JPH04180628A - Semiconductor wafer - Google Patents

Semiconductor wafer

Info

Publication number
JPH04180628A
JPH04180628A JP30972390A JP30972390A JPH04180628A JP H04180628 A JPH04180628 A JP H04180628A JP 30972390 A JP30972390 A JP 30972390A JP 30972390 A JP30972390 A JP 30972390A JP H04180628 A JPH04180628 A JP H04180628A
Authority
JP
Japan
Prior art keywords
wafer
silicon wafer
oxygen concentration
initial oxygen
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30972390A
Other languages
Japanese (ja)
Inventor
Kazuyuki Shirata
白田 和行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP30972390A priority Critical patent/JPH04180628A/en
Publication of JPH04180628A publication Critical patent/JPH04180628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To easily control a nondefective layer in the order of mum so as to obtain an ideal IC structure by constituting a semiconductor wafer used for manufacturing ICs by sticking a thin silicon wafer which is low in initial oxygen concentration and has no crystal defect to a thick silicon wafer which is high in density and has very small defects. CONSTITUTION:A thin silicon wafer 2 which is low in initial oxygen concentration and has no crystal defect is stuck to a thick silicon wafer 1 which is high in density and has very small defects 3. It is preferable to set the initial oxygen concentration of the wafer 2 at <=14X10<17>/cm<3> and the wafer 1 can be prepared by heating a wafer having an initial oxygen concentration of, for example, 17X10<17>/cm<2> at about 650 deg.C so as to remove the oxygen and produce the very small defects. The wafers 1 and 2 are stuck to each other in such way that the wafer 1 from which an oxide film formed on the surface at the time of the heat treatment for producing the very small defects 3 is removed with buffered hydrofluoric acid and the wafer 2 are put together and heat-treated in an O2/N2 atmosphere after they are washed with a mixed solution of H2O2 and H2SO4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はICの製造に用いられる半導体ウェーハに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to semiconductor wafers used in the manufacture of ICs.

〔従来の技術〕[Conventional technology]

IMDRAMや撮像素子などの超LSIにとって、製造
プロセス中に混入する汚染を防ぐ事が歩留向上に極めて
重要であり、その代表的な一つにシリコンウェーハ中の
酸素析出によってできる微小欠陥層をウェーハ内部に形
成しゲッタリングするイントリンシックゲッタリング(
以下IGという)技術がある。
For ultra-LSIs such as IMDRAMs and image sensors, preventing contamination from entering during the manufacturing process is extremely important to improving yields. Intrinsic gettering that is formed and gettered inside (
There is a technology (hereinafter referred to as IG).

従来このIG能力をウェーハに持たせる為、C2シリコ
ンウェーハを650℃近辺の低温や1000℃以上の高
温などの温度を多段階に組み合せて処理して、酸素の外
方拡散と酸素の析出をうまく制御して、ウェーハ表面に
は無欠陥層(以下02層という)を、内部には微小欠陥
層を持つ構造をウェーハ(以下IGシリコンウェーハと
いう)に形成させていた。そしてこのIGシリコンウェ
ーハを使いICを製造し良品ペレットの収率を向上させ
ていた。
Conventionally, in order to give wafers this IG ability, C2 silicon wafers were treated at multiple temperatures, such as low temperatures around 650°C and high temperatures of over 1000°C, in order to effectively achieve oxygen outward diffusion and oxygen precipitation. By controlling the method, a structure having a defect-free layer (hereinafter referred to as 02 layer) on the wafer surface and a micro-defect layer inside was formed on the wafer (hereinafter referred to as IG silicon wafer). These IG silicon wafers were then used to manufacture ICs and improve the yield of good pellets.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のIGシリコンウェーハでは、第2図に示
すように同一ウェーハ中に熱処理によって全く相反する
性質を持つDZ層10と微小欠陥層11を形成する必要
があった。そのためDZ層10に全く欠陥がないという
ような高い品質を求めれば、ウェーハを初期酸素濃度を
低めにしたリ、低温での酸素析出の為の核形成処理時間
を短くするなどのウェーハ内部の微小欠陥の発生を押え
ゲッタリング力を弱める方向の処置が必要となる。一方
より強いゲッタリング力を求めるとDZ層幅は狭くなり
、DZ層中に微小欠陥3Aが発生し易くなるという欠点
がある。
In the conventional IG silicon wafer described above, as shown in FIG. 2, it was necessary to form a DZ layer 10 and a microdefect layer 11 having completely contradictory properties in the same wafer by heat treatment. Therefore, if you want the DZ layer 10 to be of high quality with absolutely no defects, the initial oxygen concentration of the wafer should be lowered, or the microscopic particles inside the wafer should be reduced, such as by shortening the nucleation treatment time for oxygen precipitation at low temperatures. Measures must be taken to suppress the occurrence of defects and weaken the gettering force. On the other hand, if a stronger gettering force is required, the DZ layer width becomes narrower, which has the disadvantage that micro defects 3A are more likely to occur in the DZ layer.

又シリコンウェーハを切り出すシリコンインゴットもイ
ンゴット毎に初期酸素濃度が異なったり、インゴット内
の位置でも初期酸素濃度や、インゴット引き上げ時の熱
履歴が異なるため、シリコンウェーハ1枚1枚の酸素析
出のし易さ、つまり微小欠陥の出来易さがばらつく事に
なり、IGシリコンウェーハの品質上重要なパラメータ
であるDZ層の幅や微小欠陥密度の均一性に大きな問題
を待っていた。
In addition, the initial oxygen concentration of the silicon ingot from which silicon wafers are cut differs depending on the ingot, and the initial oxygen concentration and thermal history when pulling the ingot differ depending on the position within the ingot, making it easier for oxygen to precipitate from each silicon wafer. In other words, the ease with which micro-defects are formed varies, leading to major problems in the uniformity of the width of the DZ layer and the density of micro-defects, which are important parameters for the quality of IG silicon wafers.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体ウェーハは、表面側に初期酸素濃度を十
分低くして(例えば14 X 10 ”cta−3以下
)、IC製造熱プロセスを経ても酸素析出による欠陥の
発生が生じないような無欠陥の薄いシリコンウェーハを
、裏面には析出処理を施して微小欠陥を充分に発生させ
た厚いシリコンウェーハを貼り合わせて形成される。
The semiconductor wafer of the present invention has a sufficiently low initial oxygen concentration on the surface side (for example, 14 x 10 "cta-3 or less), so that it is defect-free so that no defects will occur due to oxygen precipitation even after the IC manufacturing thermal process. It is formed by bonding a thin silicon wafer with a thick silicon wafer whose back surface has been subjected to a precipitation treatment to sufficiently generate micro defects.

IC素子を形成する表面側の無欠陥のシリコンウェーハ
は裏面側の微小欠陥によるゲッタリング力を強める為1
0μm厚程度にする。裏面側のシリコンウェーハは微小
欠陥を形成するため熱処理による析出処理をするが、処
理後の残留酸素濃度はIC製造熱プロセス中で無欠陥層
へ外方拡散され欠陥が誘起されないように低く(例えば
13×10”Ca1−’以下)なるように析出処理条件
を設定したものを用いる。
The defect-free silicon wafer on the front side where IC elements are formed strengthens the gettering force due to micro defects on the back side1.
The thickness should be approximately 0 μm. The silicon wafer on the back side undergoes precipitation treatment by heat treatment to form micro defects, but the residual oxygen concentration after treatment is diffused outward into the defect-free layer during the IC manufacturing thermal process and is low enough to prevent defects from being induced (e.g. 13×10"Ca1-' or less) is used.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of one embodiment of the present invention.

第1図において半導体ウェーハは、高密度の微小欠陥3
を有する厚いシリコンウェーハl上に初期酸素濃度が低
くかつ結晶欠陥のない薄いシリコンウェーハ2を張り合
わせて形成されている。
In Figure 1, the semiconductor wafer has a high density of micro defects 3.
It is formed by laminating a thin silicon wafer 2 with a low initial oxygen concentration and no crystal defects on a thick silicon wafer 1 having a crystalline structure.

薄いシリコンウェーハ2の初期酸素濃度は14X 10
1フarm−’以下が望ましい、厚いシリコンウェーハ
1としては、高い初期酸素濃度(例えば17X 101
7Cal−’)のシリコンウェーハを650℃程度の温
度で酸素析出を行ったりして微小欠陥を発生させたシリ
コンウェーハを用いる。
The initial oxygen concentration of thin silicon wafer 2 is 14×10
A high initial oxygen concentration (for example, 17×101
A silicon wafer of 7 Cal-') in which minute defects are generated by performing oxygen precipitation at a temperature of about 650° C. is used.

厚いシリコンウェーハ1と薄いシリコンウェーハ2との
張り合わせは、微小欠陥を発生させる熱処理をした後表
面についた酸化膜をバッフアートフッ酸で除去した厚い
シリコンウェーハ1を無欠陥の薄いシリコンウェーハ2
とともにH,o、とH,So、の混合液で洗浄した後重
ね合せて、約100℃の027N2雰囲気中で2時間程
熱処理する事によって行なう、そしてIC素子のソース
、ドレインやウェルの深さに合わせて、薄いシリコンウ
ェーハ2の無欠陥層を所定の厚さに加工する0例えば厚
いシリコンウェーハ1の厚さを580μm、薄いシリコ
ンウェーハの厚さを70μmとして張り合せた場合、薄
いシリコンウェーハ2を約50μm研磨して除去する。
The thick silicon wafer 1 and the thin silicon wafer 2 are bonded together by heat-treating the silicon wafer 1 to generate minute defects, and then removing the oxide film on the surface with buffered hydrofluoric acid.
After cleaning with a mixed solution of H, O, and H, So, they are stacked and heat treated for about 2 hours in an 027N2 atmosphere at about 100°C.The depth of the source, drain, and well of the IC element is For example, if the thickness of the thick silicon wafer 1 is 580 μm and the thickness of the thin silicon wafer is 70 μm and they are bonded together, the thin silicon wafer 2 is removed by polishing it by approximately 50 μm.

上記実施例では厚いシリコンウェーハに微小欠陥を形成
してから張り合せてIG槽構造ウェーハを作ったが、も
ちろんIC素子を形成する側のシリコンウェーハに初期
酸素濃度が極めて低いシリコンウェーハ(例えばMCZ
シリコンウェーハの11 X 101)Cal−’以下
のもの)を使えば、張り合わせてから微小欠陥形成の熱
処理を行いIGシリコンウェーハを作る事もできる。
In the above example, an IG tank structure wafer was made by forming minute defects on thick silicon wafers and bonding them together, but of course, the silicon wafer on the side where IC elements are formed is a silicon wafer with an extremely low initial oxygen concentration (for example, MCZ).
If a silicon wafer (11 x 101) Cal-' or less) is used, an IG silicon wafer can be made by bonding the wafers together and then performing heat treatment to form micro defects.

この実施例では張り合せ前の析出処理による酸化膜や汚
れによる酸化膜除去や洗浄が、張り合せのための熱処理
後に一緒にできる利点がある。
This embodiment has the advantage that removal and cleaning of oxide films caused by precipitation and dirt caused by precipitation treatment before lamination can be performed at the same time after heat treatment for lamination.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、IC素子を形成するDZ
層と汚染をゲッタリングする欠陥層を、全く初期酸素濃
度が異なり、熱処理も変えた別々のシリコンウェーハか
ら構成するため、理想的なIG槽構造シリコンウェーハ
が得られる。更に張り合わせた後に加工することにより
μmオーダーでDZ層の厚さも制御できるため、DZ層
のばらつきが少く、歩留及び品質の向上した半導体装置
−ハが得られる。
As explained above, the present invention provides a DZ for forming an IC element.
Since the layer and the defect layer for gettering contamination are constructed from separate silicon wafers with completely different initial oxygen concentrations and different heat treatments, an ideal IG tank structure silicon wafer can be obtained. Further, by processing after bonding, the thickness of the DZ layer can be controlled on the μm order, so that a semiconductor device-c with improved yield and quality can be obtained with less variation in the DZ layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は従来例の
断面図である。 1・・・厚いシリコンウェーハ、2・・・薄いシリコン
ウェーハ、3・・・微小欠陥、10・・・無欠陥層、1
1・・・微小欠陥層。
FIG. 1 is a sectional view of one embodiment of the present invention, and FIG. 2 is a sectional view of a conventional example. DESCRIPTION OF SYMBOLS 1... Thick silicon wafer, 2... Thin silicon wafer, 3... Micro defect, 10... Defect-free layer, 1
1...Minute defect layer.

Claims (1)

【特許請求の範囲】[Claims]  高密度の微小欠陥を有する厚いシリコンウェーハ上に
初期酸素濃度が低くかつ結晶欠陥のない薄いシリコンウ
ェーハを張り合せたことを特徴とする半導体ウェーハ。
A semiconductor wafer characterized by laminating a thin silicon wafer with a low initial oxygen concentration and no crystal defects on a thick silicon wafer having a high density of micro defects.
JP30972390A 1990-11-15 1990-11-15 Semiconductor wafer Pending JPH04180628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30972390A JPH04180628A (en) 1990-11-15 1990-11-15 Semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30972390A JPH04180628A (en) 1990-11-15 1990-11-15 Semiconductor wafer

Publications (1)

Publication Number Publication Date
JPH04180628A true JPH04180628A (en) 1992-06-26

Family

ID=17996525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30972390A Pending JPH04180628A (en) 1990-11-15 1990-11-15 Semiconductor wafer

Country Status (1)

Country Link
JP (1) JPH04180628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115861A (en) * 1994-10-13 1996-05-07 Mitsubishi Materials Shilicon Corp Lamination semiconductor device and its manufacturing method
WO2006121082A1 (en) * 2005-05-13 2006-11-16 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115861A (en) * 1994-10-13 1996-05-07 Mitsubishi Materials Shilicon Corp Lamination semiconductor device and its manufacturing method
WO2006121082A1 (en) * 2005-05-13 2006-11-16 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
JP2006319173A (en) * 2005-05-13 2006-11-24 Sharp Corp Semiconductor device and its manufacturing method
US7755085B2 (en) 2005-05-13 2010-07-13 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating same

Similar Documents

Publication Publication Date Title
JP5976013B2 (en) Method for reducing metal content in a device layer of an SOI structure, and SOI structure manufactured by such a method
JP2014508405A5 (en)
JPH11150119A (en) Method and device for heat-treating silicon semiconductor substance
TWI553172B (en) Semiconductor wafer composed of silicon and method for producing same
JPS583374B2 (en) Silicon single crystal processing method
JPH09260619A (en) Soi substrate and its manufacture
KR20000006046A (en) Production method for silicon epitaxial wafer
JPS60247935A (en) Manufacture of semiconductor wafer
JP3080501B2 (en) Silicon wafer manufacturing method
JPH04180628A (en) Semiconductor wafer
JPH08250688A (en) Soi substrate and its fabrication method
JP2010003922A (en) Production process of silicon wafer
JP4675542B2 (en) Evaluation method of gettering ability
JP4617751B2 (en) Silicon wafer and manufacturing method thereof
KR100309462B1 (en) A semiconductor wafer and the method thereof
KR100712057B1 (en) Process for producing silicon single crystal layer and silicon single crystal layer
JP4529036B2 (en) Manufacturing method of thin film wafer for semiconductor
JPS63142822A (en) Manufacture of semiconductor device
KR102368657B1 (en) Method for measuring defect of silicon wafer and wafer
JP2004221435A (en) Semiconductor wafer and manufacturing method thereof
JP2652346B2 (en) Manufacturing method of silicon wafer
JP2652344B2 (en) Silicon wafer
JP2002176155A (en) Method for manufacturing laminated soi wafer
JPS63166237A (en) Method of processing semiconductor substrate
JPH0650739B2 (en) Gettering method of semiconductor device