JPH04181127A - Distribution-type optical fiber sensor - Google Patents

Distribution-type optical fiber sensor

Info

Publication number
JPH04181127A
JPH04181127A JP2307082A JP30708290A JPH04181127A JP H04181127 A JPH04181127 A JP H04181127A JP 2307082 A JP2307082 A JP 2307082A JP 30708290 A JP30708290 A JP 30708290A JP H04181127 A JPH04181127 A JP H04181127A
Authority
JP
Japan
Prior art keywords
optical fiber
light
temperature
conversion
converters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2307082A
Other languages
Japanese (ja)
Other versions
JP3063037B2 (en
Inventor
Koji Igawa
耕司 井川
Takanori Onishi
孝宣 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2307082A priority Critical patent/JP3063037B2/en
Publication of JPH04181127A publication Critical patent/JPH04181127A/en
Application granted granted Critical
Publication of JP3063037B2 publication Critical patent/JP3063037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To largely shorten measurement time by AD-converting electric signals in parallel by respectively different sampling frequencies and respectively adding them to previous addition results. CONSTITUTION:A high resolution measurement region is specified in advance so that measurement length is approximately 2km or less. Then average data of mega-sampling P/S (MSPS) is used to measure a temperature distribution over an entire length of 10km in a measurement system for slow speed sampling, that is, a preamplifier for AD-conversion 8, an AD preamplifier 9 and an AD- converter 11, added 15 to data of an addition memory 17 and sequentially compensated from a temperature at an incident end. On the other hand, in a high speed sampling measurement system, that is, an AD preamplifier 10 and an AD-converter 12, temperature conversion is performed based on data of 100 MSPS and specified start-stop addresses (a distance from the incident end). At this time a temperature at a start point is known from the temperature data of 10km to compensate an attenuation rate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1つの信号を同時並列的に異なる分解能で測定
可能で、測定時間を大幅に短縮した分布型光ファイバー
センサーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a distributed optical fiber sensor that can measure one signal simultaneously and in parallel with different resolutions and can significantly shorten measurement time.

[従来の技術] 従来の光ファイバーセンサーの一種である分布型光ファ
イバー温度センサーのブロック図を第3図に示す。光源
部の半導体レーザ等のレーザパルサー30から発振した
レーザパルスは、被測定用の光ファイバー32へ入射さ
れ、光ファイバー32中で発生した後方ラマン散乱光が
入射端へ戻ってくる。該後方ラマン散乱光は光方向性結
合器31により測定装置へ導光され、まずフィルター3
3によりラマン散乱光中のストークス光と反ストークス
光が分離検出され、各々光電変換部34.34゛でその
強度に比例した電気信号に変換される。該電気信号は各
々プリアンプ35゜35′により増幅され、AD変換器
36.36’にてディジタル信号に変換される。ディジ
タル化された信号は信号処理部37へ伝送され、加算平
均化処理、ストークス光と反ストークス光の信号の比を
とり温度分布へ換算する等の処理がなされる。
[Prior Art] FIG. 3 shows a block diagram of a distributed optical fiber temperature sensor, which is a type of conventional optical fiber sensor. A laser pulse emitted from a laser pulser 30 such as a semiconductor laser in the light source section is input to an optical fiber 32 to be measured, and backward Raman scattered light generated in the optical fiber 32 returns to the input end. The backward Raman scattered light is guided to the measuring device by a light directional coupler 31, and first passes through a filter 3.
3, the Stokes light and the anti-Stokes light in the Raman scattered light are separately detected, and each is converted into an electric signal proportional to the intensity by the photoelectric conversion section 34, 34'. The electrical signals are each amplified by preamplifiers 35 and 35', and converted into digital signals by AD converters 36 and 36'. The digitized signal is transmitted to the signal processing section 37, where it undergoes processing such as averaging, taking the ratio of the Stokes light and anti-Stokes light signals, and converting it into a temperature distribution.

第3図のAD変換器6又は6゛と信号処理部7は詳細に
は第2図に示すようになっている。
The AD converter 6 or 6' and the signal processing section 7 shown in FIG. 3 are shown in detail in FIG. 2.

1はADプリアンプであり、2はADコンバータ、3は
ADメモリ、4は加算器、5は加算メモリ、6はサンプ
リングクロック信号によってADメモリ3の開始−終了
アドレス等を指定する制御回路である。加算メモリ5に
所定の計測回数分加算されたデータはさらにコンピュー
タ等へ伝送され平均化処理され、反ストークス光信号の
平均化データと比をとることにより温度分布が算出され
る。
1 is an AD preamplifier, 2 is an AD converter, 3 is an AD memory, 4 is an adder, 5 is an addition memory, and 6 is a control circuit that specifies the start and end addresses of the AD memory 3 using a sampling clock signal. The data that has been added to the addition memory 5 for a predetermined number of measurements is further transmitted to a computer or the like, where it is averaged, and the temperature distribution is calculated by taking the ratio with the averaged data of the anti-Stokes optical signal.

従来は、単一の系(1つの電気信号に対して各々1つの
AD変換器、ADメモリ、加算器、加算メモリ)によっ
て計測していた。光ファイバーの長距離化に対してはメ
モリー容量を増やして対応する方法と、全体の物理量分
布計測については低速サンプリングでサンプリング点を
間引き、局所的で急峻な物理量分布については高速サン
プリングを、時分割で切り換える方法の2つの方法が提
案されている。
Conventionally, measurement has been performed using a single system (one AD converter, one AD memory, one adder, and one addition memory for each electrical signal). One method is to increase the memory capacity to cope with longer optical fiber distances, to thin out the sampling points using low-speed sampling to measure the overall physical quantity distribution, and to use high-speed sampling to measure local and steep physical quantity distributions using time-sharing methods. Two switching methods have been proposed.

[発明の解決しようとする問題点] 前記2つの方法の前者の方法の問題点は次の通りである
[Problems to be Solved by the Invention] The problems of the former of the above two methods are as follows.

1、加算平均化処理をするテ゛−タ量が増大する為、演
算時間が増え、実効的な(り返し周期が長(なり計測時
間が長くなる。測定長10km、サンプリング間隔を1
mとすると、データ収録に10000 x 10(ns
ec) = 100 u sec、加算器のサイクルタ
イムを80nsecとすると10000 X 80(n
sec)=800μsec となり、くり返し周期は少
な(とも900μsec必要である。
1. Since the amount of data to be averaged increases, the calculation time increases, and the effective (repetition period) becomes longer (and the measurement time becomes longer.The measurement length is 10 km, and the sampling interval is set to 1.
m, data recording requires 10000 x 10 (ns
ec) = 100 u sec, and if the cycle time of the adder is 80 nsec, then 10000 x 80(n
sec) = 800 μsec, and the repetition period is small (900 μsec is required in both cases).

2、メモリーの利用効率が悪い。2. Memory usage efficiency is poor.

そして、後者の方法の問題点は次のとおりである。The problems with the latter method are as follows.

1、時分割で測定を切り換える為、リアルタイム性に欠
ける。即ち、高分解能測定を行なっている時は、それ以
外の領域については全く見ておらず、急激な温度変化を
見逃す可能性がある。
1. It lacks real-time performance because measurements are switched in a time-division manner. That is, when performing high-resolution measurements, other areas are not observed at all, and there is a possibility that sudden temperature changes may be overlooked.

2、精度の高い測定を行なうには、光ファイバーの減衰
率による補正をする必要があるが、この補正には補正開
始点の正確な温度が必要となる。例えば全長10kmの
うち光源から6kmから7kmの間1kl++を高速サ
ンプリングで高分解能測をするには、6kmのポイント
の正確な温度が必要である。その為、この方法では、最
も新しい低速サンプリングの温度データを用いて補正を
行なっているが、一定時間毎に上記温度データをリフレ
ッシュしても、急激な温度変化があると誤差要因となる
2. In order to perform highly accurate measurements, it is necessary to perform correction based on the attenuation rate of the optical fiber, but this correction requires accurate temperature at the correction starting point. For example, in order to perform high-resolution measurement of 1kl++ between 6km and 7km from the light source out of a total length of 10km by high-speed sampling, accurate temperature at the 6km point is required. Therefore, in this method, correction is performed using the latest temperature data sampled at low speed, but even if the temperature data is refreshed at regular intervals, a sudden temperature change will cause an error.

[問題点を解決するための手1段] 本発明は前述の問題点を解決すべ(なされたものであり
、被測定光ファイバーヘレーザパルスを入射する光源部
と、該被測定光ファイバーからの戻り光を測定装置へ導
光する光方向性結合器と、該戻り光を電気信号へ光電変
換する光電変換部と、その電気信号より該被測定光ファ
イバーの距離に関する物理量分布を算出する信号処理部
とを備えた分布型光ファイバーセンサーにおいて、該信
号処理部は前記電気信号を並列して各々異なるサンプリ
ング周波数でAD変換する複数のAD変換器と、AD変
換された複数種類のディジタル信号を以前の加算結果に
各々加算する該複数のAD変換器に対応した複数の加算
器とを備えたことを特徴とする分布型光ファイバーセン
サーを提供するものである。
[One Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems. an optical directional coupler that guides the returned light to a measuring device, a photoelectric conversion section that photoelectrically converts the returned light into an electrical signal, and a signal processing section that calculates a physical quantity distribution regarding the distance of the optical fiber to be measured from the electrical signal. In the distributed optical fiber sensor, the signal processing unit includes a plurality of AD converters that convert the electric signals in parallel and AD convert them at different sampling frequencies, and converts the AD-converted multiple types of digital signals into previous addition results. The present invention provides a distributed optical fiber sensor characterized by comprising a plurality of adders corresponding to the plurality of AD converters that respectively add.

例えば10kmの温度分布測定に於いて、必ずしも全領
域に渡って最高分解能で測定する必要はない。むしろ高
分解能測定が必要な領域は限られており、しかも光ファ
イバーの付設対象によっては高分解能測定が必要な領域
は予め判っているか、一定期間データ採取の後、ある程
度類推することができる。例えば送電ケーブルの温度監
視に使用する場合はケーブルのジヨイント部等が相当す
る。
For example, in measuring temperature distribution over a distance of 10 km, it is not necessarily necessary to measure at the highest resolution over the entire area. Rather, the area that requires high-resolution measurement is limited, and depending on the target for which the optical fiber is attached, the area that requires high-resolution measurement may be known in advance or can be estimated to some extent after collecting data for a certain period of time. For example, when used to monitor the temperature of a power transmission cable, the joint part of the cable corresponds to this.

上記の点に着目してデータ量及び処理時間を軽減するた
め、前述の2つの方法があったが、前述の様な問題点を
有していた。そこで本発明では全領域を低分解能でサン
プリング及びアベレージングする系と、特定領域を高分
解能で測定する系を並列で動作させ、処理する事によっ
て前記技術のメリットを損なわずに、問題点を解決して
いる。
In order to reduce the amount of data and processing time by focusing on the above points, the two methods described above have been proposed, but these methods have the same problems as described above. Therefore, in the present invention, a system that samples and averages the entire area with low resolution and a system that measures a specific area with high resolution are operated in parallel to solve the problem without sacrificing the merits of the technology. are doing.

また、本発明センサーは、温度分布の他に光ファイバー
の断線、損傷等の欠点、圧力の測定等にも使用すること
ができる。
In addition to temperature distribution, the sensor of the present invention can also be used to measure defects such as optical fiber breakage and damage, pressure, and the like.

[作用] 本発明を利用したシステムは次の様に動作する。先ず、
予め高分解能測定領域を測定長が2km以下となる様に
指定しておく。ただし、高分解能測定領域は二つ以上で
も良い。次に、二種類のサンプリング周波数でAD変換
及びアベレージングが行なわれる。一方の測定系では2
0M S P S (Mega Sampling P
er sec、 )のアベレージデータを用いて全長1
0kmの温度分布を計測する。この時、温度補正は通常
通り入射端の温度より逐次的に行なう。もう一方の測定
系では100M5PSのアベレージングデータと、指定
された開始−終了アドレス(入射端からの距離)を元に
温度換算を行なう。この時、10kmの温度データより
開始点の温度を知り、減衰率補正を行なう。
[Operation] The system using the present invention operates as follows. First of all,
The high-resolution measurement area is specified in advance so that the measurement length is 2 km or less. However, the number of high-resolution measurement areas may be two or more. Next, AD conversion and averaging are performed at two different sampling frequencies. In one measurement system, 2
0M S P S (Mega Sampling P
er sec, ) using the average data of the total length 1
Measure the temperature distribution at 0km. At this time, temperature correction is performed sequentially starting from the temperature at the entrance end as usual. The other measurement system performs temperature conversion based on 100M5PS averaging data and specified start-end addresses (distance from the incident end). At this time, the temperature at the starting point is known from the temperature data for 10 km, and the attenuation rate is corrected.

10kmの温度分布は5mサンプリングであるのでこの
データをそのまま高分解能データの開始点温度とすると
誤差を生じる可能性がある。即ち、開始点が急峻な温度
ピークを有する場合である。この場合は、開始点に最も
近い平坦部を新たな開始点として補正する事により、回
避する事ができる。
Since the temperature distribution over 10 km is based on 5 m sampling, if this data is directly used as the starting point temperature of the high-resolution data, an error may occur. That is, when the starting point has a steep temperature peak. This case can be avoided by correcting the flat part closest to the starting point as a new starting point.

[実施例] 第1図は実施例であり、温度センサーに適用するには反
ストークス光信号用として同様の系がもう1 ah、 
(都合2ch、)必要である。19はストークス光信号
である入力信号、7は入力バッファーアンプ、8は低速
ADコンバータ用ダブリフィルタ9.10はADプリア
ンプ(奇数番号は低速サンプリング用) 、 11.1
2はADDコンバータ11は20M5PS、12は10
0M5PSである。13.14はADメモリであり、2
4のメモリ制御回路によって制御される。メモリ制御回
路は各々のサンプリングクロック(低速、高速)及び測
定領域指定信号23(高速のみ)によって、ライト(w
rite)パルス、リード(read)パルス、アドレ
スをメモリに出力する。22は出力データパスである。
[Example] Figure 1 shows an example, and in order to apply it to a temperature sensor, another similar system for anti-Stokes optical signal is required.
(Convenience 2ch,) Necessary. 19 is an input signal which is a Stokes optical signal, 7 is an input buffer amplifier, 8 is a double filter for low-speed AD converter, 9.10 is an AD preamplifier (odd numbers are for low-speed sampling), 11.1
2 is ADD converter 11 is 20M5PS, 12 is 10
It is 0M5PS. 13.14 is AD memory, 2
It is controlled by the memory control circuit No. 4. The memory control circuit performs write (w) according to each sampling clock (low speed, high speed) and measurement area designation signal 23 (high speed only).
rite pulse, read pulse, and address to the memory. 22 is an output data path.

本実施例ではメモリ容量を2kwとした。この加算サイ
クルを80 n5ecとすると、データ収録に2000
X 50nsec= 1004 sec 、 2000
x 80nsec=160 u see、トータルで2
60 μsecとなる。
In this embodiment, the memory capacity was set to 2 kW. If this addition cycle is 80 n5ec, it will take 2000 to record the data.
X 50nsec=1004sec, 2000
x 80nsec=160 u see, total 2
It will be 60 μsec.

[発明の効果] 本発明は汎用の加算器を用いて計測時間を大幅に短縮す
るという優れた効果を有する。しがも、リアルタイム性
や精度を損ねる事な(、低コストのシステムが構成でき
る。
[Effects of the Invention] The present invention has the excellent effect of significantly shortening the measurement time by using a general-purpose adder. However, a low-cost system can be constructed without compromising real-time performance or accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のブロック図を示し、第2図と
第3図は従来例のブロック図である。 11、12・・・ADコンバータ 13、14・・・ADメモリ 15、16・・・加算器 17、 18・・・加算メモリ 19・・・入力信号 20・・・低速クロック 21・・・高速クロック 22・・・出力データパス 23・・・測定領域指定信号 24・・・メモリ制御回路 #、−1 1 譬
FIG. 1 shows a block diagram of an embodiment of the present invention, and FIGS. 2 and 3 are block diagrams of a conventional example. 11, 12...AD converter 13, 14...AD memory 15, 16...Adder 17, 18...Addition memory 19...Input signal 20...Low speed clock 21...High speed clock 22... Output data path 23... Measurement area designation signal 24... Memory control circuit #, -1 1 Parable

Claims (3)

【特許請求の範囲】[Claims] (1)被測定光ファイバーへレーザパルスを入射する光
源部と、該被測定光ファイバーからの戻り光を測定装置
へ導光する光方向性結合器と、該戻り光を電気信号へ光
電変換する光電変換部と、その電気信号より該被測定光
ファイバーの距離に関する物理量分布を算出する信号処
理部とを備えた分布型光ファイバーセンサーにおいて、
該信号処理部は前記電気信号を並列して各々異なるサン
プリング周波数でAD変換する複数のAD変換器と、A
D変換された複数種類のディジタル信号を以前の加算結
果に各々加算する該複数のAD変換器に対応した複数の
加算器とを備えたことを特徴とする分布型光ファイバー
センサー。
(1) A light source that injects a laser pulse into the optical fiber to be measured, an optical directional coupler that guides the return light from the optical fiber to the measurement device, and a photoelectric conversion that photoelectrically converts the returned light into an electrical signal. and a signal processing unit that calculates a physical quantity distribution regarding the distance of the optical fiber to be measured from the electrical signal,
The signal processing unit includes a plurality of AD converters that perform AD conversion on the electric signals in parallel and each having a different sampling frequency;
A distributed optical fiber sensor comprising: a plurality of adders corresponding to the plurality of AD converters that respectively add a plurality of types of D-converted digital signals to previous addition results.
(2)前記複数のAD変換器は、該被測定光ファイバー
全体を測定するためにある一定のサンプリング周波数で
AD変換する第1のAD変換器と、該被測定光ファイバ
ーの一部を局所的に高分解能に測定するためのより周波
数の高いサンプリング周波数でAD変換する第2のAD
変換器とを有し、該第2のAD変換器の測定領域を指定
する制御回路を有する請求項1の分布型光ファイバーセ
ンサー。
(2) The plurality of AD converters include a first AD converter that performs AD conversion at a certain sampling frequency in order to measure the entire optical fiber under test; A second AD that performs AD conversion at a higher sampling frequency for measuring resolution
2. The distributed optical fiber sensor according to claim 1, further comprising a control circuit for specifying a measurement area of said second AD converter.
(3)前記戻り光は後方ラマン散乱光であり、該後方ラ
マン散乱光中のストークス光と反ス トークス光を分光する分光器を有し、該ス トークス光と反ストークス光を各々光電変換する光電変
換部と、その2つの電気信号の比より該被測定光ファイ
バーの距離に関する温度分布を算出する信号処理部とを
備え、該信号処理部は該ストークス光と反ストークス光
の2つの電気信号それぞれを並列して各々異なるサンプ
リング周波数でAD変換する複数のAD変換器と、AD
変換された複数種類のディジタル信号を以前の加算結果
に各々加算する該複数のAD変換器に対応した複数の 加算器とを備えた請求項1の分布型光ファイバー温度セ
ンサー。
(3) The returned light is backward Raman scattered light, has a spectrometer that separates Stokes light and anti-Stokes light in the backward Raman scattered light, and photoelectric conversion converts each of the Stokes light and anti-Stokes light into electricity. and a signal processing section that calculates the temperature distribution with respect to the distance of the optical fiber to be measured from the ratio of the two electrical signals, and the signal processing section parallelizes each of the two electrical signals of the Stokes light and the anti-Stokes light. a plurality of AD converters each performing AD conversion at a different sampling frequency;
2. The distributed optical fiber temperature sensor according to claim 1, further comprising a plurality of adders corresponding to the plurality of AD converters, each adding a plurality of types of converted digital signals to previous addition results.
JP2307082A 1990-11-15 1990-11-15 Distributed optical fiber sensor Expired - Lifetime JP3063037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2307082A JP3063037B2 (en) 1990-11-15 1990-11-15 Distributed optical fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2307082A JP3063037B2 (en) 1990-11-15 1990-11-15 Distributed optical fiber sensor

Publications (2)

Publication Number Publication Date
JPH04181127A true JPH04181127A (en) 1992-06-29
JP3063037B2 JP3063037B2 (en) 2000-07-12

Family

ID=17964821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2307082A Expired - Lifetime JP3063037B2 (en) 1990-11-15 1990-11-15 Distributed optical fiber sensor

Country Status (1)

Country Link
JP (1) JP3063037B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082028A1 (en) * 2001-03-30 2002-10-17 Otsuka Electronics Co., Ltd. Photon correlator
JP2006329909A (en) * 2005-05-30 2006-12-07 Toyota Motor Corp Pressure distribution sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082028A1 (en) * 2001-03-30 2002-10-17 Otsuka Electronics Co., Ltd. Photon correlator
US6885448B2 (en) 2001-03-30 2005-04-26 Otsuka Electronics Co., Ltd. Photon correlator
JP2006329909A (en) * 2005-05-30 2006-12-07 Toyota Motor Corp Pressure distribution sensor

Also Published As

Publication number Publication date
JP3063037B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US11927491B2 (en) Self-calibration detection device and temperature demodulation method oriented to fiber Raman temperature sensing system
CN102420650B (en) Device and method for inhibiting nonlinear scanning of laser of optical frequency domain reflectometer
CN110375781B (en) Adaptive data acquisition system with variable measurement range in OFDR (offset OFDR)
CN212254401U (en) Equivalent sampling optical fiber distributed temperature measuring device
CN101520509B (en) Method for comparatively measuring range of interframe of chaotic light time domain waveform
JPH04181127A (en) Distribution-type optical fiber sensor
CN110702239B (en) Infinite scattering single photon detection optical time domain reflection measurement method
CN108692830A (en) A kind of temperature-measuring system of distributed fibers
CN111707366B (en) Real-time high-precision delay sensing device based on optical fiber Doppler interference
CN209247197U (en) Temperature-measuring system of distributed fibers
CN208420210U (en) A kind of temperature-measuring system of distributed fibers
CN112697303A (en) Distributed optical fiber sensing system and detection method for smart grid
JP2749927B2 (en) Temperature distribution measurement method
CN112857612B (en) Distributed optical fiber temperature measurement calculation method
JPH07104365B2 (en) Optical sensor device
JP2927061B2 (en) Measurement method of physical quantity distribution using optical fiber
JPS63243732A (en) Method and device for sampling electric signal changing with time
JPH0450624A (en) Signal processing method and distribution-type optical fiber sensor
CN110967120B (en) High-precision laser wavelength measuring instrument based on slope filter
JPH01126522A (en) Optical fiber linear temperature distribution measuring device
JP2009281813A (en) Optical fiber measuring device
JPH0754529B2 (en) Repeated data collection device
US4914288A (en) Optical sensing system with averaging circuit
JP2971164B2 (en) Distributed optical fiber sensor
JP2900081B2 (en) Distributed optical fiber sensor, distributed optical fiber temperature sensor, and signal processing method