JPH04181130A - Temperature detecting circuit - Google Patents

Temperature detecting circuit

Info

Publication number
JPH04181130A
JPH04181130A JP31223290A JP31223290A JPH04181130A JP H04181130 A JPH04181130 A JP H04181130A JP 31223290 A JP31223290 A JP 31223290A JP 31223290 A JP31223290 A JP 31223290A JP H04181130 A JPH04181130 A JP H04181130A
Authority
JP
Japan
Prior art keywords
constant current
temperature
transistor
current source
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31223290A
Other languages
Japanese (ja)
Inventor
Kunihiko Karasawa
唐沢 国彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31223290A priority Critical patent/JPH04181130A/en
Publication of JPH04181130A publication Critical patent/JPH04181130A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To linearize a change in output voltage with respect to temperature to improve accuracy in temperature detection by making constant current flow to a transistor and outputting differential voltage between a base and an emitter by an operational amplifier. CONSTITUTION:When reference voltage obtained by dividing voltage Vcc by resistors 6, 7 is assumed to be Vref, output voltage Vout1 of an operational amplifier 1 is Vref+kT/qX1n(mXn) where (q) is a charge amount, (k) is Boltzmann's constant, T is absolute temperature Kelvin, (m) is a ratio of a current value of a constant current source 5 to a current value of a constant current source, and (n) is a ratio in area of an NPN transistor 3 to an NPN transistor 2. Thus reversed saturated current and temperature characteristics of a current value I1 of the constant current source 4 are canceled so that the voltage Vout1 is completely proportional to the absolute temperature T. An amount in change of the voltage Vout1 with respect to temperature can be set as desired by changing a ratio (m) in current values of the constant current sources 4, 5 and a ratio (n) in area of the transistors 2, 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は温度に比例又は反比例する電圧を出力する温
度検出回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature detection circuit that outputs a voltage that is proportional or inversely proportional to temperature.

!従来の技術] 第4図は従来の温度検出回路の回路図である。! Conventional technology] FIG. 4 is a circuit diagram of a conventional temperature detection circuit.

図において、(1)は十入力にダイオード(13)〜(
15)を定電流源(12)に接続することにより発生す
る基準電圧Vtが接続され、出力か一人力に帰還される
オペレーショナルアンプである、 次に動作について説明する。ダイオード(13)〜(1
5)に定電流源(12)を接続することにより、発生す
る基準電圧マtは次(1)式の様になる。
In the figure, (1) has diodes (13) to (
15) is connected to a constant current source (12) to which the reference voltage Vt generated is connected, and the output is fed back to the single power source.Next, the operation will be explained. Diode (13) ~ (1
By connecting a constant current source (12) to 5), the generated reference voltage mat becomes as shown in the following equation (1).

q:電子の電荷量  k:l/L/ツマン定数T:絶対
温度ケルビン エ4:定電流源f12)の慎重8:逆方
向飽和電流 VD、ダイオード発生電圧基準電圧Vtは
出力が一人力に帰還されたオペレーショナルアンプ(1
)によるバッファ回路を介してVout 4  として
出力されるう以上の様に構成される温度検出回路は、ダ
イオ−ド発生電圧VDが温度に反比例して減少すること
を利用している。
q: Electron charge k: l/L/Tumann's constant T: Absolute temperature Kelvin operational amplifier (1
) The temperature detection circuit configured as above utilizes the fact that the diode-generated voltage VD decreases in inverse proportion to the temperature.

[発明が解決しようとする課題] 従来の温度検出回路は以上のように構成されていたので
 逆方向飽和電流Isの温度特性さらに定電流I3の温
度特性の為、VDの温度に対する変化は完全な直線には
ならず精度か悪いつまた。出力電圧Vout4の温度に
対する変化量は、ダイオードの11M数のみによって決
定される為、出力の電圧レベルあるいは電源電圧等によ
り制約を受け、自由に温度変化量を設定できない等の問
題点があった。
[Problem to be solved by the invention] Since the conventional temperature detection circuit was configured as described above, due to the temperature characteristics of the reverse saturation current Is and the temperature characteristics of the constant current I3, the change in VD with respect to temperature is completely It's not a straight line, and the accuracy is poor. Since the amount of change in the output voltage Vout4 with respect to temperature is determined only by the number of 11M diodes, it is restricted by the output voltage level or the power supply voltage, and there are problems such as not being able to freely set the amount of temperature change.

この発明は上記のような問題点を解決するためになされ
たもので、精度が良くかつ6カ電圧の温度に対する変化
量を任意に設定できる温度検出回路を得ることを目的と
する。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a temperature detection circuit that is highly accurate and can arbitrarily set the amount of change in six voltages with respect to temperature.

C#題を解決するための手段〕 この発明に係る温度検出回路は、オペレーショナルアン
プの反転入力端子にエミッタが接続され、ベース、コレ
クタかショートサれ、カつオペレーショナルアンプの出
力端子に接続された第1導電形の第1のトランジスタ、
オペレーショナルアンプの反転入力端子に接続された第
1の定電流源、オペレーショナルアンプの非反転入力端
子にエミッタが接続され、ベースが基準電圧にコレクタ
か別の基準電圧に接続された第1のトランジスタと同一
導電形でありかつこの第1のトランジスタとは面積比が
異なる第2のトランジスタ、オペレーショナルアンプの
非反転入力端子に接続された第1の定電流源とは大きさ
が異なる第2の定電流源とを備えたものでろるっ [作用] この発明における温度検出口17&は、トランジスタに
定電流を流すことによって発生する2つのベース、エミ
ッタ間電圧(”JBE)の差電圧をオペレーショナルア
ンプにより出力する構成としたので、出力電圧の温度に
対する変化は完全に直線となり、また出力電圧の温度に
対する変化量は、トランジスタの面積比、あるいは定電
流源の大きさを変えることにより任意に設定できる。
Means for Solving the C# Problem] The temperature detection circuit according to the present invention has an emitter connected to an inverting input terminal of an operational amplifier, a base and a collector connected to a short circuit, and a temperature detection circuit connected to an output terminal of the operational amplifier. a first transistor of one conductivity type;
a first constant current source connected to an inverting input terminal of the operational amplifier, a first transistor having an emitter connected to a non-inverting input terminal of the operational amplifier, and a base connected to a reference voltage or a collector to another reference voltage; a second transistor of the same conductivity type and having a different area ratio from that of the first transistor; a second constant current having a different magnitude from that of the first constant current source connected to the non-inverting input terminal of the operational amplifier; [Function] The temperature detection port 17& in this invention outputs the differential voltage between two base-emitter voltages ("JBE") generated by flowing a constant current through the transistor using an operational amplifier. Because of this configuration, the change in output voltage with respect to temperature is completely linear, and the amount of change in output voltage with respect to temperature can be arbitrarily set by changing the area ratio of the transistors or the size of the constant current source.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の温度検出回路の一実施例を示す回路
図である。図において、(2)はエミッタがオペレーシ
ョナルアンプ(1)の−人力及び定電流源(5)に接続
され、ベース、コレクタがショートされかつオペレーシ
ョナルアンプ(1)のaカ端子に接続され九NPN )
ランジスタであろう定電流源(5)のもう一方の端はG
NDラインに接続されている。
FIG. 1 is a circuit diagram showing an embodiment of the temperature detection circuit of the present invention. In the figure, the emitter of (2) is connected to the operational amplifier (1)'s power source and constant current source (5), the base and collector are shorted, and the terminal (a) of the operational amplifier (1) is connected to the (9NPN) terminal.
The other end of the constant current source (5), which may be a transistor, is G
Connected to the ND line.

(3)はエミッタがオペレーショナルアンプ(1)の十
人力及び定電流源(4)に接続され、ベースが抵抗(6
)及び(7)に接続され、コレクタがVccラインに接
続されたNPN トランジスタである。定電流源(4)
のもう一方の端及び抵抗(7)のもう一方の端はGND
ラインに接続され、抵抗(6)のもう一方の端はVCC
ラインに接続されている、尚、NPN )フンジスタ(
3)の面積比はNPN )ランジヌタ(2)のD倍で1
、定電流源(5)の電流値は定電流源(4)の電流値の
m倍となっているう 次に動作について説明する・抵抗(6)及び(7)Kよ
って、Vccを抵抗分割することによって得られる基準
電圧をVrefとすると、オペレーショナルアンプは)
の出力電圧Voutlは次(2)式の様になる。
The emitter of (3) is connected to the operational amplifier (1) and constant current source (4), and the base is a resistor (6
) and (7), and are NPN transistors whose collectors are connected to the Vcc line. Constant current source (4)
The other end of the resistor (7) is connected to GND.
line and the other end of the resistor (6) is VCC
Connected to the line, NPN) Fungistar (
The area ratio of 3) is NPN) D times that of Langinuta (2), which is 1
, the current value of the constant current source (5) is m times the current value of the constant current source (4). Next, the operation will be explained. ・Resistors (6) and (7) K Therefore, Vcc is divided by the resistance. If the reference voltage obtained by
The output voltage Voutl is expressed by the following equation (2).

kT      I+    kT    mxIIV
out + = Vref −−1n −+ −In 
−q  nXEs  q   l5 kT    mXnXUIXZs =Vref’+〒1’ −コミ丁「 =Vref’ +”In (mXr+)       
     ・・−(21IP定電流源(4)の電流値 m =定電流源(4)の電流値に対する定電流源(5)
の電流値の比率 rI :  NPN)ランジスタ(2)に対するNPN
I−ランジスタ(3)の面積比 上記(2)式では逆方向飽和電流rs及び定電流源の電
流慎重rの温度特性がキャンセルされて、出力電圧Vo
utは絶対温度Tに完全に比例することは明白である。
kT I+ kT mxIIV
out + = Vref −−1n −+ −In
-q nXEs q l5 kT mXnXUIXZs =Vref'+〒1'-Komicho"=Vref'+"In (mXr+)
...-(21IP current value m of constant current source (4) = constant current source (5) for current value of constant current source (4)
Ratio of current values rI: NPN) to transistor (2)
Area ratio of I-transistor (3) In the above equation (2), the temperature characteristics of the reverse saturation current rs and the current r of the constant current source are canceled, and the output voltage Vo
It is clear that ut is perfectly proportional to the absolute temperature T.

また、出力電圧マoutlの温度に対する変化量は、定
電流源(4)の電流値に対する定電流源(5)の電流値
の比率m及びNPN)フンジスタ(2)に対するNPt
1)ランジヌタ(3)の面積比pを変えることにより任
意に設定できる。
In addition, the amount of change in the output voltage moutl with respect to temperature is determined by the ratio m of the current value of the constant current source (5) to the current value of the constant current source (4), and the NPt for the fungistor (2).
1) It can be arbitrarily set by changing the area ratio p of the lung nut (3).

なお、上記実施例ではNPN)ランジスタ(2) (3
)を用いた場合を示しているが、第2図に示す他の実施
例の様にPNP)フンジスタ(8) (9)を用いても
よい。!た、温度に対する出力電圧の変化量をさらに大
きくしたい場合は、第3図に示す他の実施例の様に、N
PN)ランジスタ(2)及び(3)のエミッタに、ダイ
オード接続し九NPN )フンジスタ(10)及び(1
1)を追加すればよい。この場合の出力電圧〜out3
は次(3)式の様になる。
Note that in the above embodiment, NPN) transistors (2) (3
), but PNP) fungistars (8) and (9) may also be used as in other embodiments shown in FIG. ! In addition, if you want to further increase the amount of change in output voltage with respect to temperature, as in another embodiment shown in FIG.
Connect diodes to the emitters of NPN) transistors (2) and (3).
Just add 1). Output voltage in this case ~ out3
is expressed as the following equation (3).

[発明の効果] 以上のようにこの発明によれば、トランジスタに定電流
を流すことによって、発生する2つのベース、エミッタ
間電圧(VBE )の差電圧ヲ−rへv−ショナルアン
プにより出力する構成としたので、出力電圧の温度に対
する変化は完全に直線となり、温度検出の精度が良くな
り、また出力電圧の温度に対する変化量はトランジスタ
の面積比、あるいは定電流源の大きさを変えることによ
り任意に設定かできるなどの効果がある。
[Effects of the Invention] As described above, according to the present invention, the difference voltage between two base-emitter voltages (VBE) generated by flowing a constant current through a transistor is outputted to r by a v-sational amplifier. With this configuration, the change in output voltage with respect to temperature is completely linear, improving the accuracy of temperature detection, and the amount of change in output voltage with respect to temperature can be controlled by changing the area ratio of the transistor or the size of the constant current source. It has the effect of being able to be set arbitrarily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例である温度検出回路の回路
図、第2図及び第3図はこの発明の他の実施例である温
度検出回路の回路図1、第4図は従来の温度検出回路の
回路図である、 図において、(1)はオペレーショナルアンプ、(2)
、 (3)、  (10)、  (111はNPN?ラ
ンジスタ、(41,(51は定電流源、(8)i9)は
PNP)ランジスタを示す。 なお、図中、同一符号は同一、または相当部分を示すっ
FIG. 1 is a circuit diagram of a temperature detection circuit that is an embodiment of the present invention, FIGS. 2 and 3 are circuit diagrams of a temperature detection circuit that is another embodiment of the invention, and FIG. This is a circuit diagram of a temperature detection circuit. In the figure, (1) is an operational amplifier, (2)
, (3), (10), (111 is an NPN? transistor, (41, (51 is a constant current source, (8) i9) is a PNP) transistor. In the figures, the same symbols are the same or equivalent. I'll show you the part

Claims (1)

【特許請求の範囲】[Claims]  オペレーショナルアンプの反転入力端子にエミッタが
接続され、ベース、コレクタがショートされ、かつ上記
オペレーショナルアンプの出力端子に接続された第1導
電形の第1のトランジスタ、上記オペレーショナルアン
プの反転入力端子に接続された第1の定電流源、上記オ
ペレーショナルアンプの非反転入力端子にエミッタが接
続され、ベースが基準電圧に、コレクタが別の基準電圧
に接続された上記第1のトランジスタと同一導電形であ
りかつ上記第1のトランジスタとは面積比が異なる第2
のトランジスタ、上記オペレーショナルアンプの非反転
入力端子に接続された、上記第1の定電流源とは大きさ
が異なる第2の定電流源とを備えたことを特徴とする温
度検出回路。
a first transistor of a first conductivity type, the emitter of which is connected to the inverting input terminal of the operational amplifier; the base and collector thereof are short-circuited; and the first transistor of the first conductivity type is connected to the output terminal of the operational amplifier; a first constant current source having the same conductivity type as the first transistor having an emitter connected to the non-inverting input terminal of the operational amplifier, a base connected to a reference voltage, and a collector connected to another reference voltage; The second transistor has a different area ratio from the first transistor.
A temperature detection circuit comprising: a transistor; and a second constant current source connected to a non-inverting input terminal of the operational amplifier and having a different size from the first constant current source.
JP31223290A 1990-11-15 1990-11-15 Temperature detecting circuit Pending JPH04181130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31223290A JPH04181130A (en) 1990-11-15 1990-11-15 Temperature detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31223290A JPH04181130A (en) 1990-11-15 1990-11-15 Temperature detecting circuit

Publications (1)

Publication Number Publication Date
JPH04181130A true JPH04181130A (en) 1992-06-29

Family

ID=18026768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31223290A Pending JPH04181130A (en) 1990-11-15 1990-11-15 Temperature detecting circuit

Country Status (1)

Country Link
JP (1) JPH04181130A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667904B2 (en) 1999-07-22 2003-12-23 Kabushiki Kaisha Toshiba Multi-level non-volatile semiconductor memory device with verify voltages having a smart temperature coefficient
DE102008015696A1 (en) * 2008-03-26 2009-10-08 Infineon Technologies Ag Arrangement for use as temperature sensor, and for use with reference voltage source, has two logarithmic units, where each logarithmic unit has input and output, and voltage source is connected with input with terminal
CN103604516A (en) * 2013-11-06 2014-02-26 苏州贝克微电子有限公司 Temperature sensor
CN112313489A (en) * 2018-06-26 2021-02-02 株式会社自动网络技术研究所 Temperature detection circuit for vehicle
US11022499B2 (en) 2017-04-13 2021-06-01 Fuji Electric Co., Ltd. Temperature detection device and power conversion device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667904B2 (en) 1999-07-22 2003-12-23 Kabushiki Kaisha Toshiba Multi-level non-volatile semiconductor memory device with verify voltages having a smart temperature coefficient
DE102008015696A1 (en) * 2008-03-26 2009-10-08 Infineon Technologies Ag Arrangement for use as temperature sensor, and for use with reference voltage source, has two logarithmic units, where each logarithmic unit has input and output, and voltage source is connected with input with terminal
DE102008015696B4 (en) * 2008-03-26 2010-04-29 Infineon Technologies Ag Arrangement, use of an arrangement, reference voltage source and method for generating a temperature-linearly proportional voltage value
CN103604516A (en) * 2013-11-06 2014-02-26 苏州贝克微电子有限公司 Temperature sensor
US11022499B2 (en) 2017-04-13 2021-06-01 Fuji Electric Co., Ltd. Temperature detection device and power conversion device
CN112313489A (en) * 2018-06-26 2021-02-02 株式会社自动网络技术研究所 Temperature detection circuit for vehicle
CN112313489B (en) * 2018-06-26 2023-07-25 株式会社自动网络技术研究所 Temperature detection circuit for vehicle

Similar Documents

Publication Publication Date Title
US4475077A (en) Current control circuit
JPH0149963B2 (en)
JP2749925B2 (en) IC temperature sensor
JPH04181130A (en) Temperature detecting circuit
JP2782568B2 (en) Reference voltage generator varying with temperature having constant thermal drift of power supply voltage and linear function
JPH0770935B2 (en) Differential current amplifier circuit
JPH0548352A (en) Integrated circuit generating current depending upon no temperature in proportional to difference between signalvoltage and reference voltage
JPS6155284B2 (en)
JPS63243729A (en) Temperature detection circuit
US3990017A (en) Current amplifier
JP2729071B2 (en) Constant current circuit
JPS62102612A (en) Gain control circuit
JPS5914816Y2 (en) constant current circuit
JPH0232644B2 (en)
JPH0330828B2 (en)
JP2001124632A (en) Temperature sensor circuit
JPH0546096Y2 (en)
JPH05306958A (en) Temperature detection circuit
JPH0332924B2 (en)
JP3087352B2 (en) Non-inverting amplifier
JPS6351496B2 (en)
JPS63258109A (en) Reference current source
JPS6216015Y2 (en)
JPS59119910A (en) Amplifier with level shift circuit
JPS6297363A (en) Reference-voltage generating circuit