JPH04181170A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JPH04181170A
JPH04181170A JP2307162A JP30716290A JPH04181170A JP H04181170 A JPH04181170 A JP H04181170A JP 2307162 A JP2307162 A JP 2307162A JP 30716290 A JP30716290 A JP 30716290A JP H04181170 A JPH04181170 A JP H04181170A
Authority
JP
Japan
Prior art keywords
oil
sponge
temp
expansion
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2307162A
Other languages
Japanese (ja)
Inventor
Sukehisa Noda
祐久 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2307162A priority Critical patent/JPH04181170A/en
Publication of JPH04181170A publication Critical patent/JPH04181170A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To use the title sensor even in the circumferential environment of a wide temp. range for a long period of time with high reliability by providing a means absorbing the volumetric increment due to the thermal expansion of oil. CONSTITUTION:A volume absorbing means is constituted of sponge 20 having elasticity and the sponge 20 is covered with an oil impermeable cover 20a so as not to absorb oil 14. A protective member 21 is fixed to a base 1 in order to hold the sponge 20. The oil 14 is injected from an injection hole 15 in such a state that the circumferential temp. is lowered to the min. use circumferential temp. permitted by an acceleration sensor and hermetically sealed by a seal material 18. When the sensor is set to a use state, the oil 14 always acts in an expanding direction. The increased volume due to expansion is absorbed by the sponge 20 and the pressure of the oil in the sensor rises by a slight value compressing the sponge 20. That is, the expansion increment of the oil 14 at the time of the change of the use circumferential temp. within a tolerant temp. range is entirely absorbed by the sponge 20 and the internal pressure of the oil is kept almost constant to be suppressed to a slight change.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、半導体加速度センサに関し、さらに詳しく
いうと、自動車の電子制御サスペンションやアンチスキ
ッドブレーキ等の制御用センサとして用いられる半導体
加速度センサに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor acceleration sensor, and more specifically, to a semiconductor acceleration sensor used as a sensor for controlling electronically controlled suspensions, anti-skid brakes, etc. of automobiles. It is.

[従来の技術] 第5図〜第8図は従来の加速度センサを示し、第5図、
第6図において、(1)はベース、(2)はこのベース
(1)に固定されたシリコン製の台座、(3)はn型シ
リコンを素材にし、一端が台座(2)に固定されたカン
チーレバービーム、(4)はこのカンチーレバービーム
(3)の先端上に感度を上げるために設けられた重り、
(5)はカンチーレバービーム(3)の台座(2)の近
い部分に後述するよう設けられた4個からなる抵抗部、
(6a)〜(6d)は抵抗部(5)を外部に引き出すた
めのリードビン、(7)は抵抗部(5)のそれぞれの抵
抗体と4個のり−ドビン(6a)〜(6d)とをそれぞ
れ接続するためのワイヤ、(8)は溝、(10)は一端
がベース(1)に固定されリードビン(6a)〜(6d
)を保持するための絶縁台座、(11)はリードビン(
6a)〜(6d)とベース(1)とを固定密封するため
のシールド、(12)は全体を包むケース、(13)は
ベース(1)とケース(12)を接合する接合部、(1
4)はカンチーレバービーム(3)にダンパーを与える
ためのオイル、(15)はオイルを注入する注入穴、(
16)は注入穴(15)を密封するための密封材、^y
は重り(4)に働く加速度である。
[Prior Art] FIGS. 5 to 8 show conventional acceleration sensors, and FIGS.
In Figure 6, (1) is a base, (2) is a silicon pedestal fixed to this base (1), and (3) is made of n-type silicon, with one end fixed to the pedestal (2). Cantilever beam (4) is a weight provided on the tip of this cantilever beam (3) to increase sensitivity;
(5) is a resistance section consisting of four pieces provided as described later on a part of the cantilever beam (3) near the pedestal (2);
(6a) to (6d) are lead bins for drawing out the resistance part (5) to the outside, and (7) is a lead bin for drawing out the resistance part (5) to the outside, and (7) is a lead bin for each resistor of the resistance part (5) and four glue dowels (6a) to (6d). Wires for connection, (8) are grooves, and (10) have one end fixed to the base (1) and lead bins (6a) to (6d).
), (11) is a lead bin (
A shield for fixing and sealing 6a) to (6d) and the base (1), (12) a case that envelops the whole, (13) a joint that joins the base (1) and the case (12), (1
4) is oil for providing a damper to the cantilever beam (3), (15) is an injection hole for injecting oil, (
16) is a sealing material for sealing the injection hole (15), ^y
is the acceleration acting on the weight (4).

第7図はカンチーレバービーム(3)に設けられた抵抗
部(5)の詳細を示し、R2+ R3はカンチレノ\−
ビーム(3)の長手方向に平行に/リコン結晶上に拡散
された抵抗体、R,、R,は同しく垂直方向に設けられ
た抵抗体、(8)はカンチーレバービーム(3)に感度
を上げるために設けた溝、(9)はカンチーレバービー
ム(3)で最も応力が大きくなる薄肉部である。
Figure 7 shows the details of the resistive part (5) provided on the cantilever beam (3), where R2+R3 is the cantilever beam (3).
Parallel to the longitudinal direction of the beam (3)/A resistor diffused on the silicon crystal, R,, R, is a resistor also provided perpendicularly, (8) is a resistor disposed on the cantilever beam (3). The groove (9) provided to increase sensitivity is the thin part of the cantilever beam (3) where the stress is greatest.

また、第8図はカンチーレバービーム(3)上に設けら
れた抵抗体RI+ Rt+ R3+ R、をプリ、ジ接
続した結線図である。
Moreover, FIG. 8 is a wiring diagram in which the resistors RI+Rt+R3+R provided on the cantilever beam (3) are pre-connected and di-connected.

第9図(a)、 (b)、 (c)は入力−出力の関係
を示し、(a’)入力特性、(b)タンパ−の入ってい
ないときの出力特性、(c)適切なタンパーか入ったと
きの出力特性図である。
Figures 9 (a), (b), and (c) show the input-output relationship; (a') input characteristics, (b) output characteristics when no tamper is present, and (c) appropriate tamper FIG.

次に、動作について説明する。Next, the operation will be explained.

重り(4)に加速度AVが第5図の矢印で示した方向に
働くと、重り(4)を含めたカンチレノ\−ビーム(3
)の重心位置に力py−M−Ayが作用する。Mは重り
(4)とカンチーレバービーム(3)の総重量である。
When acceleration AV acts on the weight (4) in the direction shown by the arrow in Figure 5, the cantilever beam (3) including the weight (4)
) A force py-M-Ay acts on the center of gravity of M is the total weight of the weight (4) and the cantilever beam (3).

この力FYのためにカンチーレバービーム(3)に曲げ
応力σ8か働くか、薄く形成された薄肉部(9)の応力
σ、か最も大きくなる。この応力σ。
Due to this force FY, either the bending stress σ8 acts on the cantilever beam (3) or the stress σ on the thinly formed portion (9) becomes the largest. This stress σ.

により薄肉部(9)の上部に設けた抵抗体Rl+ R2
+R3+ R、にはピエゾ抵抗効果により応力σ、に比
例した抵抗変化を生しる。この抵抗変化率は、それぞれ
次式で表される。
The resistor Rl+R2 provided on the upper part of the thin wall part (9)
+R3+ R produces a resistance change proportional to stress σ due to the piezoresistance effect. This rate of change in resistance is expressed by the following equations.

R,R32 R,R,2 ここで、αはンリコン単結晶に固有のピエゾ抵抗係数で
ある。
R,R32 R,R,2 Here, α is a piezoresistance coefficient specific to NRICON single crystal.

上記抵抗体Rl+ R、、R3,R、は第8図に示すよ
うにブリッジ回路に構成されているので、次式に示され
るように入力加速度Ayに比例するブリッジ出力電圧■
。が得られる(R= R、= R、= R。
Since the resistors Rl+R, , R3, and R are configured in a bridge circuit as shown in FIG. 8, the bridge output voltage is proportional to the input acceleration Ay as shown in the following equation.
. is obtained (R= R, = R, = R.

−R,と仮定する)。-R,).

△R Vo−Vs 以上は定常状態を示したものであるか、過渡時には第9
図(a)で示すインパルス入力が入った場合の出力電圧
は、ダンパーのためのオイル(14)が入っていない場
合は同図(b)のように振動を起こした後に定常値に収
束する。一方、適切な粘性のダンパー液、オイル(14
)を封入すると、同図(e)のように適正な出力特性を
示す。
△R Vo-Vs The above indicates a steady state, or in a transient state, the 9th
The output voltage when the impulse input shown in Figure (a) is input will converge to a steady value after causing vibration as shown in Figure (b) if oil (14) for the damper is not included. On the other hand, damper fluid of appropriate viscosity, oil (14
), it exhibits appropriate output characteristics as shown in FIG. 2(e).

次に、ダンパーのために注入されたオイルの状態につい
て説明する。ベース(1)とケース(12)に囲まれた
空間に注入されたオイル(14)は、注入時の温度で空
洞がないように充填される。注入時の温度より周囲温度
が上昇すると、オイル(14)は体積膨張し、内部圧力
は大幅に上昇し、ケース(12)は第10図で一点鎖線
で示すように変形する。一方、周囲温度が下降すると、
オイル(14)は体積収縮し、内部に空洞ができる。
Next, the state of the oil injected for the damper will be explained. The oil (14) injected into the space surrounded by the base (1) and the case (12) is filled at the temperature at the time of injection so that there are no cavities. When the ambient temperature rises above the temperature at the time of injection, the oil (14) expands in volume, the internal pressure increases significantly, and the case (12) deforms as shown by the dashed line in FIG. 10. On the other hand, when the ambient temperature decreases,
The oil (14) contracts in volume and creates a cavity inside.

[発明が解決しようとする課題] 従来の加速度センサは以上のように構成されているので
、周囲の温度変化に−より、封入されたオイル(14)
が体積膨張、収縮するために、温度上昇時には、内部圧
力が上昇してケース(12)の一部が第10図のように
変形したり、接合部(13)が破損する恐れがあった。
[Problems to be Solved by the Invention] Since the conventional acceleration sensor is configured as described above, the enclosed oil (14) may be damaged due to changes in ambient temperature.
When the temperature rises, the internal pressure increases and a portion of the case (12) may be deformed as shown in FIG. 10, or the joint (13) may be damaged.

一方、温度下降時には内部に空洞ができ、オイル(14
)が振動することによりカンチーレバービーム(3)を
破損する恐れがある等の問題点があった。
On the other hand, when the temperature drops, a cavity is formed inside and oil (14
) could cause damage to the cantilever beam (3) due to vibration.

この発明は上記のような問題点を解消するためになされ
たもので、広い温度範囲の周囲環境でも長寿命、高信頼
で使用できる半導体加速度センサを得ることを目的とす
る。
This invention was made to solve the above-mentioned problems, and aims to provide a semiconductor acceleration sensor that can be used with long life and high reliability even in an ambient environment with a wide temperature range.

[課題を解決するための手段] この発明に係る半導体加速度センサは、ケースおよびケ
ース内のいずれかに封入オイルの体積膨張、収縮を吸収
する体積吸収手段を設けたものである。
[Means for Solving the Problems] A semiconductor acceleration sensor according to the present invention is provided with volume absorption means for absorbing volume expansion and contraction of sealed oil either in the case or in the case.

[作 用] この発明における体積吸収手段は、封入オイルの体積膨
張収縮を吸収することにより、内部圧力をほぼ一定に保
持する。
[Function] The volume absorbing means in the present invention maintains the internal pressure substantially constant by absorbing the volumetric expansion and contraction of the enclosed oil.

[実施例コ 以下、この発明の第一の実施例を第1図について説明す
る。図において、第5図、第6図と同一符号は同一部分
を示している。体積吸収手段は、弾性を有するスポンジ
によっている。スポンジ(20)はオイル(14)を吸
収しないよう、オイル非透過のカバー(20a)で覆わ
れている。(21)はスポンジ(20)を保持するため
にベース(1)に固定された保持部材である。
[Embodiment 1] A first embodiment of the present invention will be described below with reference to FIG. In the figure, the same reference numerals as in FIGS. 5 and 6 indicate the same parts. The volume absorbing means is an elastic sponge. The sponge (20) is covered with an oil-impermeable cover (20a) so as not to absorb the oil (14). (21) is a holding member fixed to the base (1) to hold the sponge (20).

次に、動作について説明する。ただし、加速度測定の基
本原理については、従来装置と同様であるので省略し、
本発明に関係することのみとする。
Next, the operation will be explained. However, the basic principle of acceleration measurement is the same as that of conventional equipment, so it will be omitted.
Only matters related to the present invention will be described.

周囲温度をこの加速度センサが許容する最低使用周囲温
度まで下げた状態で、オイル(14)を注入穴(15)
より注入し、密封材(16)で密封する。以後、使用状
態にするとオイル(14)は常に膨張する方向に働く。
With the ambient temperature lowered to the lowest operating ambient temperature allowed by this acceleration sensor, pour oil (14) into the injection hole (15).
and seal with a sealing material (16). Thereafter, when the device is put into use, the oil (14) always works in the direction of expansion.

この膨張による増加体積はスポンジ(20)が吸収し、
内部のオイル圧力はスポンジ(20)を圧縮するわずか
な値だけ上昇する6以上により使用周囲温度が許容温度
範囲内で変化した際のオイル(14)の膨張増加分はス
ポンジ(20)が全て吸収し、オイル内圧をわずかな変
化にとどめることができる。
The increased volume due to this expansion is absorbed by the sponge (20),
The internal oil pressure increases by a small amount that compresses the sponge (20).When the operating ambient temperature changes within the permissible temperature range due to 6 or more, the sponge (20) absorbs all of the increased expansion of the oil (14). However, the oil internal pressure can be kept to a small change.

第2図は第二の実施例を示し、ケース(12)の土壁に
設けた遮へい板(22)で空間(23)を形成している
。(24)は遮へい板(22)に設けられた微細孔、(
25)は空気層である。以上により体積吸収手段が形成
されている。
FIG. 2 shows a second embodiment, in which a space (23) is formed by a shielding plate (22) provided on the earthen wall of the case (12). (24) is a fine hole provided in the shielding plate (22), (
25) is an air layer. The volume absorbing means is thus formed.

その他、第1図におけると同一符号は同一部分である。In addition, the same reference numerals as in FIG. 1 indicate the same parts.

以上の構成により、オイル(14)を密封した後の使用
状態ではオイル(14)は常に収縮状態に働き、使用最
高温度未満では収縮したオイルけ4)は微細孔(24)
を介して下方に移動し空気層(25)ができる。
With the above configuration, the oil (14) always acts in a contracted state in the usage state after being sealed, and the contracted oil container 4) forms the micropores (24) below the maximum usage temperature.
The air moves downward through the air, forming an air layer (25).

使用最低温度においても微細孔(24)は適正量オイル
に浸漬するよう遮へい板(22)は設けられている。
The shield plate (22) is provided so that the micropores (24) are immersed in an appropriate amount of oil even at the lowest operating temperature.

一方、微細孔(24)はオイル(14)の膨張・収縮に
追随して、オイル(14)が移動できる程度に極小な大
きさに設定されている。
On the other hand, the micropores (24) are set to an extremely small size so that the oil (14) can move following the expansion and contraction of the oil (14).

以上により、空気層(25)ができた状態でも、加速度
センサが振動した際にも、カンチーレバービーム(3)
部のオイル(14)はほとんど振動することがない。
As described above, even when the air layer (25) is formed and the acceleration sensor vibrates, the cantilever beam (3)
The oil (14) in this section hardly vibrates.

第3図は第三の実施例を示し、図において、(26)は
弾性のある薄い板材で密封空間(27)を形成してケー
ス(12)に固定された吸収板である。
FIG. 3 shows a third embodiment, and in the figure, (26) is an absorbing plate fixed to the case (12) with a sealed space (27) made of a thin elastic plate.

以上の構成になる体積吸収手段は、オイルを注入後、使
用環境温度範囲内において膨張したオイル(14)は、
吸収板(26)を外方向に変形させる。吸収板(26)
は微力で変形する材料からなっているので、許容使用周
囲温度範囲内でのわずかなオイル内圧の変化のみでオイ
ル(14)の膨張増加体積を吸収する。
In the volume absorption means having the above structure, after oil is injected, the oil (14) expanded within the operating environment temperature range is
Deform the absorbing plate (26) outward. Absorption plate (26)
Since it is made of a material that deforms with slight force, it absorbs the increased volume of expansion of the oil (14) with only a slight change in the oil internal pressure within the allowable operating ambient temperature range.

第4図は第四の実施例を示し、図において、ケース(1
2)に、いわゆるジャバラ状に加工されたジャバラ部(
28)が設けられている。
FIG. 4 shows a fourth embodiment, in which case (1
2), a bellows part processed into a so-called bellows shape (
28) is provided.

この構成において、オイルを注入した後、使用環境温度
範囲内で膨張したオイル(14)はジャバラ部(28)
を外方向に変形させる。ジャバラ部(28)は微力で変
形するよう構成されているので、許容使用周囲温度範囲
内でわずがなオイル内圧の変化のみで、オイル(14)
の膨張増加体積を吸収する。
In this configuration, after oil is injected, the oil (14) expanded within the usage environment temperature range is transferred to the bellows part (28).
deform outward. Since the bellows part (28) is configured to deform with a slight force, the oil (14) can be deformed by only a slight change in oil internal pressure within the allowable operating ambient temperature range.
absorbs the increased volume of expansion.

[発明の効果] 以上のように、この発明によれば、ケースの内部に注入
したオイルの熱膨張による体積増加量を微小圧変化で吸
収する体積吸収手段を設けたので、長寿命で信頼性を向
上することができる。
[Effects of the Invention] As described above, according to the present invention, since a volume absorbing means is provided which absorbs the volume increase due to thermal expansion of oil injected into the case with a minute pressure change, long life and reliability can be achieved. can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図はそれぞれこの発明の第一〜第四の実施
例の正断面図、第2図及び第3図はこの発明の他の実施
例を示す加速度センサの断面図、第5図は従来の加速度
センサの正断面図、第6図は同じく下面図、第7図は第
5図におけるカンチーレバービームの平面図(a)およ
び側面図(b)、第8図は前記カンチーレバービームに
形成された抵抗体の結線図、第9図(a) 、 (b)
 、 (c)は第5図のものの入力−出力特性図、第1
0図は第5図のものの動作説明のための正断面図である
。 (1)・・ベース、(3)・・カンチーレバービーム、
(4)・・重り、(12)・・ケース、(14)・・オ
イル、(20)・・スポンジ、(22)・・遮へい板、
(24)  ・微細孔、(26)・・吸収板、(27〉
・・空間、(28)・ジャバラ部。 なお、各図中、同一符号は同一または相当部分を示す。
1 to 4 are front sectional views of first to fourth embodiments of the present invention, FIGS. 2 and 3 are sectional views of acceleration sensors showing other embodiments of the invention, and FIG. 6 is a bottom view of the conventional acceleration sensor, FIG. 7 is a plan view (a) and side view (b) of the cantilever beam in FIG. 5, and FIG. 8 is a front view of the cantilever beam in FIG. Wiring diagram of the resistor formed in the Cheer lever beam, Figure 9 (a), (b)
, (c) is the input-output characteristic diagram of the one in Figure 5, the first
FIG. 0 is a front sectional view for explaining the operation of the device shown in FIG. (1) Base, (3) Cantilever beam,
(4)... Weight, (12)... Case, (14)... Oil, (20)... Sponge, (22)... Shielding plate,
(24) - Micropore, (26)... Absorption plate, (27>
... Space, (28) - Bellows section. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  加速度を検出する半導体を有するカンチーレバービー
ムがケースに固定され、ダンパーのために前記ケース内
にオイルが充填されている半導体加速度センサにおいて
、前記オイルの熱膨張による体積増加分を吸収する体積
吸収手段を備えてなることを特徴とする半導体加速度セ
ンサ。
In a semiconductor acceleration sensor, a cantilever beam having a semiconductor that detects acceleration is fixed to a case, and the case is filled with oil for a damper. Volume absorption absorbs the volume increase due to thermal expansion of the oil. A semiconductor acceleration sensor comprising: means.
JP2307162A 1990-11-15 1990-11-15 Semiconductor acceleration sensor Pending JPH04181170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2307162A JPH04181170A (en) 1990-11-15 1990-11-15 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2307162A JPH04181170A (en) 1990-11-15 1990-11-15 Semiconductor acceleration sensor

Publications (1)

Publication Number Publication Date
JPH04181170A true JPH04181170A (en) 1992-06-29

Family

ID=17965779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2307162A Pending JPH04181170A (en) 1990-11-15 1990-11-15 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JPH04181170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167889A (en) * 1993-10-20 1995-07-04 Kansei Corp Diaphragm and acceleration sensor
US5587531A (en) * 1995-07-11 1996-12-24 Kansei Corporation Semiconductor strain gauge acceleration sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167889A (en) * 1993-10-20 1995-07-04 Kansei Corp Diaphragm and acceleration sensor
US5587531A (en) * 1995-07-11 1996-12-24 Kansei Corporation Semiconductor strain gauge acceleration sensor

Similar Documents

Publication Publication Date Title
US5548999A (en) Mounting arrangement for acceleration detector element
US10969402B2 (en) Vibration sensor for a portable device including a damping arrangement to reduce mechanical resonance peak of sensor
US3422324A (en) Pressure variable capacitor
van Kampen et al. Modeling the mechanical behavior of bulk-micromachined silicon accelerometers
EP0497259B1 (en) Vibration absorbing damper
US4333342A (en) Fluid damped saw accelerometer
US8033177B2 (en) MEMS pressure sensor and housing therefor
US3828294A (en) Acceleration transducer having semiconductive piezoresistive element
JPH04181170A (en) Semiconductor acceleration sensor
US3113640A (en) Inertia coupled vibration damper mechanisms and fabrication thereof
JP2670413B2 (en) Pressure detector and manufacturing method thereof
JP2665312B2 (en) Axial vibration isolator using leaf spring or heavy leaf spring
Park et al. A servo-controlled capacitive pressure sensor using a capped-cylinder structure microfabricated by a three-mask process
Dean et al. Micromachined vibration isolation filters to enhance packaging for mechanically harsh environments
Kavitha et al. A PSpice model for the study of thermal effects in capacitive MEMS accelerometers
RU2014619C1 (en) Acceleration transducer
JPH0740185Y2 (en) Moisture-proof structure of strain gauge type transducer
JPS6375568A (en) Acceleration detector
US3091971A (en) Damped vibrational systems
JPH059746B2 (en)
JPS6055672A (en) Structure of pressure-electric converter
JPH01199031A (en) Actuation control device for vibration isolating device
CN117516689A (en) Shock wave acceleration measuring sensor and method based on viscous liquid and mass block
JPH04133066U (en) airtight container
GB2232489A (en) Silicon acceleration sensor