JPH04181115A - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JPH04181115A
JPH04181115A JP31101390A JP31101390A JPH04181115A JP H04181115 A JPH04181115 A JP H04181115A JP 31101390 A JP31101390 A JP 31101390A JP 31101390 A JP31101390 A JP 31101390A JP H04181115 A JPH04181115 A JP H04181115A
Authority
JP
Japan
Prior art keywords
output
light
outputs
target object
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31101390A
Other languages
Japanese (ja)
Inventor
Kazuyuki Iizuka
一行 飯塚
Kunio Oi
大井 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idec Corp
Original Assignee
Idec Izumi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec Izumi Corp filed Critical Idec Izumi Corp
Priority to JP31101390A priority Critical patent/JPH04181115A/en
Publication of JPH04181115A publication Critical patent/JPH04181115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To prevent a distance to a target object from being detected improperly previously by calculating two outputs which becomes a constant ratio within a specified distance range and then outputting one of them as a distance- measurement output when a ratio of two outputs matches a constant ratio. CONSTITUTION:Detection signals Va and Vb of light-receiving regions 2a and 2b and detection signals Vb and Vc of light-receiving regions 2b and 2c are added 11 and 12 and are fed to a division circuit 13 for obtaining a distance output Vs. On the other hand, a division circuit 14 divides an output of the addition circuit 11 by the signal Vc and obtains a monitor output Vs'. The outputs Vs and Vs' are determined to show nearly a straight-line relationship with a distance at a specified distance range and the ratio is equal to a contact ration m. The output Vs which is amplified by coefficients r1 and r2 which are in a relationship r1 < m < r2 at amplifiers 15 and 16 is fed to comparators 17 and 18 along with the output Vs' and the output is supplied to a switch SW through an AND gate 19. Then, when a position of a target object 3 is proper, a ratio of the output Vs to the output Vs' is nearly equal to a constant ratio m so that the SW is closed and the output Vs is output. On the other hand, when the object 3 is not located properly, no output Vs is output.

Description

【発明の詳細な説明】 (a)産業上の利用分野 この発明は、対象物体に対して光を投光する投光素子と
、投光素子の投光方向に垂直な方向に投光素子から一定
基線長離れた位置で対象物体における反射光を受光して
受光量に応じて信号を出力する受光素子と、を備えた三
角測距方式の距離測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field This invention relates to a light projecting element that projects light onto a target object, and a light projecting element that emits light from the light projecting element in a direction perpendicular to the light projecting direction of the light projecting element. The present invention relates to a triangular distance measuring device that includes a light receiving element that receives reflected light from a target object at a position separated by a certain baseline length and outputs a signal according to the amount of received light.

(b)従来の技術 三角測距方式によって対象物体などの距離を測定する距
離測定装置では、一般に第3図に示すように投光素子1
の光を投光レンズ4を介して対象物体3に投光し、この
対象物体3における反射光を受光レンズ5を介して受光
素子2によって受光する。投光レンズ4と受光レンズ5
とは投光素子1の投光方向に対して垂直な方向に基線長
しだけ離れて設置されている。この構成において投光レ
ンズ4から対象物体3までの距離が変わると、対象物体
3において反射した光の受光レンズ5に対する入射角が
変わり、受光素子2における受光点(受光範囲の中心)
が変わり、受光素子2は受光点の位置に応じた信号を出
力する。この受光素子2の出力を検出することによって
投光部と対象物体との距離Rを検出するようにしている
(b) Conventional technology In a distance measuring device that measures the distance to a target object using a triangulation method, generally a light emitting element 1 is used as shown in FIG.
The light is projected onto the target object 3 through the light projecting lens 4, and the reflected light from the target object 3 is received by the light receiving element 2 through the light receiving lens 5. Emitter lens 4 and receiver lens 5
and are installed apart from each other by the base line length in a direction perpendicular to the light projection direction of the light projection element 1. In this configuration, when the distance from the light projecting lens 4 to the target object 3 changes, the incident angle of the light reflected from the target object 3 to the light receiving lens 5 changes, and the light receiving point on the light receiving element 2 (the center of the light receiving range)
changes, and the light receiving element 2 outputs a signal according to the position of the light receiving point. By detecting the output of this light receiving element 2, the distance R between the light projecting section and the target object is detected.

(C1発明が解決しようとする課題  −しかしながら
、上記従来の距離測定装置では、第4図に示すように装
置10の内部において距離Rの測定方向に垂直な方向に
長手方向を一致させて受光素子2を備えているため、受
光素子2の受光面においてその長手方向、すなわち、同
図中矢印X方向に対象物体3が移動すると、対象物体3
に充分に光が投光されず、受光素子2における対象物体
3からの反射光の受光範囲が第5図(A)に実線で示す
受光範囲S、から同図中破線で示す受光範囲S2に移動
し、受光素子2における受光点が変位して、対象物体ま
での距MRと受光素子2の測距出力とに誤差を生じる。
(C1 Problem to be Solved by the Invention - However, in the conventional distance measuring device described above, as shown in FIG. 2, when the target object 3 moves in the longitudinal direction of the light-receiving surface of the light-receiving element 2, that is, in the direction of the arrow X in the figure, the target object 3
As a result, the light receiving range of the light receiving element 2 of the reflected light from the target object 3 changes from the light receiving range S shown by the solid line in FIG. As the light receiving element 2 moves, the light receiving point on the light receiving element 2 is displaced, causing an error in the distance MR to the target object and the distance measurement output of the light receiving element 2.

ところが、従来の距離測定装置ではこのような受光状態
の変化を検出できるようにしたものがなく、対象物体3
が受光素子2に対して水平方向に移動した際に距離の誤
検出を生じる問題があった。
However, none of the conventional distance measuring devices is capable of detecting such changes in the light receiving state, and when the target object 3
There is a problem in that when the light-receiving element 2 moves horizontally with respect to the light-receiving element 2, erroneous distance detection occurs.

この発明の目的は、受光素子の受光面において受光素子
の長手方向(基線長方向)に多数の受光領域を構成し、
所定の測距範囲で一定比率となる2出力を、受光領域の
組み合わせを変えることによって演算により求め、得ら
れた2出力の比率が一定比率に一致した際に2出力のう
ちの一方を測距出力として出力することにより、対象物
体が水平方向について適正な位置にあるか否かを判別で
きるようにし、対象物体が適正な位置から変位している
場合には受光素子の検出出力を無効にし、距離の誤検出
を防止できる距離測定装置を提供することにある。
An object of the present invention is to configure a large number of light-receiving regions in the longitudinal direction (baseline length direction) of the light-receiving element on the light-receiving surface of the light-receiving element,
Two outputs that have a constant ratio within a predetermined distance measurement range are calculated by changing the combination of light-receiving areas, and when the ratio of the two outputs obtained matches the constant ratio, one of the two outputs is used for distance measurement. By outputting it as an output, it is possible to determine whether or not the target object is in the correct position in the horizontal direction, and if the target object is displaced from the correct position, the detection output of the light receiving element is disabled, An object of the present invention is to provide a distance measuring device that can prevent erroneous detection of distance.

(d)課題を解決するための手段 この発明の距離測定装置は、対象物体に対して光を投光
する投光素子と、投光素子の投光方向に垂直な方向に投
光素子から一定基線長離れた位置で対象物体における反
射光を受光して受光量に応じた信号を出力する受光素子
と、を備えた三角測距方式の距離測定装置において、 前記受光素子を前記基線長方向に複数の受光領域に分割
し、この受光領域の異なる組み合わせに係る出力であっ
て、所定の測距範囲で一定比率となる2出力を演算する
出力演算手段と、出力演算手段において演算された2出
力の比率が前記一定比率に一致した際に2出力の一方を
測距出力として出力する出力判定手段と、を設けたこと
を特徴とする。
(d) Means for Solving the Problems The distance measuring device of the present invention includes a light projecting element that projects light onto a target object, and a constant direction from the light projecting element in a direction perpendicular to the light projecting direction of the light projecting element. A triangular distance measuring device comprising: a light receiving element that receives reflected light from a target object at a position separated by a baseline length and outputs a signal according to the amount of received light; Output calculating means for calculating two outputs that are divided into a plurality of light receiving areas and that are outputs related to different combinations of the light receiving areas and have a constant ratio in a predetermined distance measurement range, and two outputs calculated by the output calculating means. The present invention is characterized in that an output determining means is provided, which outputs one of the two outputs as a distance measurement output when the ratio of the two outputs matches the fixed ratio.

(91作用 この発明においては、投光素子の光の対象物体における
反射光を受光素子において受光し、対象物体までの距離
を測定する三角測距が行われる。
(91 Action) In this invention, triangulation is performed in which the light reflected from the light emitting element on the target object is received by the light receiving element and the distance to the target object is measured.

受光素子はその長手方向に複数の受光領域に分割されて
おり、この複数の受光領域のうち受光領域の組み合わせ
を変えて2出力が出力演算手段により演算される。この
2出力は所定の測距範囲で一定比率となるように定めら
れている。出力判定手段は出力演算手段において演算さ
れた2出力の比率を求め、この比率が対象物体が適正な
位置にある場合の一定比率に一致した場合にのみ2出力
の一方を測距出力として出力する。従って、対象物体が
適正な位置から水平方向に変位している場合には出力演
算手段において演算された2出力の比が予め定められた
一体比率に一致せず、出力判定手段は測距出力を出力し
ない。このため、対象物体までの実際の距離と受光素子
から出力される測距出力とに誤差を生じることがない。
The light-receiving element is divided into a plurality of light-receiving regions in its longitudinal direction, and two outputs are calculated by the output calculating means by changing the combination of light-receiving regions among the plurality of light-receiving regions. These two outputs are determined to have a constant ratio within a predetermined distance measurement range. The output determination means calculates the ratio of the two outputs calculated by the output calculation means, and outputs one of the two outputs as a distance measurement output only when this ratio matches a certain ratio when the target object is in a proper position. . Therefore, if the target object is displaced from its proper position in the horizontal direction, the ratio of the two outputs calculated by the output calculation means will not match the predetermined integral ratio, and the output determination means will change the distance measurement output. No output. Therefore, no error occurs between the actual distance to the target object and the distance measurement output output from the light receiving element.

(f)実施例 第1図は、この発明の実施例である距離測定装置の回路
構成図を示す図である。
(f) Embodiment FIG. 1 is a diagram showing a circuit configuration diagram of a distance measuring device which is an embodiment of the present invention.

受光素子(多分割フォトダイオード)2において三分割
にされた各受光領域2a〜2Cのそれぞれから、受光光
量に応じた検出信号VaxVcが取り出される。受光領
域2a、2bの検出信号■a、Vbは加算回路11に入
力され、受光領域2b、2cの検出信号Vb、Vcは加
算回路12に入力される。この加算回路11.12の出
力は除算回路13に入力される。また、加算回路11の
出力は受光領域2cの検出信号Vcとともに除算回路1
4に入力される。除算回路13は加算回路11の出力を
加算回路12の出力で除し、測距出力Vsを求める。一
方、除算回路14は加算回路11の出力を受光領域2C
の検出信号Vcで除し、モニタ出力Vs’を求める。除
算回路13において求められた測距出力Vsおよび除算
回路14で求められたモニタ出力Vs’は第2図に示す
ように、所定の測距範囲R0〜R2の範囲において距離
Rと略直線関係を示す。また、同図に示すように所定の
測距範囲R1〜R2において測距出力Vsとモニタ出力
■S′との比が一定比率mになるように除算回路13,
1.4における演算式が実験的に定められている。
A detection signal VaxVc corresponding to the amount of received light is extracted from each of the three light-receiving regions 2a to 2C in the light-receiving element (multi-division photodiode) 2. The detection signals ■a and Vb of the light-receiving areas 2a and 2b are input to an adder circuit 11, and the detection signals Vb and Vc of the light-receiving areas 2b and 2c are input to an adder circuit 12. The outputs of the adder circuits 11 and 12 are input to the divider circuit 13. Further, the output of the adder circuit 11 is sent to the divider circuit 1 along with the detection signal Vc of the light receiving area 2c.
4 is input. The division circuit 13 divides the output of the addition circuit 11 by the output of the addition circuit 12 to obtain the ranging output Vs. On the other hand, the division circuit 14 converts the output of the addition circuit 11 into the light receiving area 2C.
is divided by the detection signal Vc to obtain the monitor output Vs'. As shown in FIG. 2, the distance measurement output Vs obtained in the division circuit 13 and the monitor output Vs' obtained in the division circuit 14 have a substantially linear relationship with the distance R in the predetermined distance measurement range R0 to R2. show. Further, as shown in the figure, the dividing circuit 13,
The calculation formula in 1.4 has been determined experimentally.

測距出力Vsは増幅器15において係数r、を掛は合わ
されてコンパレータ17の反転入力端子に人力されると
ともに、増幅器16において係数r2を掛は合わされて
コンパレータ18の非反転入力端子に入力される。この
係数rI+r2は、r、<m<:r2 の関係にされている。さらに、コンパレータ17の非反
転入力端子およびコンパレータ18の反転入力端子には
除算回路14において求められたモニタ出力Vs’が入
力される。コンパレータ17.18の出力はアンドゲー
ト19に人力され、アンドゲート19の出力はスイッチ
SWに供給される。このスイッチSWは測距出力Vsの
出力経路中に設けられており、アンドゲート19の出力
が“H゛レベルとき出力経路を閉成し、″゛LLパレベ
ルき出力経路を開成する。
The ranging outputs Vs are multiplied by a coefficient r in an amplifier 15 and summed and inputted to an inverting input terminal of a comparator 17, and multiplied by a coefficient r2 in an amplifier 16 and summed and inputted to a non-inverting input terminal of a comparator 18. This coefficient rI+r2 has the relationship r,<m<:r2. Further, the monitor output Vs' obtained in the division circuit 14 is input to the non-inverting input terminal of the comparator 17 and the inverting input terminal of the comparator 18. The outputs of the comparators 17 and 18 are input to the AND gate 19, and the output of the AND gate 19 is supplied to the switch SW. This switch SW is provided in the output path of the ranging output Vs, and closes the output path when the output of the AND gate 19 is at the "H" level, and opens the output path with the "LL" level.

以上の構成により対象物体3が水平方向(第4図のX方
向)について適正な位置にある場合には、対象物体3か
らの反射光は受光素子2において第5図(A)の受光範
囲S、の状態で受光され、受光素子2において検出信号
は第5図(B)に示すように受光点について左右対称の
波形となる。
With the above configuration, when the target object 3 is at an appropriate position in the horizontal direction (X direction in FIG. 4), the reflected light from the target object 3 is transmitted to the light receiving area S of FIG. 5(A) in the light receiving element 2. The light is received in the state of , and the detection signal in the light receiving element 2 has a waveform that is symmetrical about the light receiving point as shown in FIG. 5(B).

このように対象物体3が水平方向について適正な位置に
ある場合には、その距離が変化することによって受光範
囲S、が受光素子2の受光面を長手方向に移動し、受光
素子2の検出信号はこれに伴って左右対称の波形のまま
、そのピーク位置が長手方向に変位する。
In this way, when the target object 3 is at an appropriate position in the horizontal direction, the light-receiving range S moves in the longitudinal direction of the light-receiving surface of the light-receiving element 2 as the distance changes, and the detection signal of the light-receiving element 2 changes. As a result, the peak position is displaced in the longitudinal direction while maintaining a symmetrical waveform.

受光素子2の検出信号が受光点について左右対称である
場合、即ち対象物体3の位置が適正である場合には、除
算回路13において求められた測距出力Vsと除算回路
14において求められたモニタ出力Vs’との比は一定
比率mに略一致する。このため、増幅器15の出力はモ
ニタ出力Vs′より小さく、増幅器16の出力はモニタ
出力■S′より大きくなる。したがって、コンパレータ
17および18の出力は共に“H”になり、アンドゲー
ト19の出力も“H“°レベルになってスイッチSWは
出力経路を閉成する。これによって除算0路13で求め
られた測距出力Vsが出力経路を経て出力される。
When the detection signal of the light-receiving element 2 is symmetrical about the light-receiving point, that is, when the position of the target object 3 is appropriate, the distance measurement output Vs obtained in the division circuit 13 and the monitor obtained in the division circuit 14 The ratio with the output Vs' substantially matches a constant ratio m. Therefore, the output of the amplifier 15 is smaller than the monitor output Vs', and the output of the amplifier 16 is larger than the monitor output S'. Therefore, the outputs of comparators 17 and 18 both become "H", the output of AND gate 19 also becomes "H" level, and switch SW closes the output path. As a result, the distance measurement output Vs obtained by the division zero path 13 is outputted via the output path.

一方、対象物体3が水平方向について適正な位置にない
場合には対象物体3からの反射光は第5図(A)に示す
受光範囲S2のような状態に受光される。このとき、受
光素子2の検出信号が第5図(B)に示す検出信号Vt
のように受光点について非対称になる。このように、受
光素子2の検出信号が非対称波形となる場合、即ち対象
物体3が水平方向について適正な位置にない場合には、
測距出力Vsとモニタ出力Vs’との比は一定比率mに
一致しなくなる。このため、増幅器15の出力がモニタ
出力Vs’を上回ったり、増幅器15の出力がモニタ出
力Vs’を下回ることとなり、コンパレータ17,18
において何れか一方の出力が“L゛になる。これによっ
てアンドゲート19の出力は“L”°レベルとなってス
イッチSWは出力経路を開成し、除算回路13において
求められた測距出力Vsは出力経路から出力されなくな
る。
On the other hand, when the target object 3 is not at an appropriate position in the horizontal direction, the reflected light from the target object 3 is received in a state such as a light receiving range S2 shown in FIG. 5(A). At this time, the detection signal of the light receiving element 2 is the detection signal Vt shown in FIG. 5(B).
The light receiving point is asymmetrical as shown in the figure. In this way, when the detection signal of the light receiving element 2 has an asymmetrical waveform, that is, when the target object 3 is not at an appropriate position in the horizontal direction,
The ratio between the ranging output Vs and the monitor output Vs' no longer matches the constant ratio m. Therefore, the output of the amplifier 15 exceeds the monitor output Vs' or the output of the amplifier 15 becomes lower than the monitor output Vs', and the comparators 17 and 18
, one of the outputs becomes "L". As a result, the output of the AND gate 19 becomes "L" level, the switch SW opens the output path, and the distance measurement output Vs obtained in the divider circuit 13 becomes Output will no longer be output from the output route.

以上の動作により、対象物体3が水平方向について適正
な位置にない場合には、スイッチSWが出力経路を開成
し、受光素子2から測距出力Vsが出力されることがな
い。これによって、例えば受光素子2において反射光第
5図(A)に示す受光範囲S2のように受光された場合
には、その受光点(受光範囲の中心、すなわち検出信号
のピーク位置)は受光領域2a側に変位する。このため
、受光素子2の測距出力Vsは実際の対象物体3までの
距離Rよりも長い距離に対応する値となり、実際の距離
Rとの間に誤差を生じるが、この場合にはスイッチSW
が開成されて、測距出力Vsが出力されないため、距離
の誤検出が未然に防止できる。
As a result of the above operation, when the target object 3 is not at an appropriate position in the horizontal direction, the switch SW opens the output path, and the distance measurement output Vs is not output from the light receiving element 2. As a result, when the light receiving element 2 receives reflected light in the light receiving range S2 shown in FIG. 5(A), the light receiving point (center of the light receiving range, that is, the peak position of the detection signal) Displaced to the 2a side. Therefore, the distance measurement output Vs of the light receiving element 2 becomes a value corresponding to a longer distance than the actual distance R to the target object 3, and an error occurs between it and the actual distance R, but in this case, the switch SW
is opened and the distance measurement output Vs is not output, so that erroneous detection of distance can be prevented.

なお、除算回路13.14における演算式は上記実施例
に示したものに限るものではなく、所定の測距範囲につ
いて一定の比率となる2出力が得られる他の演算式を用
いてもよい。
Note that the arithmetic expressions in the division circuits 13 and 14 are not limited to those shown in the above embodiments, and other arithmetic expressions may be used that provide two outputs having a constant ratio for a predetermined distance measurement range.

また、受光素子2の分割数は3に限るものではない。Further, the number of divisions of the light receiving element 2 is not limited to three.

(稍発明の効果 この発明によれば、受光素子を構成する複数の受光領域
の異なる組み合わせに係る2出力の比率を求め、この比
率が予め定められた一定比率に−1致しなかった場合に
は測距出力を無効にし、測定距離と実際の距離との間に
誤差を住しる状態では距離の測定を行うことができない
ようにし、対象物体までの距離の誤検出を未然に防止で
きる利点がある。
(Slight effect of the invention According to this invention, the ratio of two outputs related to different combinations of a plurality of light-receiving areas constituting a light-receiving element is determined, and if this ratio does not match a predetermined constant ratio by -1, Disabling the distance measurement output prevents distance measurement from occurring when there is an error between the measured distance and the actual distance, which has the advantage of preventing erroneous detection of the distance to the target object. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例である距離測定装置の回路構
成を示す図、第2図は同距離測定装置における2出力と
距j!IRとの関係を示す図である。 また、第3図はこの発明の実施例を含む一般的な距離測
定装置における投光素子、受光素子および対象物体の関
係を示す図、第4図は同一般的な距離測定装置の使用状
態を示す外観図、第5図(A)および(B)は同一般的
な距離測定装置における受光素子のそれぞれ受光状態お
よび検出信号を示す図である。 1−投光素子、 2−受光素子、 3一対象物体、 13.14−除算回路(出力演算手段)、15.16−
増幅器(出力判定手段)、17.18−コンパレータ(
出力判定手段)、19−アンドゲート(出力判定手段)
、SW−スイッチ。
FIG. 1 is a diagram showing the circuit configuration of a distance measuring device according to an embodiment of the present invention, and FIG. 2 shows two outputs and distance j! in the same distance measuring device. It is a figure showing the relationship with IR. Furthermore, FIG. 3 is a diagram showing the relationship between a light emitting element, a light receiving element, and a target object in a general distance measuring device including an embodiment of the present invention, and FIG. 4 is a diagram showing the usage state of the same general distance measuring device. The external view shown in FIGS. 5A and 5B are diagrams showing the light receiving state and detection signal of the light receiving element in the general distance measuring device, respectively. 1-Light emitting element, 2-Light receiving element, 3-Target object, 13.14-Division circuit (output calculation means), 15.16-
Amplifier (output determination means), 17.18-Comparator (
output judgment means), 19-AND gate (output judgment means)
, SW-switch.

Claims (1)

【特許請求の範囲】[Claims] (1)対象物体に対して光を投光する投光素子と、投光
素子の投光方向に垂直な方向に投光素子から一定基線長
離れた位置で対象物体における反射光を受光して受光量
に応じた信号を出力する受光素子と、を備えた三角測距
方式の距離測定装置において、 前記受光素子を前記基線長方向に複数の受光領域に分割
し、この受光領域の異なる組み合わせに係る出力であっ
て、所定の測距範囲で一定比率となる2出力を演算する
出力演算手段と、出力演算手段において演算された2出
力の比率が前記一定比率に一致した際に2出力の一方を
測距出力として出力する出力判定手段と、を設けたこと
を特徴とする距離測定装置。
(1) A light projecting element that projects light onto a target object, and a light projecting element that receives reflected light from the target object at a position a certain baseline length away from the light projecting element in a direction perpendicular to the light projection direction of the light projecting element. A triangular distance measuring device comprising a light receiving element that outputs a signal according to the amount of received light, wherein the light receiving element is divided into a plurality of light receiving areas in the base line length direction, and the light receiving areas are divided into different combinations. Output calculating means for calculating two outputs having a constant ratio in a predetermined ranging range, and one of the two outputs when the ratio of the two outputs calculated by the output calculating means matches the constant ratio. A distance measuring device comprising: output determining means for outputting as a distance measurement output.
JP31101390A 1990-11-15 1990-11-15 Distance measuring device Pending JPH04181115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31101390A JPH04181115A (en) 1990-11-15 1990-11-15 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31101390A JPH04181115A (en) 1990-11-15 1990-11-15 Distance measuring device

Publications (1)

Publication Number Publication Date
JPH04181115A true JPH04181115A (en) 1992-06-29

Family

ID=18012075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31101390A Pending JPH04181115A (en) 1990-11-15 1990-11-15 Distance measuring device

Country Status (1)

Country Link
JP (1) JPH04181115A (en)

Similar Documents

Publication Publication Date Title
US20190369136A1 (en) Measuring device and processing device
JPH08184431A (en) Distance measuring equipment
JPH04181115A (en) Distance measuring device
JP2901748B2 (en) Distance measuring device
JPH0980154A (en) Laser doppler wheel speed measuring apparatus
JPH0412804B2 (en)
JP2816257B2 (en) Non-contact displacement measuring device
JP2901747B2 (en) Distance measuring device
JP2012098094A (en) Triangulation type distance detecting circuit
JPS63108218A (en) Optical displacement measuring instrument
JPH06307816A (en) Non-contact plate width measuring device
JPH08285767A (en) Moisture meter
JPH0778429B2 (en) Ranging device
JP2544789B2 (en) Optical displacement measuring device
JPS623609A (en) Range finder
JPH0618259A (en) Range finder for camera
JPH04307308A (en) Displacement measuring instrument
JPS6312903A (en) Detector for tip position of lead
JPH01170886A (en) Reflection type photoelectric switch
JPS6227689A (en) Photoelectric switch for setting distance
JPH04220586A (en) Method for detecting inclination and position deviation of object to be measured in measurement of speed and length of object to be measured in laser doppler system
JP2000046545A (en) Range finding sensor
JPS6310761B2 (en)
JPH01167608A (en) Distance sensor
JPH04240512A (en) Range-finding type photoelectric sensor