JP2012098094A - Triangulation type distance detecting circuit - Google Patents

Triangulation type distance detecting circuit Download PDF

Info

Publication number
JP2012098094A
JP2012098094A JP2010244732A JP2010244732A JP2012098094A JP 2012098094 A JP2012098094 A JP 2012098094A JP 2010244732 A JP2010244732 A JP 2010244732A JP 2010244732 A JP2010244732 A JP 2010244732A JP 2012098094 A JP2012098094 A JP 2012098094A
Authority
JP
Japan
Prior art keywords
amplifier
signal
distance
detection circuit
side signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010244732A
Other languages
Japanese (ja)
Other versions
JP5150814B2 (en
Inventor
Satotaka Ikeda
学恭 池田
Masanao Shiraishi
雅直 白石
Yohei Iwata
洋平 岩田
Takashi Kondo
崇 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optex Co Ltd
Original Assignee
Optex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optex Co Ltd filed Critical Optex Co Ltd
Priority to JP2010244732A priority Critical patent/JP5150814B2/en
Priority to PCT/JP2011/074759 priority patent/WO2012057246A1/en
Publication of JP2012098094A publication Critical patent/JP2012098094A/en
Application granted granted Critical
Publication of JP5150814B2 publication Critical patent/JP5150814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers

Abstract

PROBLEM TO BE SOLVED: To provide a triangulation type distance detecting circuit that enables, when distances in a broad range, from long to short, are to be measured by triangulation, the accuracy of distance measurement to be enhanced by decreasing susceptibility to fluctuations in characteristics while securing a dynamic range for improving the S/N ratio in a simple configuration using no particularly precise components.SOLUTION: A circuit comprises an optical position sensor that outputs an N-side signal and an F-side signal corresponding to the incident position of a spot beam (one-dimensional PSD 11), a first amplifier that amplifies either the N-side signal or the F-side signal (amplifier 12), a second amplifier that differentially amplifies the N-side signal and the F-side signal (differential amplifier 20), and a distance calculator that calculates a distance on the basis of the outputs of the first amplifier and the second amplifier (CPU 21).

Description

本発明は、自動ドア用センサなどに用いられる、いわゆる三角測距方式の距離検出回路に関し、特に、距離測定精度の向上を図る距離検出回路に関する。   The present invention relates to a so-called triangulation distance detection circuit used for an automatic door sensor and the like, and more particularly, to a distance detection circuit for improving distance measurement accuracy.

距離測定による自動ドア用センサでは、非常に広範囲な距離測定(センサ直近〜3m)が求められており、距離検出精度に至っては数cm程度の精度が必要となる。加えて非常に速い応答速度(100ms以下)が求められている。   In the automatic door sensor based on the distance measurement, a very wide range of distance measurement (closest to 3 m from the sensor) is required, and accuracy of about several centimeters is required for the distance detection accuracy. In addition, a very fast response speed (100 ms or less) is required.

このような自動ドア用センサなどに好適な従来技術としては、PSDなどの光位置センサを用いていわゆる三角測距方式で距離検出を行う技術、例えば、特許文献1に記載の「距離測定センサ」や特許文献2に記載の「測距装置」などが知られている。具体的には、例えば次のような手法があった。   As a conventional technique suitable for such an automatic door sensor, a technique for detecting a distance by a so-called triangulation method using an optical position sensor such as a PSD, for example, a “distance measuring sensor” described in Patent Document 1 And a “ranging device” described in Patent Document 2 is known. Specifically, for example, there has been the following technique.

(A)近距離側および遠距離側それぞれに信号増幅回路を設ける
図5は、近距離側信号(N側信号)および遠距離側信号(F側信号)それぞれに個別の増幅回路を設けた距離検出回路100の主要部の概略構成図である。
(A) Providing signal amplification circuits on each of the short-distance side and the long-distance side FIG. 5 shows distances in which individual amplification circuits are provided for the short-distance side signal (N-side signal) and the long-distance side signal (F-side signal) 2 is a schematic configuration diagram of a main part of a detection circuit 100. FIG.

この図5に示すように、距離検出回路100は、スポット光が入射される受光面(不図示)を有し、この受光面の両側からスポット光入射位置に応じたN側信号およびF側信号がそれぞれ出力される1次元PSD11と、N側信号を増幅する増幅器12(以下では区別が必要なときに「増幅器12N」と記す)と、この増幅器12Nの出力をさらに増幅する増幅器13(以下では区別が必要なときに「増幅器13N」と記す)と、F側信号を増幅する増幅器12(以下では区別が必要なときに「増幅器12F」と記す)と、この増幅器12Fの出力をさらに増幅する増幅器13(以下では区別が必要なときに「増幅器13F」と記す)とを備えている。   As shown in FIG. 5, the distance detection circuit 100 has a light receiving surface (not shown) on which the spot light is incident, and an N-side signal and an F-side signal corresponding to the spot light incident position from both sides of the light receiving surface. Are respectively output, an amplifier 12 that amplifies the N-side signal (hereinafter referred to as “amplifier 12N” when distinction is necessary), and an amplifier 13 that further amplifies the output of this amplifier 12N (hereinafter referred to as “amplifier 12N”). When it is necessary to distinguish, it is referred to as “amplifier 13N”), an amplifier 12 that amplifies the F-side signal (hereinafter referred to as “amplifier 12F” when distinction is necessary), and the output of this amplifier 12F is further amplified. And an amplifier 13 (hereinafter referred to as “amplifier 13F” when distinction is necessary).

増幅器13Nおよび増幅器13Fの各出力は、例えば、CPU(不図示)のA/D入力端子にそれぞれ接続される。これらのA/D入力端子に入力されている信号をCPUがA/D変換によって取り込むとともに、そうして取り込んだデジタル値に基づく演算を行うことによって距離を算出することができる。   Each output of the amplifier 13N and the amplifier 13F is connected to an A / D input terminal of a CPU (not shown), for example. The CPU can capture the signals input to these A / D input terminals by A / D conversion, and can calculate the distance by performing an operation based on the captured digital values.

(B)対数増幅器を用いた信号処理回路を設ける
図6は、対数増幅器(ログアンプ)を用いた信号処理回路を設けた距離検出回路200の主要部の概略構成図である。
(B) Providing a Signal Processing Circuit Using a Logarithmic Amplifier FIG. 6 is a schematic configuration diagram of a main part of a distance detection circuit 200 provided with a signal processing circuit using a logarithmic amplifier (log amplifier).

この図6に示すように、距離検出回路200は、距離検出回路と同様の1次元PSD11と、N側信号およびF側信号を対数差動増幅する対数差動増幅器14と、N側信号およびF側信号の和信号を対数増幅する対数増幅器15と、対数差動増幅器14および対数増幅器15からの各出力信号を処理する信号処理回路16とを備えている。   As shown in FIG. 6, the distance detection circuit 200 includes a one-dimensional PSD 11 similar to the distance detection circuit, a logarithmic differential amplifier 14 that logarithmically amplifies the N-side signal and the F-side signal, and the N-side signal and F A logarithmic amplifier 15 for logarithmically amplifying the sum signal of the side signals, and a signal processing circuit 16 for processing each output signal from the logarithmic differential amplifier 14 and the logarithmic amplifier 15 are provided.

特開2005−140773号公報JP 2005-140773 A 特開昭58−144707号公報JP 58-144707 A

上述したような三角測距による測距用デバイスを用いた距離測定では、N側信号とF側信号のバランスにより測定距離を算出するが、遠距離での距離測定の場合、受光信号量自体が少なくなりやすいため測定距離が安定しにくく、測定距離を安定させるためにはS/N比を確保する必要がある。   In the distance measurement using the distance measuring device by the triangulation as described above, the measurement distance is calculated based on the balance between the N side signal and the F side signal. Since it tends to decrease, the measurement distance is difficult to stabilize. In order to stabilize the measurement distance, it is necessary to ensure the S / N ratio.

反面、受光量が大きく、且つ重心がF側にある場合、N側信号に比べF側信号が大きいため信号が飽和しやすくなる。信号が飽和してしまうと正確な測定距離ができないため、アンプゲイン等の調整で飽和を回避する必要がある。しかし、アンプゲインが小さくなると受光量が減少するため、距離精度を確保しにくくなるという現象に陥る。   On the other hand, when the amount of received light is large and the center of gravity is on the F side, the signal is likely to be saturated because the F side signal is larger than the N side signal. If the signal is saturated, an accurate measurement distance cannot be obtained. Therefore, it is necessary to avoid saturation by adjusting the amplifier gain or the like. However, when the amplifier gain is reduced, the amount of received light is reduced, which leads to a phenomenon that it is difficult to ensure distance accuracy.

上述した(A)のような構成では、N側信号とF側信号の信号増幅回路特性は同一特性であることが望ましく、アンプゲインを調整することで飽和は回避できるようになるが、別系統の増幅回路の特性を同一にすることが難しくなり、ゲイン調整の状態によっては測距デバイスのリニアリティーが保てなくなったり、温度特性等によっても距離精度が変動する恐れがある。両側の信号増幅回路を高精度な部品で構成すれば正確な距離測定が可能になるものの、極めて高価なものとなってしまう。   In the configuration as in (A) described above, it is desirable that the signal amplification circuit characteristics of the N-side signal and the F-side signal are the same, and saturation can be avoided by adjusting the amplifier gain. It is difficult to make the characteristics of the amplifier circuits the same, and depending on the gain adjustment state, the linearity of the distance measuring device cannot be maintained, or the distance accuracy may vary depending on temperature characteristics and the like. If the signal amplifying circuits on both sides are configured with high-precision parts, accurate distance measurement is possible, but it becomes extremely expensive.

また、CPUへの信号取り込み(A/D)に関してN側信号とF側信号のバランスを崩さないように同時に取り込むことが望ましいが、汎用的なCPUでは同時に信号を取り込むことが難しい。   In addition, it is desirable to simultaneously capture the signal (A / D) to the CPU so as not to break the balance of the N-side signal and the F-side signal. However, it is difficult to capture the signal simultaneously with a general-purpose CPU.

信号を同時に取り込めない場合には、さらに次のような解決案も考えられる。   If signals cannot be captured simultaneously, the following solutions can be considered.

(A1)別途サンプルホールド回路等を追加し、N側信号とF側信号についての信号保持を行い、順次取り込む。   (A1) A sample hold circuit or the like is added separately, and the N-side signal and the F-side signal are held and sequentially taken.

(A2)投光動作を2回行うことにより、例えば「1回目はN側信号/2回目はF側信号を処理する」というようにN側信号およびF側信号について別処理を行う。   (A2) By performing the light projection operation twice, separate processing is performed on the N-side signal and the F-side signal, for example, “N-side signal is processed for the first time / F-side signal is processed for the second time”.

しかし、(A1)の場合には、サンプルホールド回路等のコストや、サンプルホールド用の制御信号を追加する必要がある。   However, in the case of (A1), it is necessary to add the cost of the sample and hold circuit and the control signal for sample and hold.

(A2)の場合には、コストや制御信号の追加はなく、N側/F側の処理回路に同一回路を使用することにより回路特性の差異を無くすことは可能である。しかし、2回の投光によりN側信号とF側信号の信号取得タイミングにズレが発生してしまう。時間的なズレが測定距離に及ぼす影響は大きく、場合によっては実際とは全く異なる測定結果となることもあり距離精度を確保することが難しい。(例えば、物体の移動等々で刻々と変化する状況が発生する場合等、N側信号取得時とF側信号取得時で検知対象物の位置が異なると、正確な距離測定は行えない)
また、1距離測定を行うために2周期の時間は必要となるため、検知と判断するまでに2倍の時間が掛かり応答性能も悪くなる。
In the case of (A2), no cost or control signal is added, and it is possible to eliminate the difference in circuit characteristics by using the same circuit for the processing circuit on the N side / F side. However, a deviation occurs in the signal acquisition timing of the N-side signal and the F-side signal due to the two light projections. The influence of the time shift on the measurement distance is large, and in some cases, the measurement result may be completely different from the actual measurement, and it is difficult to ensure the distance accuracy. (For example, when a situation that changes every moment occurs due to movement of an object or the like, if the position of the detection target is different between N-side signal acquisition and F-side signal acquisition, accurate distance measurement cannot be performed.)
In addition, since it takes two cycles to perform one-distance measurement, it takes twice as long to determine detection, resulting in poor response performance.

一方、上述した(B)のような構成では、非常に広いダイナミックレンジを確保できたり、ハードウェアで重心位置換算したデータを処理できたり、演算時間を短縮できたりするなどのメリットがある。   On the other hand, the configuration as described above (B) has advantages such as being able to secure a very wide dynamic range, processing data converted into the center of gravity by hardware, and shortening the calculation time.

しかし、部品や回路のばらつき、環境温度の影響が非常に大きいため、測定距離の安定性や精度を確保することが難しく、実使用には向かないなどの問題点がある。   However, there are problems such as variations in parts and circuits and the influence of environmental temperature, so that it is difficult to ensure the stability and accuracy of the measurement distance and it is not suitable for actual use.

従来技術のこのような課題に鑑み、本発明の目的は、三角測距によって遠距離から近距離までの広範囲な距離測定を行う場合に、特に高精度な部品を使用することなく簡単な構成でS/N比を上げるためのダイナミックレンジを確保しつつ、特性ばらつきの影響も受けにくくして距離測定精度の向上を可能とした三角測距方式の距離検出回路を提供することである。   In view of such problems of the prior art, the object of the present invention is to use a simple configuration without using high-precision parts, particularly when measuring a wide range from a long distance to a short distance by triangulation. It is an object of the present invention to provide a triangulation distance detection circuit that can improve the distance measurement accuracy while ensuring a dynamic range for increasing the S / N ratio and being hardly affected by characteristic variations.

上記目的を達成するため、本発明の三角測距方式の距離検出回路は、スポット光の入射位置に応じた第1信号および第2信号が出力される光位置センサと、前記第1信号または前記第2信号のいずれか一方を増幅する第1増幅器と、前記第1信号および前記第2信号を差動増幅する第2増幅器と、前記第1増幅器および前記第2増幅器の各出力に基づいて距離を算出する距離算出部とを備えることを特徴とする。   In order to achieve the above object, the distance measuring circuit of the triangulation system of the present invention includes an optical position sensor that outputs a first signal and a second signal corresponding to an incident position of a spot light, and the first signal or the A first amplifier that amplifies one of the second signals, a second amplifier that differentially amplifies the first signal and the second signal, and a distance based on outputs of the first amplifier and the second amplifier And a distance calculation unit for calculating.

本発明の三角測距方式の距離検出回路において、前記光位置センサは、スポット光が入射される受光面を有し、この受光面の両側から前記スポット光の入射位置に応じて三角測距における近距離側に対応する前記第1信号および遠距離側に対応する前記第2信号をそれぞれ出力し、前記第1増幅器は、増幅される信号が入力される入力端子を有し、この入力端子に入力される前記第1信号または前記第2信号のいずれか一方を増幅し、前記第2増幅器は、差動増幅される信号がそれぞれ入力される反転入力端子および非反転入力端子を有し、これらの一方に入力される前記第1信号および他方に入力される前記第2信号を差動増幅することを特徴としてもよい。   In the distance measuring circuit of the triangulation system according to the present invention, the optical position sensor has a light receiving surface on which the spot light is incident, and in the triangulation according to the incident position of the spot light from both sides of the light receiving surface. The first signal corresponding to the short distance side and the second signal corresponding to the long distance side are respectively output, and the first amplifier has an input terminal to which the signal to be amplified is input. Amplifying either the first signal or the second signal that is input, and the second amplifier has an inverting input terminal and a non-inverting input terminal to which signals to be differentially amplified are respectively input. The first signal input to one of the first and the second signal input to the other may be differentially amplified.

ここで、前記第1増幅器の前記入力端子には前記第1信号が入力されるようになっていてもよい。あるいは、前記第1増幅器の前記入力端子には前記第2信号が入力されるようになっていてもよい。前記光位置センサとしては、例えば、1次元PSDが挙げられるが、これに限られるわけではない。   Here, the first signal may be input to the input terminal of the first amplifier. Alternatively, the second signal may be input to the input terminal of the first amplifier. Examples of the optical position sensor include, but are not limited to, a one-dimensional PSD.

このような構成の三角測距方式の距離検出回路によれば、特に高精度な部品を使用することなく簡単な構成でS/N比を上げるためのダイナミックレンジを確保しつつ、特性ばらつきの影響も受けにくくできるので、距離測定精度の向上が可能となる。   According to the distance detection circuit of the triangulation system having such a configuration, the influence of characteristic variation is ensured while ensuring a dynamic range for increasing the S / N ratio with a simple configuration without using particularly high-precision components. Therefore, the distance measurement accuracy can be improved.

本発明の三角測距方式の距離検出回路によれば、特に高精度な部品を使用することなく簡単な構成でS/N比を上げるためのダイナミックレンジを確保しつつ、特性ばらつきの影響も受けにくくできるので、距離測定精度の向上が可能となる。   According to the distance detection circuit of the triangulation system of the present invention, the dynamic range for increasing the S / N ratio can be secured with a simple configuration without using particularly high-precision parts, and also affected by characteristic variations. Since it can be made difficult, the distance measurement accuracy can be improved.

本発明の第1実施形態に係る距離検出回路10の概観構成図である。1 is an overview configuration diagram of a distance detection circuit 10 according to a first embodiment of the present invention. 三角測距方式の距離検出回路において、距離測定対象までの距離と、PSDからスポット光入射位置に応じて出力されるN側信号(近距離側)、F側信号(遠距離側)およびこれらの差動信号との関係を示すグラフである。In the distance detection circuit of the triangulation system, the distance to the object to be measured, the N side signal (short distance side) output from the PSD according to the spot light incident position, the F side signal (far distance side), and these It is a graph which shows the relationship with a differential signal. 従来技術として上述した(A)を高精度部品で構成したものと、第1実施形態の距離検出回路10とをそれぞれによって求めた重心位置で比較するグラフである。It is a graph which compares what comprised (A) mentioned above as a prior art with a high precision component, and the distance detection circuit 10 of 1st Embodiment by the gravity center position calculated | required by each. 本発明の第1実施形態の変形例に係る距離検出回路10Aの概観構成図である。FIG. 7 is an overview configuration diagram of a distance detection circuit 10A according to a modification of the first embodiment of the present invention. 近距離側信号(N側信号)および遠距離側信号(F側信号)それぞれに個別の増幅回路を設けた距離検出回路100の主要部の概略構成図である。It is a schematic block diagram of the principal part of the distance detection circuit 100 which provided the separate amplifier circuit for each of the short distance side signal (N side signal) and the long distance side signal (F side signal). 対数増幅器(ログアンプ)を用いた信号処理回路を設けた距離検出回路200の主要部の概略構成図である。It is a schematic block diagram of the principal part of the distance detection circuit 200 provided with the signal processing circuit using a logarithmic amplifier (log amplifier).

以下、本発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<第1実施形態>
図1は、本発明の第1実施形態に係る距離検出回路10の概観構成図である。
<First Embodiment>
FIG. 1 is an overview configuration diagram of a distance detection circuit 10 according to the first embodiment of the present invention.

この図1に示すように、距離検出回路10は、
スポット光が入射される受光面(不図示)を有し、この受光面の両側からスポット光入射位置に応じたN側信号SN(近距離側)およびF側信号SF(遠距離側)がそれぞれ出力される1次元PSD11と、
増幅される信号が入力される入力端子を有し、この入力端子にN側信号SNが入力される増幅器12(以下では区別が必要なときに「増幅器12N」と記す)と、
この増幅器12Nの出力をさらに増幅する増幅器13(以下では区別が必要なときに「増幅器13N」と記す)と、
差動増幅される信号がそれぞれ入力される反転入力端子および非反転入力端子を有し、これらの一方(図1では反転入力端子)にN側信号SNが入力されるとともに他方(図1では非反転入力端子)にF側信号SFが入力される差動増幅器20と、
この差動増幅器20の出力をさらに増幅する増幅器13(以下では区別が必要なときに「増幅器13D」と記す)と、
少なくとも2系統のA/D入力端子を有し、これらにそれぞれ入力される増幅器13Nおよび増幅器13Dからの各信号をA/D変換するとともに、それらのA/D変換値に基づいて距離を算出する演算を行うCPU21とを備えている。
As shown in FIG. 1, the distance detection circuit 10
It has a light receiving surface (not shown) on which the spot light is incident, and an N side signal SN (short distance side) and an F side signal SF (far distance side) corresponding to the spot light incident position from both sides of the light receiving surface, respectively. One-dimensional PSD 11 to be output;
An amplifier 12 having an input terminal to which a signal to be amplified is input and an N-side signal SN is input to the input terminal (hereinafter referred to as “amplifier 12N” when distinction is necessary);
An amplifier 13 for further amplifying the output of the amplifier 12N (hereinafter referred to as “amplifier 13N” when distinction is necessary);
There are an inverting input terminal and a non-inverting input terminal to which signals to be differentially amplified are input, respectively, and an N-side signal SN is input to one of these (inverted input terminal in FIG. 1) and the other (non-inverted in FIG. 1). A differential amplifier 20 in which an F-side signal SF is input to an inverting input terminal);
An amplifier 13 for further amplifying the output of the differential amplifier 20 (hereinafter referred to as “amplifier 13D” when distinction is necessary);
It has at least two A / D input terminals, and A / D converts each signal from the amplifier 13N and the amplifier 13D respectively input thereto, and calculates a distance based on the A / D conversion values. CPU21 which performs a calculation is provided.

ここで、増幅器12Nおよび差動増幅器20の各アンプゲインは同等でよい。増幅器13Nおよび増幅器13Dについても各アンプゲインは同等でよく、CPU21によるA/D変換によって必要な精度が十分得られるように定めればよい。増幅器13Nおよび増幅器13Dは、増幅器12Nおよび差動増幅器20からの出力信号レベルが十分高ければ省くことも可能であるから、不可欠というわけではない。   Here, the amplifier gains of the amplifier 12N and the differential amplifier 20 may be equal. The amplifier gains of the amplifier 13N and the amplifier 13D may be the same, and may be determined so that necessary accuracy can be sufficiently obtained by the A / D conversion by the CPU 21. The amplifier 13N and the amplifier 13D are not indispensable because they can be omitted if the output signal levels from the amplifier 12N and the differential amplifier 20 are sufficiently high.

図2は、三角測距方式の距離検出回路において、距離測定対象までの距離と、PSDからスポット光入射位置に応じて出力されるN側信号(近距離側)、F側信号(遠距離側)およびこれらの差動信号との関係を示すグラフである。なお、このグラフでは各信号は10bitのA/D変換値(0〜1,023)である。   FIG. 2 shows a distance detection circuit of a triangulation distance measurement system, an N-side signal (short-distance side) and an F-side signal (far-distance side) output from the PSD according to the spot light incident position. And the relationship between these differential signals. In this graph, each signal is a 10-bit A / D conversion value (0 to 1,023).

自動ドア用センサとしては、特におおよそ1.5〜3.0mの距離範囲内でできるだけ高精度の測定ができることが望ましい。その距離範囲内では、図2のグラフにも示すように、N側信号に比べF側信号が大きいため信号が飽和しやすかった。アンプゲインを下げれば飽和を回避できるが、それによって信号レベルが低下すると距離精度を確保しにくくなっていた。しかし、差動信号では上記の距離範囲内で信号が飽和することがないので、そのような問題点は生じない。   As an automatic door sensor, it is desirable that the measurement can be performed with the highest possible accuracy particularly within a distance range of about 1.5 to 3.0 m. Within that distance range, as shown in the graph of FIG. 2, the signal was easily saturated because the F-side signal was larger than the N-side signal. If the amplifier gain is lowered, saturation can be avoided, but if the signal level is lowered thereby, it becomes difficult to ensure distance accuracy. However, such a problem does not occur in the differential signal because the signal does not saturate within the above distance range.

図3は、従来技術として上述した(A)を高精度部品で構成したものと、第1実施形態の距離検出回路10とをそれぞれによって求めた重心位置で比較するグラフである。   FIG. 3 is a graph comparing the above-described conventional technology (A) configured with high-precision parts with the distance detection circuit 10 of the first embodiment at the position of the center of gravity obtained by each.

この図3のグラフに示すように、例えば0.5〜1.0mの範囲では距離検出回路10の測定誤差が大きくなるものの、自動ドア用センサとして特に重要な1.5〜3.0mの距離範囲内では両者はほぼ一致しており、距離検出回路10によっても十分な測定精度が得られていることがわかる。   As shown in the graph of FIG. 3, for example, a distance of 1.5 to 3.0 m, which is particularly important as an automatic door sensor, although the measurement error of the distance detection circuit 10 increases in the range of 0.5 to 1.0 m. Within the range, both are almost the same, and it can be seen that sufficient measurement accuracy is obtained even by the distance detection circuit 10.

このような第1実施形態の構成によれば、N側信号SNおよびF側信号SFの差動増幅器20によって、遠距離測定時に大きくなるF側信号SFを後段で用いる必要はなくなる。N側が飽和しない程度までアンプゲインを大きくすることが可能となり、S/N比を改善させることができるので、アンプゲインの切替などを行わずに飽和を回避しつつ必要なS/N比を確保し易くなる。   According to the configuration of the first embodiment as described above, the differential amplifier 20 for the N-side signal SN and the F-side signal SF eliminates the need to use the F-side signal SF that increases at the time of long-distance measurement in the subsequent stage. The amplifier gain can be increased to the extent that the N side does not saturate, and the S / N ratio can be improved, ensuring the necessary S / N ratio while avoiding saturation without switching the amplifier gain. It becomes easy to do.

また、後段処理で必要な情報(N側信号SN−F側信号SF)をハードウェアで得ることができるため、増幅回路の特性や部品ばらつき等の変動要因を低減させることができる。   In addition, since information necessary for the subsequent processing (N-side signal SN-F-side signal SF) can be obtained by hardware, fluctuation factors such as characteristics of the amplifier circuit and component variations can be reduced.

CPU21への信号取り込みに関しては、差動増幅器20の出力は総受光量を求めるために必要な補助的情報となり、後段で必要な情報(N側とF側の差分情報)も含んでいる。よって、N側とF側の受光信号を直接演算で用いる上記の手法(A)と比較しても、取り込み誤差による測定距離への影響は小さくなる。よって、信号取り込みの時間的なズレを多少許容することが可能となってくる。   Regarding the signal capture to the CPU 21, the output of the differential amplifier 20 becomes auxiliary information necessary for obtaining the total amount of received light, and also includes information necessary for the subsequent stage (difference information on the N side and the F side). Therefore, even if compared with the above method (A) in which the N-side and F-side received light signals are used in direct calculation, the influence on the measurement distance due to the acquisition error is small. Therefore, it is possible to allow a slight time shift in signal capture.

そこで、1回の投光で2回のA/D(N側信号SNと差動側信号の取り込み)を行うようにすれば、追加回路を不要としながら応答速度の遅延を回避できるから、上記の(A2)のような問題も解決できる。   Therefore, if the A / D is performed twice with one projection (capture of the N-side signal SN and the differential-side signal), a response speed delay can be avoided while eliminating the need for an additional circuit. The problem like (A2) can be solved.

なお、1回の投光で、1距離情報を得ることができれば応答速度の遅延は回避できる。ただし、1回の投光で2系統の受光信号を取り込む場合は、取り込み誤差による測定距離への影響は避けられない。しかし、上述した通り、差動信号の取り込み誤差については距離に与える影響が比較的小さい。ただし、全ての状態において重心位置への影響が小さいわけではなく、差動信号が大きくなるほど重心位置への影響は大きくなる。特に、スポット位置がかなり近距離側となった場合には影響が大きくなるが、三角測距の原理上、近距離側での分解能は荒くなるため、測定距離とした場合の影響は少ないのである。   In addition, if one distance information can be obtained by one light projection, a response speed delay can be avoided. However, when two received light signals are captured by a single light projection, the influence of the capture error on the measurement distance is inevitable. However, as described above, the differential signal capturing error has a relatively small influence on the distance. However, the influence on the center of gravity position is not small in all states, and the influence on the center of gravity position increases as the differential signal increases. In particular, the effect is greater when the spot position is closer to the short distance side, but due to the principle of triangulation, the resolution on the short distance side is rough, so there is little effect when the measurement distance is used. .

また、この第1実施形態にすることによる部品追加などは必要なく、背景技術として上述した距離検出回路100とほぼ同等のコストで実現することが可能である。   Further, there is no need to add components by adopting the first embodiment, and it can be realized at substantially the same cost as the distance detection circuit 100 described above as the background art.

<第1実施形態の変形例>
図4は、本発明の第1実施形態の変形例に係る距離検出回路10Aの概観構成図である。なお、次に述べる点を除いては第1実施形態と同一であるので、同じ構成部材には同じ参照符号を付すこととし、主として相違点について説明する。
<Modification of First Embodiment>
FIG. 4 is an overview configuration diagram of a distance detection circuit 10A according to a modification of the first embodiment of the present invention. Since the second embodiment is the same as the first embodiment except for the points described below, the same constituent members will be denoted by the same reference numerals, and differences will be mainly described.

この図2に示すように、距離検出回路10Aでは、増幅器12の入力端子にN側信号SNの代わりにF側信号SFが入力される(この増幅器12を以下で区別が必要なときには「増幅器12F」と記す)。   As shown in FIG. 2, in the distance detection circuit 10A, the F-side signal SF is input to the input terminal of the amplifier 12 instead of the N-side signal SN. ").

このような第1実施形態の変形例の構成によっても、第1実施形態と同様の作用効果を奏する。   The configuration of the modified example of the first embodiment also has the same operational effects as the first embodiment.

<その他の実施形態>
本発明は1次元PSDに限らず、例えば、2次元PSDや2フォトダイオード、その他の光位置センサなどにも適用可能である。また、他の測距デバイスにおいても、応答速度の遅延を回避することや、回路ばらつきによる影響を低減させることに応用することが可能である。
<Other embodiments>
The present invention is not limited to a one-dimensional PSD, and can be applied to, for example, a two-dimensional PSD, a two photodiode, and other optical position sensors. Also, other distance measuring devices can be applied to avoid delays in response speed and to reduce the influence of circuit variations.

なお、本発明は、その主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文にはなんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   It should be noted that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-mentioned embodiment is only a mere illustration in all points, and should not be interpreted limitedly. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

10 距離検出回路
10A 距離検出回路
11 1次元PSD
12 増幅器
13 増幅器
14 対数差動増幅器
15 対数増幅器
16 信号処理回路
20 差動増幅器
21 CPU
100 距離検出回路
200 距離検出回路
10 distance detection circuit 10A distance detection circuit 11 one-dimensional PSD
12 amplifier 13 amplifier 14 logarithmic differential amplifier 15 logarithmic amplifier 16 signal processing circuit 20 differential amplifier 21 CPU
100 distance detection circuit 200 distance detection circuit

(A2)の場合には、コストや制御信号の追加はなく、N側/F側の処理回路に同一回路を使用することにより回路特性の差異を無くすことは可能である。しかし、2回の投光によりN側信号とF側信号の信号取得タイミングにズレが発生してしまう。時間的なズレが測定距離に及ぼす影響は大きく、場合によっては実際とは全く異なる測定結果となることもあり距離精度を確保することが難しい。(例えば、物体の移動等々で刻々と変化する状況が発生する場合等、N側信号取得時とF側信号取得時で検知対象物の位置が異なると、正確な距離測定は行えない)
また、1距離測定を行うために2周期の時間は必要となるため、検知と判断するまでに2倍の時間が掛かり応答性能も悪くなる。
In the case of (A2), no cost or control signal is added, and it is possible to eliminate the difference in circuit characteristics by using the same circuit for the processing circuit on the N side / F side. However, a deviation occurs in the signal acquisition timing of the N-side signal and the F-side signal due to the two light projections. The influence of the time shift on the measurement distance is large, and in some cases, the measurement result may be completely different from the actual measurement, and it is difficult to ensure the distance accuracy. (For example, when a situation that changes every moment occurs due to movement of an object or the like, if the position of the detection target is different between when the N-side signal is acquired and when the F-side signal is acquired, accurate distance measurement cannot be performed) .
In addition, since it takes two cycles to perform one-distance measurement, it takes twice as long to determine detection, resulting in poor response performance.

上記目的を達成するため、本発明の自動開閉装置における人体や物体の検出器に用いられる三角測距方式の距離検出回路は、スポット光の入射位置に応じた第1信号および第2信号が出力される光位置センサと、前記第1信号または前記第2信号のいずれか一方を増幅する第1増幅器と、前記第1信号および前記第2信号を差動増幅する第2増幅器と、前記第1増幅器および前記第2増幅器の各出力に基づいて距離を算出する距離算出部とを備えることを特徴とする。 In order to achieve the above object, the distance detection circuit of the triangulation system used for the human body or object detector in the automatic opening / closing apparatus of the present invention outputs the first signal and the second signal corresponding to the incident position of the spot light. An optical position sensor, a first amplifier that amplifies either the first signal or the second signal, a second amplifier that differentially amplifies the first signal and the second signal, and the first And a distance calculating unit that calculates a distance based on outputs of the amplifier and the second amplifier.

ここで、前記第1増幅器の前記入力端子には前記第1信号が入力されるようになっていてもよい。あるいは、前記第1増幅器の前記入力端子には前記第2信号が入力されるようになっていてもよい。前記光位置センサとしては、例えば、1次元PSDが挙げられるが、これに限られるわけではない。前記検出器としては、例えば自動ドア用センサが挙げられるが、これに限られるわけではない。 Here, the first signal may be input to the input terminal of the first amplifier. Alternatively, the second signal may be input to the input terminal of the first amplifier. Examples of the optical position sensor include, but are not limited to, a one-dimensional PSD. Examples of the detector include, but are not limited to, an automatic door sensor.

この図1に示すように、距離検出回路10は、スポット光が入射される受光面(不図示)を有し、この受光面の両側からスポット光入射位置に応じたN側信号SN(近距離側)およびF側信号SF(遠距離側)がそれぞれ出力される1次元PSD11と、増幅される信号が入力される入力端子を有し、この入力端子にN側信号SNが入力される増幅器12(以下では区別が必要なときに「増幅器12N」と記す)と、この増幅器12Nの出力をさらに増幅する増幅器13(以下では区別が必要なときに「増幅器13N」と記す)と、差動増幅される信号がそれぞれ入力される反転入力端子および非反転入力端子を有し、これらの一方(図1では反転入力端子)にN側信号SNが入力されるとともに他方(図1では非反転入力端子)にF側信号SFが入力される差動増幅器20と、この差動増幅器20の出力をさらに増幅する増幅器13(以下では区別が必要なときに「増幅器13D」と記す)と、少なくとも2系統のA/D入力端子を有し、これらにそれぞれ入力される増幅器13Nおよび増幅器13Dからの各信号をA/D変換するとともに、それらのA/D変換値に基づいて距離を算出する演算を行うCPU21とを備えている。
As shown in FIG. 1, the distance detection circuit 10 has a light receiving surface which spot light is incident (not shown), N-side signal SN (near corresponding from both sides of the light receiving surface in a spot light incidence position 1 dimensional and PSD11 the length side) and the F-side signal SF (far side) are output, having an input terminal to which a signal to be amplified is input, N side signal SN is inputted to the input terminal an amplifier 12 (hereinafter referred to as "amplifier 12N" when distinction is required), an amplifier 13 which further amplifies the output of this amplifier 12N (hereinafter referred to as "amplifier 13N" when distinction is necessary in) having an inverting input terminal and non-inverting input terminal signal differential amplifier are input, these one other with N-side signal SN to the (inverting input terminal in Fig. 1) is inputted (in FIG. 1 non F side signal to inverting input terminal) A differential amplifier 20 which F is input, an amplifier 13 for outputting a further amplification of this differential amplifier 20 (hereinafter referred to as "amplifier 13D" when distinction is necessary), even without least two systems A A CPU 21 having a / D input terminal and A / D converting each signal from the amplifier 13N and the amplifier 13D respectively input thereto, and calculating a distance based on the A / D conversion value; It has.

Claims (5)

三角測距方式の距離検出回路であって、
スポット光の入射位置に応じた第1信号および第2信号が出力される光位置センサと、
前記第1信号または前記第2信号のいずれか一方を増幅する第1増幅器と、
前記第1信号および前記第2信号を差動増幅する第2増幅器と、
前記第1増幅器および前記第2増幅器の各出力に基づいて距離を算出する距離算出部とを備えることを特徴とする距離検出回路。
A distance detection circuit using a triangulation method,
An optical position sensor that outputs a first signal and a second signal according to the incident position of the spot light;
A first amplifier for amplifying either the first signal or the second signal;
A second amplifier for differentially amplifying the first signal and the second signal;
A distance detection circuit comprising: a distance calculation unit that calculates a distance based on outputs of the first amplifier and the second amplifier.
請求項1に記載の距離検出回路において、
前記光位置センサは、スポット光が入射される受光面を有し、この受光面の両側から前記スポット光の入射位置に応じて三角測距における近距離側に対応する前記第1信号および遠距離側に対応する前記第2信号をそれぞれ出力し、
前記第1増幅器は、増幅される信号が入力される入力端子を有し、この入力端子に入力される前記第1信号または前記第2信号のいずれか一方を増幅し、
前記第2増幅器は、差動増幅される信号がそれぞれ入力される反転入力端子および非反転入力端子を有し、これらの一方に入力される前記第1信号および他方に入力される前記第2信号を差動増幅することを特徴とする距離検出回路。
The distance detection circuit according to claim 1,
The optical position sensor has a light receiving surface on which spot light is incident, and the first signal and the long distance corresponding to the short distance side in the triangulation according to the incident position of the spot light from both sides of the light receiving surface Output the second signals corresponding to the sides,
The first amplifier has an input terminal to which a signal to be amplified is input, amplifies either the first signal or the second signal input to the input terminal,
The second amplifier has an inverting input terminal and a non-inverting input terminal to which signals to be differentially amplified are input, respectively, and the first signal input to one of them and the second signal input to the other A distance detection circuit characterized by differential amplification.
請求項2に記載の距離検出回路において、
前記第1増幅器の前記入力端子には前記第1信号が入力されることを特徴とする距離検出回路。
The distance detection circuit according to claim 2,
The distance detection circuit, wherein the first signal is input to the input terminal of the first amplifier.
請求項2に記載の距離検出回路において、
前記第1増幅器の前記入力端子には前記第2信号が入力されることを特徴とする距離検出回路。
The distance detection circuit according to claim 2,
The distance detection circuit, wherein the second signal is input to the input terminal of the first amplifier.
請求項1〜4のいずれか1項に記載の距離検出回路において、
前記光位置センサは1次元PSDまたは2フォトダイオードであることを特徴とする距離検出回路。
In the distance detection circuit according to any one of claims 1 to 4,
The distance detection circuit, wherein the optical position sensor is a one-dimensional PSD or a two-photodiode.
JP2010244732A 2010-10-29 2010-10-29 Triangulation distance detection circuit Active JP5150814B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010244732A JP5150814B2 (en) 2010-10-29 2010-10-29 Triangulation distance detection circuit
PCT/JP2011/074759 WO2012057246A1 (en) 2010-10-29 2011-10-27 Distance detecting circuit of triangulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010244732A JP5150814B2 (en) 2010-10-29 2010-10-29 Triangulation distance detection circuit

Publications (2)

Publication Number Publication Date
JP2012098094A true JP2012098094A (en) 2012-05-24
JP5150814B2 JP5150814B2 (en) 2013-02-27

Family

ID=45993950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010244732A Active JP5150814B2 (en) 2010-10-29 2010-10-29 Triangulation distance detection circuit

Country Status (2)

Country Link
JP (1) JP5150814B2 (en)
WO (1) WO2012057246A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2876519C (en) * 2012-06-15 2020-09-15 Commonwealth Scientific And Industrial Research Organisation Production of long chain polyunsaturated fatty acids in plant cells
WO2018056059A1 (en) * 2016-09-26 2018-03-29 株式会社村田製作所 Piezoelectric power generation device, piezoelectric power generation module, and transmitter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254405A (en) * 1995-03-15 1996-10-01 Omron Corp Optical displacement sensor
JP2003014417A (en) * 2001-06-28 2003-01-15 Omron Corp Optical displacement sensor
JP2006220480A (en) * 2005-02-09 2006-08-24 Sharp Corp Optical semiconductor device and distance measurement sensor
JP2006226854A (en) * 2005-02-18 2006-08-31 Keyence Corp Distance setting type photoelectric sensor
JP2007040720A (en) * 2005-07-29 2007-02-15 Sunx Ltd Photoelectric sensor
JP2010243274A (en) * 2009-04-03 2010-10-28 Hitachi High-Technologies Corp Optical system for detecting abrasion wear of trolley wire, and device for measuring abrasion wear of trolley wire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254405A (en) * 1995-03-15 1996-10-01 Omron Corp Optical displacement sensor
JP2003014417A (en) * 2001-06-28 2003-01-15 Omron Corp Optical displacement sensor
JP2006220480A (en) * 2005-02-09 2006-08-24 Sharp Corp Optical semiconductor device and distance measurement sensor
JP2006226854A (en) * 2005-02-18 2006-08-31 Keyence Corp Distance setting type photoelectric sensor
JP2007040720A (en) * 2005-07-29 2007-02-15 Sunx Ltd Photoelectric sensor
JP2010243274A (en) * 2009-04-03 2010-10-28 Hitachi High-Technologies Corp Optical system for detecting abrasion wear of trolley wire, and device for measuring abrasion wear of trolley wire

Also Published As

Publication number Publication date
WO2012057246A1 (en) 2012-05-03
JP5150814B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
KR102030457B1 (en) An Apparatus And Method For Compensating Time Variation For Distance Detection Sensor
KR20180130381A (en) Lidar system
JP5150814B2 (en) Triangulation distance detection circuit
JP2013156143A (en) Optical measurement apparatus and optical measurement method
JPWO2009031528A1 (en) Signal detection device
US9638911B2 (en) Autofocus mechanism
KR101998859B1 (en) Device and method for controlling detection signal of lidar
Noh Optimization-based calibration process for position-sensitive detector systems
JP2014174069A (en) Laser range finding device
JP2013061233A (en) Optical displacement measuring device
CN107356319B (en) A kind of dual-polarization state optical fiber vibration sensing Time-Domain Detection Method
RU2421740C2 (en) Method of determining frequency of radio signals in acousto-optic receiver-frequency metre in linear operation mode of photodetector
JPS6227688A (en) Photoelectric switch for setting distance
JPS6217165B2 (en)
US10840390B2 (en) Locating and detecting device comprising a plurality of photodiodes
JP2008203094A (en) Optical fiber temperature sensor, and method of measuring temperature using the same
JP2018044838A (en) Distance measuring device
JP3127010B2 (en) Distance measuring device
JP2888219B2 (en) Optical position detector
KR950005035Y1 (en) Distance counting apparauts for auto focus camera
KR101178133B1 (en) Device and method for controlling intensity of signal of lidar
JP2805956B2 (en) Thickness measuring device
JPS60107514A (en) Distance measuring device
CN112558095A (en) Laser ranging method, device and system
KR200360584Y1 (en) Digital measurement system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20181214

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 5150814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250