ジエン系水添ブロック共重合体ゴム及び変性
エチレン・α−オレフィン共重合体ゴムは単独で用いて
もよいし、またエチレン・α−オレフィン共重合体ゴム
及び/又はジエン系水添ブロック共重合体ゴムとをエラ
ストマー100重量部に対し不飽和カルボン酸又はその
誘導体モノマーのグラフト量が0.01重量部を上回る
範囲で併用して用いることができる。
These modified diene-based hydrogenated block copolymer rubbers and modified ethylene/α-olefin copolymer rubbers may be used alone, or they may be used together with ethylene/α-olefin copolymer rubbers and/or diene-based hydrogenated block copolymer rubbers. Polymer rubber may be used in combination with the unsaturated carboxylic acid or its derivative monomer in an amount exceeding 0.01 part by weight per 100 parts by weight of the elastomer.

また、更に強化エラストマーを構成する粘土鉱物変性ポ
リアミド樹脂はポリアミド100重量部に対して0.0
5〜10重量部、好ましくは0. 1〜7重量部の特定
の粘土鉱物を均一に分散、複合化し、耐熱性や剛性等を
大幅に改良したものである。粘土鉱物の割合が0.05
重量部未満であると耐熱性や剛性等の改良効果が認めら
れず、15重量部を超えると溶融時の流動性が著しく低
下し射出成形が不可能となる場合がある。
Further, the clay mineral-modified polyamide resin constituting the reinforced elastomer is 0.0 parts by weight per 100 parts by weight of the polyamide.
5 to 10 parts by weight, preferably 0. It is made by uniformly dispersing and compounding 1 to 7 parts by weight of a specific clay mineral, and has greatly improved heat resistance, rigidity, etc. The proportion of clay minerals is 0.05
If the amount is less than 1 part by weight, no improvement effect on heat resistance or rigidity will be observed, and if it exceeds 15 parts by weight, fluidity during melting may be markedly reduced and injection molding may become impossible.

本発明の変性ポリアミドに使用されるポリアミド樹脂と
しては、脂肪族、脂環族、芳香族等のジアミンと脂肪族
、脂環族芳香族のジカルボン酸との重縮合によって得ら
れるポリアミド、ラクタムから得られるポリアミド、ア
ミノカルボン酸の縮合によって得られるポリアミドある
いはこれらの成分からなる共重合ポリアミド等が挙げら
れる。
Polyamide resins used in the modified polyamide of the present invention include polyamides obtained by polycondensation of aliphatic, alicyclic, aromatic, etc. diamines and aliphatic, alicyclic aromatic dicarboxylic acids, and lactams. Polyamides obtained by condensation of aminocarboxylic acids, copolyamides made of these components, and the like can be mentioned.

具体的にはナイロン−6、ナイロン−6、6、ナイロン
−6、10、ナイロン−9、ナイロン−11、ナイロン
−12、ナイロン−6/6 、6、ナイロン−12.1
2等が挙げられる。
Specifically, nylon-6, nylon-6, 6, nylon-6, 10, nylon-9, nylon-11, nylon-12, nylon-6/6, 6, nylon-12.1
2nd prize is mentioned.

上記ポリアミド樹脂を変性するための粘土鉱物は、主に
層状珪酸塩であり、その形状は通常−辺の長さが0.0
02〜1−で厚みが6〜20人のものである。このよう
な層状珪酸塩の原料としては例えば珪酸マグネシウム又
は珪酸アルミニウムの層から構成される層状フィロ珪酸
鉱物等がある。
The clay minerals used to modify the above polyamide resins are mainly layered silicates, whose shape is usually - side length 0.0
02-1- with a thickness of 6-20 people. Examples of raw materials for such layered silicates include layered phyllosilicate minerals composed of layers of magnesium silicate or aluminum silicate.

具体的には、モンモリロナイト、サボナイト、バイデラ
イト、ノントロナイト、ヘクトライト、スティブンサイ
トなどのスメクタイト系粘土鉱物やバーミキュライト、
ハロイサイトなどがある。
Specifically, smectite clay minerals such as montmorillonite, sabonite, beidellite, nontronite, hectorite, stevensite, vermiculite,
There are halloy sites, etc.

これらは天然のものであっても合成されたものであって
もよい。これらのなかでは、特にモンモリロナイトが好
ましい。
These may be natural or synthetic. Among these, montmorillonite is particularly preferred.

各々の層状珪酸塩は平均的に20Å以上離れてポリアミ
ド中に均一に分散されるのが好ましい。層状珪酸塩をポ
リアミド樹脂中に分散させる方法については特に制限は
ないが、層状珪酸塩の原料が多層状粘土鉱物である場合
には、膨潤化剤と接触させて、予め眉間を拡げて層間に
モノマーを取り込みやすくした後、ポリアミドモノマー
と混合し重合する方法(特開昭62−64827号、特
開昭62−72723号、特開昭62−74957号な
どの各公報参照)によってもよい。また、膨潤化剤に高
分子化合物を用い、予め層間を100Å以上に拡げてこ
れをポリアミド樹脂と溶融混合する方法によってもよい
Preferably, each layered silicate is uniformly dispersed in the polyamide with an average separation of 20 Å or more. There are no particular restrictions on the method of dispersing the layered silicate in the polyamide resin, but if the raw material for the layered silicate is a multilayered clay mineral, the layered silicate is brought into contact with a swelling agent to expand the glabella in advance to form a layer between the layers. It is also possible to use a method in which the monomer is made easy to incorporate, and then mixed with a polyamide monomer and polymerized (see Japanese Patent Application Laid-open Nos. 62-64827, 62-72723, and 62-74957). Alternatively, a method may be used in which a polymer compound is used as the swelling agent, the interlayer gap is expanded to 100 Å or more, and the mixture is melt-mixed with the polyamide resin.

粘土鉱物によって変性された変性ポリアミドは個々の粘
土鉱物の眉間よりポリアミド分子鎖が三次元的に槃広が
り、粘土鉱物を中心とした高い凝集力を有しており、耐
熱性や剛性を大幅に改良している。
Modified polyamide modified with clay minerals has polyamide molecular chains that spread out three-dimensionally from the eyebrows of individual clay minerals, and has high cohesive strength centered on clay minerals, greatly improving heat resistance and rigidity. are doing.

本発明において使用されるエチレン及び/又はα−オレ
フィンと、不飽和カルボン酸及び/又はその誘導体との
共重合体は、エチレン及び/又は炭素数3〜20のα−
オレフィンとの(共)重合体に不飽和カルボン酸又はそ
の誘導体や不飽和エポキシ化合物をグラフト反応させる
ことによって製造する事ができる。エチレン以外のα−
オレフィンとしてはプロピレン、1−ブテン、1−ペン
テン、1−ヘキセン、4−メチル−1−ペンテン、1−
オクテン、1−デセン等を例示する事ができる。
The copolymer of ethylene and/or α-olefin and unsaturated carboxylic acid and/or its derivative used in the present invention is ethylene and/or α-olefin having 3 to 20 carbon atoms.
It can be produced by grafting an unsaturated carboxylic acid or its derivative or an unsaturated epoxy compound onto a (co)polymer with an olefin. α− other than ethylene
Examples of olefins include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-
Examples include octene and 1-decene.

不飽和カルボン酸又はその酸誘導体としては、具体的に
はアクリル酸、メタクリル酸、マレイン酸、フマル酸、
イタコン酸、シトラコン酸、テトラヒドロフタル酸等の
不飽和カルボン酸、無水マレイン酸、無水イタコン酸、
無水シトラコン酸、テトラヒドロ無水フタル酸等の不飽
和カルボン酸の無水物、アクリル酸メチル、メタクリル
酸メチル、マレイン酸ジメチル、マレイン酸モノメチル
等の不飽和カルボン酸のエステル等を例示する事ができ
る。
Specific examples of unsaturated carboxylic acids or acid derivatives thereof include acrylic acid, methacrylic acid, maleic acid, fumaric acid,
Unsaturated carboxylic acids such as itaconic acid, citraconic acid, and tetrahydrophthalic acid, maleic anhydride, itaconic anhydride,
Examples include anhydrides of unsaturated carboxylic acids such as citraconic anhydride and tetrahydrophthalic anhydride, and esters of unsaturated carboxylic acids such as methyl acrylate, methyl methacrylate, dimethyl maleate, and monomethyl maleate.

不飽和エポキシ化合物としては、例えば、グリシジルア
クリレート、グリシジルメタクリレート等の不飽和モノ
カルボン酸のグリシジルエステル;マレイン酸、イタコ
ン酸、シトラコン酸等の不飽和ポリカルボン酸のモノグ
リシジルエステル或いはポリグリシジルエステル等が挙
げられる。
Examples of unsaturated epoxy compounds include glycidyl esters of unsaturated monocarboxylic acids such as glycidyl acrylate and glycidyl methacrylate; monoglycidyl esters and polyglycidyl esters of unsaturated polycarboxylic acids such as maleic acid, itaconic acid, and citraconic acid. Can be mentioned.

不飽和カルボン酸又はその酸誘導体をエチレン及び/又
はα−オレフィン(共)重合体に共重合する方法は、例
えば(共)重合体を溶融させ、グラフトモノマーを添加
してグラフト共重合させる方法或いは溶媒に溶解させグ
ラフトモノマーを添加して共重合させる等の公知の種々
の方法を採用する事ができる。
A method of copolymerizing an unsaturated carboxylic acid or an acid derivative thereof into an ethylene and/or α-olefin (co)polymer includes, for example, a method of melting the (co)polymer and adding a graft monomer to carry out graft copolymerization; Various known methods can be employed, such as dissolving it in a solvent and adding a graft monomer to copolymerize it.

不飽和エポキシ化合物との共重合は、前記α−オレフィ
ンの1種又は2種と、1分子中エチレン性不飽和結合及
びエポキシ基を各1個有する不飽和エポキシ単量体とを
ラジカル開始剤を使用して共重合させる方法やエチレン
及び/又はα−オレフィン(共)重合体に不飽和エポキ
シ化合物をグラフト化する方法等によって製造する事が
できる。
For copolymerization with an unsaturated epoxy compound, one or two of the α-olefins and an unsaturated epoxy monomer having one ethylenically unsaturated bond and one epoxy group in each molecule are combined with a radical initiator. It can be produced by a method in which an unsaturated epoxy compound is grafted onto an ethylene and/or α-olefin (co)polymer, or the like.

これらの中で特に好ましい変性エチレン及び/又はα−
オレフィン共重合体としてエチレン・エチルメタクリレ
ート・無水マレイン酸共重合体、エチレン・グリシジル
メタクリレート共重合体や前記変性ポリプロピレンを挙
げる事ができる。
Among these, particularly preferred are modified ethylene and/or α-
Examples of the olefin copolymer include ethylene/ethyl methacrylate/maleic anhydride copolymer, ethylene/glycidyl methacrylate copolymer, and the above-mentioned modified polypropylene.

不飽和カルボン酸又はその誘導体や不飽和エポキシ化合
物のグラフト量は0.5〜5重量%が好ましい。グラフ
ト量が0.5重量%未満では変性ポリアミド樹脂との相
溶性改良効果が極めて低いため機械的強度の改良効果が
ない。一方10重量%を超えると一部架橋を起こし、組
成物の表面外観や成形性を低下させる。
The grafting amount of unsaturated carboxylic acid or its derivative or unsaturated epoxy compound is preferably 0.5 to 5% by weight. If the amount of grafting is less than 0.5% by weight, the effect of improving compatibility with the modified polyamide resin is extremely low, so that there is no effect of improving mechanical strength. On the other hand, if it exceeds 10% by weight, some crosslinking will occur, reducing the surface appearance and moldability of the composition.

本発明において、使用される無機充填材は、粉末状充填
材として、例えばアルミナ、酸化マグネシウム、酸化カ
ルシウム、亜鉛華等の酸化物、水酸化アルミニウム、水
酸化マグネシウム、水酸化カルシウム等の水和金属酸化
物、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、タ
ルク、クレー、ヘントナイト等のようなケイ酸塩、ホウ
酸バリウム等のホウ酸塩、リン酸アルミニウム等のリン
酸塩、硫酸バリウム等の硫酸塩及びこれらの2種類以上
の混合物、繊維状充填材として、例えばガラス繊維、チ
タン酸カリウム繊維、セラミックス繊維、ワラストナイ
ト、炭素繊維、SUS繊維、モスハイジ等、その他ガラ
スピーズ、ガラスフレーク、マイカ等を挙げることがで
きる。また、無機充填材の表面をシラン化合物、例えば
ビニルエトキシシラン、2−アミノプロピルトリエトキ
シシラン、2−グリシドキシプロビルメトキシシラン等
やチタネート系化合物等で処理をしておいてもよい。こ
れらの中では特に粉末状充填材としてタルク、繊維状充
填材としてガラス繊維が好ましい。
In the present invention, the inorganic filler used is a powder filler, for example, an oxide such as alumina, magnesium oxide, calcium oxide, zinc white, or a hydrated metal such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide. oxides, carbonates such as calcium carbonate and magnesium carbonate, silicates such as talc, clay, hentonite, etc., borates such as barium borate, phosphates such as aluminum phosphate, sulfates such as barium sulfate. and mixtures of two or more of these, fibrous fillers such as glass fibers, potassium titanate fibers, ceramic fibers, wollastonite, carbon fibers, SUS fibers, moss hygienic fibers, glass peas, glass flakes, mica, etc. can be mentioned. Further, the surface of the inorganic filler may be treated with a silane compound such as vinylethoxysilane, 2-aminopropyltriethoxysilane, 2-glycidoxypropylmethoxysilane, or a titanate compound. Among these, talc is particularly preferred as the powdery filler, and glass fiber is particularly preferred as the fibrous filler.

本発明の高剛性部品用ポリプロピレン組成物はポリプロ
ピレン系樹脂98〜50重量部、好ましくは90〜60
重量部と、粘土鉱物で変性したポリアミドとエラストマ
ーとからなる熱可塑性の強化エラストマー組成物2〜5
0重量%、好ましくは10〜40重量%とからなるポリ
プロピレン樹脂組成物100重量部に対し無機充填剤1
5重量部以上70重量部未満を配合することによって構
成される。無機充填剤がポリプロピレン樹脂組成物10
0重量部に対し15重量部未満の場合には耐熱性や剛性
、寸法安定性が自動車のインストルメントパネルやセン
ターコンソール等の大型高剛性部品用としては不足し、
70重量部以上では強化エラストマーの配合による耐衝
撃性の改良効果が十分に得られず、耐受傷性の悪化とい
った問題が生じる。
The polypropylene composition for highly rigid parts of the present invention has a polypropylene resin of 98 to 50 parts by weight, preferably 90 to 60 parts by weight.
parts by weight, thermoplastic reinforced elastomer compositions 2 to 5 consisting of clay mineral-modified polyamide and elastomer.
0% by weight, preferably 10 to 40% by weight of the inorganic filler per 100 parts by weight of the polypropylene resin composition.
It is constituted by blending 5 parts by weight or more and less than 70 parts by weight. The inorganic filler is polypropylene resin composition 10
If the amount is less than 15 parts by weight compared to 0 parts by weight, the heat resistance, rigidity, and dimensional stability will be insufficient for use in large, high-rigidity parts such as automobile instrument panels and center consoles.
If it exceeds 70 parts by weight, the effect of improving impact resistance due to the addition of the reinforcing elastomer cannot be sufficiently obtained, resulting in problems such as deterioration of scratch resistance.

また、ポリプロピレン組成物において、強化エラストマ
ーが2重量%より少ない場合には十分な耐衝撃性の改良
効果が得られない。
Furthermore, if the amount of reinforcing elastomer in the polypropylene composition is less than 2% by weight, a sufficient effect of improving impact resistance cannot be obtained.

逆に、強化エラストマーが50重量%を超えると充填剤
の配合によっても、剛性、耐熱性が大巾に低下し、大型
高剛性部品用としては不十分である。
On the other hand, if the content of the reinforcing elastomer exceeds 50% by weight, the rigidity and heat resistance will be significantly reduced even by the addition of fillers, making it unsatisfactory for use in large, highly rigid parts.

更に、ポリプロピレン樹脂組成物において、強化エラス
トマー組成物は不飽和カルボン酸またはその誘導体で変
性した変性エラストマー40〜95重量%、好ましくは
40〜80重量%と粘土鉱物で変性した変性ポリアミド
60〜5重量%、好ましくは60〜20重量%とから構
成される。変性ポリアミドが60重量%以上では強化エ
ラストマー組成物の分散構造が変性ポリアミドを海とす
る海−島構造を呈し、ポリプロピレンへの強化エラスト
マーの配合による耐衝撃性の改良効果が十分とはいえず
、5重量%以下では充填剤の配合によっても剛性、耐熱
性の改良効果が少なく、特に耐受傷性に対する改良効果
がない。
Furthermore, in the polypropylene resin composition, the reinforced elastomer composition comprises 40 to 95% by weight, preferably 40 to 80% by weight, of a modified elastomer modified with an unsaturated carboxylic acid or a derivative thereof and 60 to 5% by weight of a modified polyamide modified with a clay mineral. %, preferably 60 to 20% by weight. When the modified polyamide content exceeds 60% by weight, the dispersed structure of the reinforced elastomer composition exhibits a sea-island structure with the modified polyamide as the sea, and the effect of improving impact resistance by blending the reinforced elastomer into polypropylene cannot be said to be sufficient. If the amount is less than 5% by weight, the effect of improving rigidity and heat resistance is small even when the filler is added, and in particular there is no effect of improving scratch resistance.

また本発明は、変性エラストマーと変性ポリアミドとか
らなる組成物100重量部に対しエチレン及び/又はα
−オレフィンと不飽和カルボン酸またはその誘導体及び
/又は不飽和エポキシ化合物との共重合体を1〜20重
量部を配合し構成されるものである。前記共重合体の配
合量が1重量部未満では強化エラストマーにおいて変性
ポリアミドの分散向上による物性改良効果が現れず、2
0重量部を超えると該変性化合物成分と変性ポリアミド
との反応がすすみ著しく成形性を低下させるため好まし
い結果が得られない。
Further, the present invention provides ethylene and/or α
- It is composed of 1 to 20 parts by weight of a copolymer of an olefin and an unsaturated carboxylic acid or its derivative and/or an unsaturated epoxy compound. If the amount of the copolymer is less than 1 part by weight, the effect of improving the physical properties of the reinforced elastomer by improving the dispersion of the modified polyamide will not appear.
If the amount exceeds 0 parts by weight, the reaction between the modified compound component and the modified polyamide will proceed, resulting in a marked decrease in moldability, making it impossible to obtain favorable results.

本発明の高剛性部品用ポリプロピレン組成物を得るには
、先ず強化エラストマー組成物を製造したのち本組成物
を製造する他には特に制限はなく通常の公知の方法を用
いることができる。
In order to obtain the polypropylene composition for highly rigid parts of the present invention, there are no particular limitations, and any conventional known method can be used, except that the reinforced elastomer composition is first produced and then the present composition is produced.

強化エラストマーを得るには変性エラストマーと変性ポ
リアミドとを、また本組成物にエチレン及び/又はα−
オレフィンと不飽和カルボン酸又はその誘導体及び/又
は不飽和エポキシ化合物との共重合体とを前記範囲で種
々の公知方法、例えばヘンシェルミキサー、■−ブレン
ダー、リボンブレンダー、タンプラブレンダ−等でドラ
イブレドし、−軸押出機、二軸押出機、ニーダ−、バン
バリーミキサ−等で溶融混合後、ペレット化する方法を
採用することができる。
To obtain a reinforced elastomer, a modified elastomer and a modified polyamide are added to the composition, and ethylene and/or α-
A copolymer of an olefin and an unsaturated carboxylic acid or its derivative and/or an unsaturated epoxy compound is dry-blended within the above range using various known methods, such as a Henschel mixer, a ■-blender, a ribbon blender, a tamper blender, etc. However, a method can be adopted in which the mixture is melt-mixed using a screw extruder, twin-screw extruder, kneader, Banbury mixer, etc., and then pelletized.

次いで該強化エラストマーと変性ポリプロピレン及び無
機充填剤とを前記範囲で、前記方法にて溶融混合しペレ
ット化する方法で製造することができる。
Next, the reinforcing elastomer, modified polypropylene, and inorganic filler can be melt-mixed in the above range and pelletized by the above method.

混練工程をより簡略化するために、予め強化エラストマ
ー組成物を製造する工程を、本発明の組酸物の製造工程
の中に組み入れて行うことも可能である。すなわち、第
一段階で強化エラストマー組成物をつくり、第二段階で
強化エラストマーが溶融状態の場にポリプロピレン樹脂
及び無機充填剤を投入して製造することができる。また
、第一段階でポリプロピレン樹脂と無機充填剤とを十分
溶融混合し、第二段階で強化エラストマー組成物を投入
し製造する方法も採用できる。本方法をより効果的にす
るには長いL/Dを有し且つ通常の原料供給口の他にシ
リンダ一部に原料供給口を備えた二軸押出機を用いるこ
とが好ましい。
In order to further simplify the kneading process, it is also possible to incorporate a step of manufacturing the reinforced elastomer composition in advance into the manufacturing process of the composite acid product of the present invention. That is, a reinforced elastomer composition is prepared in the first step, and a polypropylene resin and an inorganic filler are added to the reinforced elastomer in a molten state in the second step. Alternatively, a method may be adopted in which the polypropylene resin and the inorganic filler are sufficiently melt-mixed in the first step, and the reinforcing elastomer composition is added in the second step. In order to make this method more effective, it is preferable to use a twin-screw extruder having a long L/D and having a raw material supply port in a part of the cylinder in addition to the usual raw material supply port.

本発明の熱可塑性樹脂組成物には、酸化防止剤、紫外線
吸収剤、滑剤、顔料、帯電防止剤、銅害防止剖、難燃剤
、中和剤、可塑剤、造核剤、染料、発泡剤等の一般的な
添加剤を本発明の目的を損わない範囲で配合してもよい
The thermoplastic resin composition of the present invention includes antioxidants, ultraviolet absorbers, lubricants, pigments, antistatic agents, copper damage prevention agents, flame retardants, neutralizing agents, plasticizers, nucleating agents, dyes, and blowing agents. General additives such as these may be added to the extent that the purpose of the present invention is not impaired.

〔実施例〕〔Example〕

以下、実施例によって、本発明を更に詳細に説明するが
、本発明をこれら実施例に限定するものでないことはい
うまでもない。本発明の実施例で用いた測定方法は以下
の通りである。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples. The measurement method used in the examples of the present invention is as follows.

引張強度(TYS) <kg/cd>    : AS
TM 0638曲げ強度(FS) (kg/cat) 
   : ASTM 02584曲げ弾性率(FM) 
(kg/cill)   : ASTM D2584熱
変形温度(HDT) (”C)     : ASTM
 D64B表面硬度(RH)(Rスケール):AST門
D785高速度衝撃強度 (H5I) (kg−C1l)  :厚さ1.6 m、
直径100m+の円板を成形し、その円板を試験 片として一10″Cで2.54cmφのラウンドミサイ
ルを2.5m/ secの速度でこの円板に落下 させ、破壊の際の応力−ひす み曲線の面積から破壊エネル ギーを算出する面衝撃測定法 (UBE法)で行った。
Tensile strength (TYS) <kg/cd>: AS
TM 0638 bending strength (FS) (kg/cat)
: ASTM 02584 Flexural Modulus (FM)
(kg/cil): ASTM D2584 Heat Distortion Temperature (HDT) (“C): ASTM
D64B surface hardness (RH) (R scale): AST gate D785 high velocity impact strength (H5I) (kg-C1l): thickness 1.6 m,
A disk with a diameter of 100 m+ was formed, and the disk was used as a test specimen. A round missile of 2.54 cmφ was dropped onto this disk at a speed of 2.5 m/sec at 110"C, and the stress-strain at the time of fracture was measured. The surface impact measurement method (UBE method) was used to calculate the fracture energy from the area of the corner curve.

傷付き性   :厚さ2am、100mX 100mm
の平板(射出成形)を試験片と し、本試験片に荷重1kgをか けた#80のサンドペーパーで 一往復摩擦し、傷付き部を目 視で観察し評価した。傷が目 立たないものは二〇、目立つ ものは:×とした。
Scratch resistance: Thickness 2am, 100mX 100mm
A flat plate (injection molded) was used as a test piece, and the test piece was rubbed back and forth with #80 sandpaper under a load of 1 kg, and the scratched area was visually observed and evaluated. A score of 20 was given to those with inconspicuous scratches, and a score of × was given to those with noticeable scratches.

上記物性評価用試験片は成形温度240°C1金型温度
50℃、射出時間15sec %冷却時間30secの
条件下で射出成形にて行った。また、実施例及び比較例
に使用した各原料は以下の通りである。
The above test pieces for physical property evaluation were injection molded under conditions of molding temperature of 240° C., mold temperature of 50° C., injection time of 15 seconds, and % cooling time of 30 seconds. Moreover, each raw material used in the examples and comparative examples is as follows.

〈変性ポリプロピレン〉 メルトインデックス1.0g/10分、エチレン含量1
0重量%の結晶性エチレン・プロピレンブロック共重合
体100重量部に対し、無水マレイン酸0.2重量部、
t−ブチルペルオキシベンゾエート0、2重量部を加え
、単軸押出機、220°Cで溶融混合することにより得
られる変性ポリプロピレン(以下、MPP)を用いた。
<Modified polypropylene> Melt index 1.0 g/10 minutes, ethylene content 1
0.2 parts by weight of maleic anhydride per 100 parts by weight of 0% by weight crystalline ethylene/propylene block copolymer;
Modified polypropylene (hereinafter referred to as MPP) obtained by adding 0.2 parts by weight of t-butyl peroxybenzoate and melt-mixing in a single screw extruder at 220°C was used.

この変性ポリプロピレンのメルトインデックスは25 
g /10分(230°C)、無水マレイン酸のグラフ
ト量は0.18重量%であった。MPPにグラフト化さ
れた無水マレイン酸量はMPPをP−キシレンに溶解し
た後、P−キシレンの3倍量に相当する冷アセトンと混
合・冷却して再沈MPPを得、本再沈MPPを含む溶剤
を濾過乾燥後、再度P−キシレンに溶解し、加熱状態の
ままKOHを加え、チモールデル−を指示薬としてHC
ffiにて滴定を行ない求めた。
The melt index of this modified polypropylene is 25
g/10 min (230°C), and the grafting amount of maleic anhydride was 0.18% by weight. The amount of maleic anhydride grafted onto MPP is determined by dissolving MPP in P-xylene, mixing with cold acetone equivalent to three times the amount of P-xylene and cooling to obtain reprecipitated MPP. After filtering and drying the containing solvent, dissolve it in P-xylene again, add KOH while heating, and add HCOH using thymoldel as an indicator.
It was determined by titration using ffi.

くポリプロピレン〉 メルトインデックス15g/10分、エチレン含量10
重量%の結晶性エチレン・プロピレン共重合体宇部興産
製r J815HK J 〈強化エラストマー〉 強化エラストマー(以下、RE)中のエラストマー成分
としては、以下のものを用いた。
Polypropylene> Melt index 15g/10min, ethylene content 10
Weight% crystalline ethylene-propylene copolymer manufactured by Ube Industries, Ltd. r J815HK J <Reinforced elastomer> The following were used as elastomer components in the reinforced elastomer (hereinafter referred to as RE).

EPR:ムーニー粘土ML、、、50、エチレン含量7
3重量%のエチレン・プロピレ ン共重合体ゴム MEPR:  EPR100重量部に対し、無水マレイ
ン酸0.8重量部、ジクミルペルオキ シド0.4重量部を加え、100’Cパラキシレン溶液
中で変性した変性エチ レン・プロピレン共重合体ゴム このMEPRのメルトインデックスは 0、7 g /10分(230°C)、無水マレイン酸
のグラフト量は0.6重量%であ った。グラフト量の測定は前記MP Pのグラフト量測定方法と同じ方法 で求めた。
EPR: Mooney clay ML, 50, ethylene content 7
3% by weight ethylene-propylene copolymer rubber MEPR: 0.8 parts by weight of maleic anhydride and 0.4 parts by weight of dicumyl peroxide were added to 100 parts by weight of EPR, and modified in a 100'C para-xylene solution. The melt index of this MEPR ethylene-propylene copolymer rubber was 0.7 g/10 min (230°C), and the grafting amount of maleic anhydride was 0.6% by weight. The amount of grafting was determined by the same method as the method for measuring the amount of grafting of MPP.

5EBS−1ニジエル化学社製「クレイトンGI650
 JSEBS−2ニジエル化学社製「クレイトンG16
57 JMSEBS   : シs /E/化学社製「
クレイトンFG1901X」シェル化学社製無水マレイ
ン酸度 性5EBS r りly イ) 7FG1901XJを
用いた。FG1901Xの無水マレイン酸グラフト量は
前記方法で求めたところ 2.0重量%であった。
5EBS-1 Nisiel Chemical Co., Ltd. “Crayton GI650
JSEBS-2 “Crayton G16” manufactured by Nisiel Chemical Co., Ltd.
57 JMSEBS: Sys/E/Kagakusha “
Clayton FG1901X" Maleic Anhydride 5EBS 7FG1901XJ manufactured by Shell Chemical Company was used. The amount of maleic anhydride grafted in FG1901X was determined by the method described above and was 2.0% by weight.

強化エラストマー中の変性ポリアミド(以下、MPA)
成分としては、分子量15000 、モンモリロナイト
含量2重量%のものを用いた。また、通常ナイロンとし
ては、宇部興産製[ナイロン−61013B Jを用い
た。
Modified polyamide (MPA) in reinforced elastomer
The components used had a molecular weight of 15,000 and a montmorillonite content of 2% by weight. Further, as the normal nylon, Nylon-61013BJ manufactured by Ube Industries was used.

強化エラストマー中のその他の成分としては、メルトフ
ローインデックスがIg/10分(230°C)のポリ
プロピレンホモポリマー(宇部興産社製BIOIH) 
100重量部に対し、無水マレイン酸15重量部、t−
ブチルパーオキシベンゾエイト1重量部を加え、130
°CのP−キシレン中で変性した変性ポリプロピレン(
PO)を用いた。該POのMFRは60g/10分(2
30’C) 、無水マレイン酸のグラフト量は6重量%
であった。
Other components in the reinforced elastomer include polypropylene homopolymer (BIOIH manufactured by Ube Industries, Ltd.) with a melt flow index of Ig/10 minutes (230°C).
To 100 parts by weight, 15 parts by weight of maleic anhydride, t-
Add 1 part by weight of butyl peroxybenzoate to 130
Modified polypropylene modified in P-xylene at °C (
PO) was used. The MFR of the PO is 60g/10min (2
30'C), the amount of maleic anhydride grafted was 6% by weight.
Met.

強化エラストマーは、表2に示した組成で、これらを二
軸押出機、240℃で溶融混合した後ペレット化して得
た。
The reinforced elastomers had the compositions shown in Table 2, and were obtained by melt-mixing them in a twin-screw extruder at 240°C and then pelletizing them.

〈無機充填剤〉 平均粒径2pmのタルクを用いた。<Inorganic filler> Talc with an average particle size of 2 pm was used.

〈実施例1〉 変性ポリプロピレン(MPP) 12.5重量%とポリ
プロピレン(PP) 75重量%及び強化エラストマー
(RE−1) 12.5重量%並びにMPP、 PP及
びRE−1の合計量100重量部に対しタルク25重量
部を■−ブレンダーでトライブレンドし、異方向二軸押
出機r 2FCM −65φEXT、 Jで溶融混合し
た後、ペレット化した。このベレットを80℃で熱風乾
燥し、230’Cで射出成形して物性測定用テストピー
スを作製した。
<Example 1> Modified polypropylene (MPP) 12.5% by weight, polypropylene (PP) 75% by weight, reinforced elastomer (RE-1) 12.5% by weight, and the total amount of MPP, PP and RE-1 100 parts by weight 25 parts by weight of talc were tri-blended using a blender, melt-mixed using a twin-screw extruder r2FCM-65φEXT, and then pelletized. This pellet was dried with hot air at 80° C. and injection molded at 230° C. to prepare a test piece for measuring physical properties.

〈実施例2〉 MPP 12.5重量%とPP 62.5重量%及びR
E−225重量%並びにMPP、 PP及びRE−2の
合計量100重量部に対しタルク25重量部を実施例1
と同様の方法でペレット化して、テストピースを得た。
<Example 2> MPP 12.5% by weight, PP 62.5% by weight and R
Example 1 25 parts by weight of talc was added to 100 parts by weight of the total amount of E-225% by weight and MPP, PP and RE-2.
A test piece was obtained by pelletizing in the same manner as above.

〈実施例3〉 MPP 12.5重量%とPP 62.5重量%及びR
E−325重量%並びにMPP、 PP及びRE−3の
合計量100重量部に対しタルク25重量部を実施例1
と同様の方法でペレット化して、テストピースを得た。
<Example 3> MPP 12.5% by weight, PP 62.5% by weight and R
Example 1 25 parts by weight of talc was added to 100 parts by weight of the total amount of E-325% and MPP, PP and RE-3.
A test piece was obtained by pelletizing in the same manner as above.

〈実施例4〉 MPP 15.4重量%とPP 3B、4重量%、RE
−246,2重量%並びにMPP、 PP及びRE−2
の合計量100重量部に対しタルク53.8重量部を実
施例1と同様の方法でペレット化し、テストピースを得
た。
<Example 4> MPP 15.4% by weight and PP 3B, 4% by weight, RE
-246.2% by weight and MPP, PP and RE-2
Based on the total amount of 100 parts by weight, 53.8 parts by weight of talc was pelletized in the same manner as in Example 1 to obtain a test piece.

〈実施例5〉 MPP 12.5重量%、PP 62.5重量%及びR
E−425重量%並びにMPP、 PP及びRE−4の
合計量100重量部に対しタルク25重量部を実施例1
と同様の方法でペレット化してテストピースを得た。
<Example 5> MPP 12.5% by weight, PP 62.5% by weight and R
Example 1 25 parts by weight of talc was added to 100 parts by weight of the total amount of E-425% and MPP, PP and RE-4.
A test piece was obtained by pelletizing in the same manner as above.

〈比較例1〉 ポリプロピレン(PP) 87.5重量%及びエチレン
・プロピレン共重合体ゴム(EPR) 12.5重量%
並びにppとEPRの合計量100重量部に対しタルク
25重量部を2FCM −65φEXT、 、 220
°Cで溶融混合した後ペレット化し、230°Cで射出
成形してテストピースを作製した。
<Comparative Example 1> Polypropylene (PP) 87.5% by weight and ethylene-propylene copolymer rubber (EPR) 12.5% by weight
Also, 25 parts by weight of talc was added to 100 parts by weight of the total amount of pp and EPR, 2FCM-65φEXT, 220
After melt-mixing at °C, the mixture was pelletized and injection molded at 230 °C to prepare a test piece.

〈比較例2〉 EPRO代わりに、スチレン系エラストマー(Sll:
BS−1)を用いたこと以外は、比較例1と同様に行っ
た。
<Comparative Example 2> Instead of EPRO, styrene elastomer (Sll:
The same procedure as Comparative Example 1 was conducted except that BS-1) was used.

〈比較例3〉 ポリプロピレン樹脂組成物としてのPP 75重量%、
EPR12,5重量%及び5EBS−112,5重量%
並びにこのポリプロピレン樹脂組成物100重量部に対
しタルク25重量部を比較例1と同様の方法でペレット
化し、テストピースを得た。
<Comparative Example 3> PP as a polypropylene resin composition 75% by weight,
EPR12.5% by weight and 5EBS-112.5% by weight
Further, 25 parts by weight of talc was pelletized based on 100 parts by weight of this polypropylene resin composition in the same manner as in Comparative Example 1 to obtain a test piece.

く比較例4〉 ポリプロピレン樹脂組成物としてのMPP 11.1重
量%、PP 66.7重量%及びRE−222,2重量
%並びにこのポリプロピレン樹脂組成物100重量部に
対しタルク11.1重量部を実施例1と同様の方法でペ
レット化し、テストピースを得た。
Comparative Example 4> 11.1% by weight of MPP, 66.7% by weight of PP and 2% by weight of RE-222 as a polypropylene resin composition, and 11.1 parts by weight of talc per 100 parts by weight of this polypropylene resin composition. A test piece was obtained by pelletizing in the same manner as in Example 1.

〈比較例5〉 RE−2の代わりに、エラストマー(E−1)を用いた
こと以外は、実施例2と同様に行った。
<Comparative Example 5> The same procedure as Example 2 was carried out except that elastomer (E-1) was used instead of RE-2.

く比較例6〉 ポリプロピレン樹脂組成物としてのMPP 15.4重
量%、PP 38.5重量%、EPR11,5重量%、
変性エチレン・プロピレン共重合体ゴム(MEPR) 
7重量%、5RBS−24,6重量%、MPA 23.
0重量%並びにこのポリプロピレン樹脂組成物100重
量部に対しタルク53.8重量部を実施例1と同様の方
法でペレット化し、テストピースを得た。
Comparative Example 6> MPP as a polypropylene resin composition 15.4% by weight, PP 38.5% by weight, EPR 11.5% by weight,
Modified ethylene propylene copolymer rubber (MEPR)
7% by weight, 5RBS-24, 6% by weight, MPA 23.
0% by weight and 53.8 parts by weight of talc based on 100 parts by weight of this polypropylene resin composition were pelletized in the same manner as in Example 1 to obtain a test piece.

結果を第1表に示す。The results are shown in Table 1.

以下余白 1m表 〔発明の効果〕 本発明は、粘土鉱物でハイブリッド化された変性ポリア
ミドをあらかじめエラストマー中に微細均一分散し、硬
質、且つ強靭にした強化エラストマーをポリプロピレン
の耐衝撃改良剤としてもちい、更に無機充填剤を配合す
ることにより、ポリプロピレン組成物の剛性、耐熱性、
耐受傷性、機械的強度等を損なうことなく耐衝撃性及び
寸法精度を向上したものである。
Below is a table with a 1m margin. [Effects of the Invention] The present invention uses a reinforced elastomer made by finely and uniformly dispersing modified polyamide hybridized with clay minerals in an elastomer to make it hard and tough, as an impact modifier for polypropylene. Furthermore, by blending an inorganic filler, the rigidity, heat resistance,
It has improved impact resistance and dimensional accuracy without compromising scratch resistance, mechanical strength, etc.

本発明により提供される新規な組成物は通常の射出成形
、押出成形等の成形加工法により成形でき、また剛性、
耐熱性、耐受傷性、耐衝撃性に優れており、自動車のイ
ンストルメントパネル、センターコンソール、トリム類
等の内装部品、家電部品、機械部品等の工業用部品各種
及びその他側性や耐熱性、耐衝撃性、寸法精度が要求さ
れる大型、高剛性部品用に好適に用いられる。
The novel composition provided by the present invention can be molded by conventional molding methods such as injection molding and extrusion, and has high rigidity and
It has excellent heat resistance, scratch resistance, and impact resistance, and is suitable for interior parts such as automobile instrument panels, center consoles, and trims, various industrial parts such as home appliance parts, mechanical parts, and other lateral and heat resistant parts. Suitable for use in large, high-rigidity parts that require impact resistance and dimensional accuracy.

Claims (1)

【特許請求の範囲】 1、(a)ポリプロピレン系樹脂98〜50重量部及び
(b)粘土鉱物変性ポリアミドとエラストマーとからな
る熱可塑性の強化エラストマー組成物2〜50重量部か
らなるポリプロピレン樹脂組成物100重量部に対し、
(c)無機充填剤15重量部以上70重量部未満を配合
して成る高剛性部品用ポリプロピレン組成物。 2、ポリプロピレン系樹脂が、(a)不飽和カルボン酸
及び/又はその誘導体でグラフト変性された変性ポリプ
ロピレン及び/又は(b)上記変性ポリプロピレンを少
なくとも2重量%含有する結晶性ポリプロピレンである
請求項1に記載の高剛性部品用ポリプロピレン組成物。 3、熱可塑性の強化エラストマー組成物が、(a)エチ
レン・α−オレフィン共重合体ゴム、(b)上記のエチ
レン・α−オレフィン共重合体ゴムを不飽和カルボン酸
及び/又はその誘導体で変性した変性エチレン・α−オ
レフィン共重合体ゴム、(c)ジェン系ゴムを水素添加
した水添ゴム、(d)上記の水添ゴムを不飽和カルボン
酸及び/又はその誘導体で変性した変性水添ゴムからな
る群から選ばれた少なくとも一種のエラストマーと、粘
土鉱物変性ポリアミドからなるものである、請求項1又
は2に記載の高剛性部品用ポリプロピレン組成物。 4、熱可塑性の強化エラストマー組成物が、(i)(a
)エラストマー40〜95重量部及び(b)粘土鉱物で
変性したポリアミド5〜60重量部を配合したエラスト
マー組成物100重量部に、更に(ii)エチレン及び
/又はα−オレフィンと、不飽和カルボン酸及び/又は
その誘導体との共重合体1〜20重量部を配合したもの
である、請求項1〜3のいずれか1項に記載の高剛性部
品用ポリプロピレン組成物。
[Scope of Claims] 1. A polypropylene resin composition comprising (a) 98 to 50 parts by weight of a polypropylene resin and (b) 2 to 50 parts by weight of a thermoplastic reinforced elastomer composition comprising a clay mineral-modified polyamide and an elastomer. For 100 parts by weight,
(c) A polypropylene composition for highly rigid parts, which contains 15 parts by weight or more and less than 70 parts by weight of an inorganic filler. 2. Claim 1, wherein the polypropylene resin is (a) a modified polypropylene graft-modified with an unsaturated carboxylic acid and/or a derivative thereof and/or (b) a crystalline polypropylene containing at least 2% by weight of the modified polypropylene. The polypropylene composition for highly rigid parts described in . 3. The thermoplastic reinforced elastomer composition comprises (a) an ethylene/α-olefin copolymer rubber, (b) the above-mentioned ethylene/α-olefin copolymer rubber modified with an unsaturated carboxylic acid and/or a derivative thereof. modified ethylene/α-olefin copolymer rubber, (c) hydrogenated rubber obtained by hydrogenating the hydrogenated rubber, (d) modified hydrogenated rubber obtained by modifying the above hydrogenated rubber with an unsaturated carboxylic acid and/or its derivative. The polypropylene composition for highly rigid parts according to claim 1 or 2, which comprises at least one elastomer selected from the group consisting of rubber and clay mineral-modified polyamide. 4. The thermoplastic reinforced elastomer composition has (i) (a
) 40 to 95 parts by weight of an elastomer and (b) 100 parts by weight of an elastomer composition containing 5 to 60 parts by weight of a polyamide modified with a clay mineral, and further (ii) ethylene and/or α-olefin and an unsaturated carboxylic acid. The polypropylene composition for highly rigid parts according to any one of claims 1 to 3, which contains 1 to 20 parts by weight of a copolymer with a copolymer and/or a derivative thereof.
JP31280090A 1990-08-14 1990-11-20 High rigidity parts made of polypropylene resin composition Expired - Fee Related JP2885507B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31280090A JP2885507B2 (en) 1990-11-20 1990-11-20 High rigidity parts made of polypropylene resin composition
EP19910307451 EP0472344A3 (en) 1990-08-14 1991-08-13 Reinforced elastomer composition and polypropylene composition containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31280090A JP2885507B2 (en) 1990-11-20 1990-11-20 High rigidity parts made of polypropylene resin composition

Publications (2)

Publication Number Publication Date
JPH04183733A true JPH04183733A (en) 1992-06-30
JP2885507B2 JP2885507B2 (en) 1999-04-26

Family

ID=18033558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31280090A Expired - Fee Related JP2885507B2 (en) 1990-08-14 1990-11-20 High rigidity parts made of polypropylene resin composition

Country Status (1)

Country Link
JP (1) JP2885507B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030181A (en) * 2000-07-14 2002-01-31 Jsp Corp Polyolefin resin composition for foaming
WO2013094764A1 (en) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 Thermoplastic resin composition and method for producing same
WO2013094763A1 (en) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 Thermoplastic resin composition, method for producing same, and molded body
JP2013147646A (en) * 2011-12-22 2013-08-01 Toyota Boshoku Corp Thermoplastic resin composition using plant-originated polyamide resin and molded article
JP2013147645A (en) * 2011-12-22 2013-08-01 Toyota Boshoku Corp Thermoplastic resin composition and method for producing the same
JP2017503890A (en) * 2014-01-03 2017-02-02 アルケマ フランス Thermoplastic composition comprising polypropylene and polyamide grafted polyolefin
KR20180094115A (en) * 2016-03-11 2018-08-22 도요다 보쇼꾸 가부시키가이샤 Foamed resin molded article and manufacturing method thereof
KR20190042735A (en) 2017-01-23 2019-04-24 도요다 보쇼꾸 가부시키가이샤 Thermoplastic resin composition, method for producing the same, and molded article
US10829626B2 (en) 2016-03-31 2020-11-10 Toyota Boshoku Kabushiki Kaisha Dispersion diameter adjustment method and thermoplastic resin composition
US10934424B2 (en) 2015-12-01 2021-03-02 Toyota Boshoku Kabushiki Kaisha Molded body and production method therefor
US11046822B2 (en) 2015-12-01 2021-06-29 Toyota Boshoku Kabushiki Kaisha Modifier, usage therefor, production method for modifier, and carrier for additive material

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030181A (en) * 2000-07-14 2002-01-31 Jsp Corp Polyolefin resin composition for foaming
JP4577859B2 (en) * 2000-07-14 2010-11-10 株式会社ジェイエスピー Polyolefin resin composition for foaming
JP2016166365A (en) * 2011-12-22 2016-09-15 トヨタ紡織株式会社 Thermoplastic resin composition
JP2016222932A (en) * 2011-12-22 2016-12-28 トヨタ紡織株式会社 Thermoplastic resin composition and method for producing the same
WO2013094764A1 (en) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 Thermoplastic resin composition and method for producing same
JP2013147646A (en) * 2011-12-22 2013-08-01 Toyota Boshoku Corp Thermoplastic resin composition using plant-originated polyamide resin and molded article
JP2013147645A (en) * 2011-12-22 2013-08-01 Toyota Boshoku Corp Thermoplastic resin composition and method for producing the same
KR20140105826A (en) * 2011-12-22 2014-09-02 도요다 보쇼꾸 가부시키가이샤 Thermoplastic resin composition and method for producing same
CN104024324A (en) * 2011-12-22 2014-09-03 丰田纺织株式会社 Thermoplastic resin composition and method for producing same
KR20140106685A (en) * 2011-12-22 2014-09-03 도요다 보쇼꾸 가부시키가이샤 Thermoplastic resin composition, method for producing same, and molded body
JP2016027178A (en) * 2011-12-22 2016-02-18 トヨタ紡織株式会社 Thermoplastic resin composition and method for producing the same
US9493642B2 (en) 2011-12-22 2016-11-15 Toyota Boshoku Kabushiki Kaisha Thermoplastic resin composition, method for producing same, and molded body
JP2013147647A (en) * 2011-12-22 2013-08-01 Toyota Boshoku Corp Thermoplastic resin composition and method for producing the same
WO2013094763A1 (en) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 Thermoplastic resin composition, method for producing same, and molded body
US9353251B2 (en) 2011-12-22 2016-05-31 Toyota Boshoku Kabushiki Kaisha Thermoplastic resin composition and method for producing same
US9840615B2 (en) 2011-12-22 2017-12-12 Toyota Boshoku Kabushiki Kaisha Thermoplastic resin composition, method for producing same, and molded body
JP2017503890A (en) * 2014-01-03 2017-02-02 アルケマ フランス Thermoplastic composition comprising polypropylene and polyamide grafted polyolefin
US10280295B2 (en) 2014-01-03 2019-05-07 Arkema France Thermoplastic composition made of polypropylene and polyamide-grafted polyolefin
US10934424B2 (en) 2015-12-01 2021-03-02 Toyota Boshoku Kabushiki Kaisha Molded body and production method therefor
US11046822B2 (en) 2015-12-01 2021-06-29 Toyota Boshoku Kabushiki Kaisha Modifier, usage therefor, production method for modifier, and carrier for additive material
US11992980B2 (en) 2016-03-11 2024-05-28 Toyota Boshoku Kabushiki Kaisha Foamed resin molded article and method for manufacturing same
KR20180094115A (en) * 2016-03-11 2018-08-22 도요다 보쇼꾸 가부시키가이샤 Foamed resin molded article and manufacturing method thereof
US10829626B2 (en) 2016-03-31 2020-11-10 Toyota Boshoku Kabushiki Kaisha Dispersion diameter adjustment method and thermoplastic resin composition
KR20190042735A (en) 2017-01-23 2019-04-24 도요다 보쇼꾸 가부시키가이샤 Thermoplastic resin composition, method for producing the same, and molded article
US11299608B2 (en) 2017-01-23 2022-04-12 Toyota Boshoku Kabushiki Kaisha Thermoplastic resin composition, method for producing same and molded body

Also Published As

Publication number Publication date
JP2885507B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
US5091462A (en) Thermoplastic resin composition
US5206284A (en) Thermoplastic resin composition
CN1053685C (en) Glass fiber reinforced propylene polymer graft composition
EP0472344A2 (en) Reinforced elastomer composition and polypropylene composition containing same
JPH02138359A (en) Thermoplastic propylene resin composition
JPH04183733A (en) Polypropylene composition for high stiffness part
JPH0496957A (en) Polypropylene composition for part having high impact resistance
US5391607A (en) Thermoplastic resin composition
JP2831786B2 (en) Thermoplastic resin composition
JPH11335553A (en) Thermoplastic resin composition and molded article
JPS6134047A (en) Dimensionally stable soft resin composition
US5548013A (en) Thermoplastic resin composition
JPH0496956A (en) Polypropylene composition
JP2528163B2 (en) Highly rigid and impact resistant polyamide resin composition
JP2006137888A (en) Bright material-containing resin composition
JPH08199016A (en) Reinforced polypropylene composition
GB2249550A (en) Reinforced polypropylene resin composition
JPH03215556A (en) Resin composition
JP2001172499A (en) Thermoplastic resin composition
JP2000219781A (en) Polyolefin resin based composition
JP2885490B2 (en) Reinforced elastomer composition
JPH11269378A (en) Connector and polyamide resin composition therefor
JPS61126164A (en) Polyester resin composition
JP4306054B2 (en) Thermoplastic elastomer composition and thermoplastic resin composition using the same
JP4783974B2 (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees