JPH04180544A - Production of high strength steel excellent in delayed fracture resistance and machine parts using the same - Google Patents

Production of high strength steel excellent in delayed fracture resistance and machine parts using the same

Info

Publication number
JPH04180544A
JPH04180544A JP30953090A JP30953090A JPH04180544A JP H04180544 A JPH04180544 A JP H04180544A JP 30953090 A JP30953090 A JP 30953090A JP 30953090 A JP30953090 A JP 30953090A JP H04180544 A JPH04180544 A JP H04180544A
Authority
JP
Japan
Prior art keywords
delayed fracture
less
fracture resistance
strength steel
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30953090A
Other languages
Japanese (ja)
Inventor
Toshimitsu Kimura
利光 木村
Kunio Namiki
並木 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP30953090A priority Critical patent/JPH04180544A/en
Publication of JPH04180544A publication Critical patent/JPH04180544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a high strength steel excellent in corrosion resistance and delayed fracture resistance by specifying a composition consisting of C, Si, Mn, Cr, Mo, V, P, S, and Fe. CONSTITUTION:This steel is a high strength steel having a composition which consists of 0.15-0.40% C, <=0.30% Si, <=0.60% Mn, 2.0-14.0% Cr, 0.5-2.0% Mo, 0.05-1.0% V, and the balance essentially Fe and in which P and S contents are limited to <=0.020% and <=0.010%, respectively, and further, if necessary, <=4.0% Ni, further one or more kinds among <=0.20% Nb, <=0.10% Ti, and <=0.10% Zr, and further <=0.010% B and/or <=0.010% Ca are added and also having superior corrosion resistance and delayed fracture resistance. Moreover, this steel can be used under relatively severe conditions without corrosion preventing treatment. The above high strength steel can be formed into machine parts, in which tensile strength is regulated to <=1200MPa, by means of forming, hardening, and tempering at a temp. between 500 deg.C and the A1 point.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野1 本発明は、耐遅れ破壊性のすぐれた高強度鋼に関する。  この鋼は、耐食性も良好であるから、亜鉛メツキなと
の防食対策をとらなくても、たとえば自動車足廻りのボ
ルトなどに好適に使用できる。 [従来の技術] 自動車そのほかの機械の軽量化の要求にこたえるために
は、部品を高強度で小型なものにしなければならず、締
結用ホルトなども高度化を要する。 ところか、引張強さか1200MPa以上の高強度ボル
トは、耐遅れ破壊性が劣化することが知られている。 
一方、自動車足廻り部品のように使用環境が苛酷なもの
は、防食性を与えるため亜鉛メツキを施したものが多い
が、この亜鉛メツキは、強い腐食環境下ではとくに、高
強度ボルトの耐遅れ破壊性を著しく低下させる。 従っ
て、引張強さ1200MPa以上のボルトに亜鉛メツキ
することは極力避けるべきである。 これまで、この種
の高強度ホルI〜に亜鉛メツキして使用している例は、
はとんど見当らない。 [発明が解決しようとする課題1 本発明の目的は、上記したような、高強度ボルトを代表
的な用途とする高強度鋼において、防食性と耐遅れ破壊
性とを両立させ、亜鉛メツキのような防食処理をしなく
ても錆びにくく、耐遅れ破壊性のすぐれた材料を提供す
ることにある。 本発明の目的には、そのような高強度鋼を使用して機械
部品を製造する方法を提供することも含まれる。 [課題を解決するための手段1 本発明の耐遅れ破壊性のすぐれた高強度鋼は、C:0.
15〜0.40%、Si  :0−30%以下、Mn 
:0.60%以下、Cr :2.O〜14゜0%、Mo
二0.5〜2.0%およびv:0.05〜1.0%を含
有し、P:0.020%以下、S:0.010%以下で
あって、残部が実質上Feからなる合金組成を有する。 上記の合金組成は基本的なものであって、所望によりつ
ぎの成分を、1種、2種または3種、さらに添加してし
よい。 I>Ni  :4゜0%以下 n)Nb :0.20%以下、Ti :0.10%以下
およびZr :0.10%以下の1種または2種以上 I[[)B:0.010%以下およびCa:0.010
%以下の1種または2種 本発明の機械部品の製造方法は、上記した基本組成また
はそれに任意添加成分の−または二を添加した組成の高
強度鋼を機械部品に成形し、焼入れののち、500℃以
上A1点以下の焼もどし温度で焼もどすことによって、
引張強さを1200MPa以上に調質することからなる
[Industrial Field of Application 1] The present invention relates to high-strength steel with excellent delayed fracture resistance. This steel also has good corrosion resistance, so it can be suitably used for bolts for automobile suspensions, for example, without the need for anti-corrosion measures such as galvanizing. [Prior Art] In order to meet the demand for lighter weight automobiles and other machines, parts must be made smaller and have higher strength, and fastening bolts and the like must also be more sophisticated. However, it is known that high-strength bolts with a tensile strength of 1200 MPa or more have deteriorated delayed fracture resistance.
On the other hand, many parts that are used in harsh environments, such as automobile suspension parts, are galvanized to provide anti-corrosion properties. Significantly reduces destructiveness. Therefore, galvanizing bolts with a tensile strength of 1200 MPa or more should be avoided as much as possible. Up until now, examples of this kind of high-strength Hole I ~ being galvanized and used are:
I can hardly find it. [Problem to be Solved by the Invention 1] The purpose of the present invention is to achieve both corrosion resistance and delayed fracture resistance in high-strength steel, which is typically used for high-strength bolts, as described above, and to improve galvanized steel. The object of the present invention is to provide a material that is resistant to rust even without such anti-corrosion treatment and has excellent delayed fracture resistance. Objects of the invention also include providing a method for manufacturing mechanical parts using such high strength steel. [Means for Solving the Problems 1] The high-strength steel with excellent delayed fracture resistance of the present invention has a C:0.
15-0.40%, Si: 0-30% or less, Mn
: 0.60% or less, Cr: 2. O~14゜0%, Mo
2. Contains 0.5-2.0% and V: 0.05-1.0%, P: 0.020% or less, S: 0.010% or less, and the remainder substantially consists of Fe. It has an alloy composition. The above alloy composition is basic, and one, two or three of the following components may be added as desired. I>Ni: 4°0% or less n) One or more of Nb: 0.20% or less, Ti: 0.10% or less, and Zr: 0.10% or more I[[)B: 0.010 % or less and Ca: 0.010
% or less Type 1 or Type 2 The method for manufacturing mechanical parts of the present invention is to form high-strength steel having the above-mentioned basic composition or a composition in which one or two optional additives are added into a mechanical part, and after quenching, By tempering at a tempering temperature of 500℃ or higher and lower than A1 point,
It consists of refining the tensile strength to 1200 MPa or more.

【作 用】[For use]

本発明の高強度鋼の合金組成は、つぎの理由にもとづい
て決定したものである。 C:0.15〜0.40% 強度を確保するために0.15%以上の含有か必須であ
るか、0.40%を超えると焼もとし温度を下げるため
に耐αれ破壊性か劣下して目的に反する。 Si  :0.30%以下 焼入時に表面において粒界酸化を生じさせて耐遅れ破壊
性を損うことと、加工性を低くするため、Si含有量は
低い方かよい。 0゜30%は許容できる限界である。 〜In :0.60%以下 焼入時にPの粒界偏析を助長する結果、耐遅れ破壊性を
悪くする上に、加工性を低くする。 従って、MnもSi同様になるべく少量とし、0.60
%以内の含有に止める。 Cr :2.O〜14.0% 焼入性を高くするとともに、錆の発生を防ぐ。 この効果は2.0%以上の添加で認められ、増量に伴っ
て漸増するが、加工性にとってはマイナスになるし、コ
ストも高くなるので、14.0%を上限とした。 Mo二0.5〜2.0%、 V  :0.05〜1.0% ともに二次硬化を通じて高強度化に寄与するので、上記
下限値以上の量を併用する。 多量に過ぎても効果か飽
和する上に、巨大な一次炭化物か晶出して焼入時まで残
存し、靭性および硬さの低下を招くため、上記の限界を
設けた。 P:0.020%以下、S:0.010%以下ともに好
ましくない不純物であって、焼入時に粒界に偏析して耐
遅れ破壊性を損う。 Sは、MnSの生成により靭性を
低下させる。 これらの観点から許容できる限界を、それぞれ上記のよ
うに定めた。 所望により添加する合金成分のはたらきと組成の限定理
由は、つぎのとおりである。 Ni:4.0%以下 靭性の向上に役立つので、上記限界内で添加するとよい
。 4.0%は、効果が飽和することと、コスト高を招
くことから定めた。 Nb :0.20%以下、Ti  :0.10%以下お
よびZr :0.10%以下の1種または2種以上これ
らの元素は微細な炭窒化物を形成して結晶粒を微細(し
、靭性および耐遅れ破壊性の向上に役立つ。 過大に添
7JOすると、boT性か低下する。 B:0.010%以下およびCa :Q、010%以下
の1種または2種 どちらも熱間加工性を改善するために添加するか、量が
多すぎると逆に熱間加工性か劣化するから、上記の限界
を定めた。 本発明の機械部品の製造方法において、焼入れの温度は
900℃以上、代表的には950′C程度が好ましい。  焼入れを900’Cより低い温度で行なう場合は、焼
もどし温度を下げて強度を調整する必要があるが、焼も
どし温度を500℃以上とするという要件は満足しなけ
ればならない。 焼もどし温度を500℃以上と高めに設定したのは、二
次硬化の確保による高強度化と、粒界析出炭化物の球状
化による耐遅れ破壊性向上のためである。 なお、A1
点を上限としたのは、いうまでもなく、オーステナイト
組織になれば強度を確保てきないからである。 (実施例1 第1表に示す合金組成の鋼を溶製し、圧延して径8Mの
線材に加工した。 線材を焼なましして試験片に加工し、950’CX30
分間→油冷の焼入れをしてから、第2表に示す種々の温
度(440〜650 ’C)で焼もどして、引張強さ1
100〜1500MPaに調質した。 各試験片について、つきの試験を行なった。なお、比較
例のものは、亜鉛メツキを施してから、遅れ破壊試験お
よび腐食試験を行なった。 (引張試験) 縮小JIS4号試験片 (遅れ破壊試験) 曲げ型促進法 試験片は、径6履×長さ40mの丸棒の中央に0.1R
のノツチを設けて径4IIIInまで細くした形状のも
のである。 これに0.1N−HC,l)を滴下しなが
ら曲げ応力を加え、曲げ応力に対する破断時間の関係を
しらへて遅れ破壊曲線をえがく。  (30時間強度)
/(静曲げ応力)を「遅れ破壊強度比」と定義して、そ
の値の大小により耐遅れ破壊性を評価する。 (腐食試験) 条件1(部品組付けまでの環境を想定):調質後、#1
200エメリー紙で表面を研摩し、(比較例はその上に
亜鉛メツキを行なってから)、20℃の5%NaCf1
水溶液中に浸漬して、腐食減量を測定する。 条件2(部品使用時の環境を想定): 調質後、#400エメリー紙で表面を研摩しく比較例は
その上に亜鉛メツキを施し、さらにエメリー研摩を行な
ってメツキに傷をつけ)、40℃の5%NaC,Q水溶
液中ニ浸水溶液中食浸漬を測定する。 腐食試験の評価は、つぎの基準に従った。 ランク   @ 含滅@    評  価A   0.
19’m3−11r[T  使用上(1) 間mはない B  O,1以上1.0未満   使用に適するC  
 1.0以上3.0未満   使用にあまり適しない D   3.0以上10,0未満   使用不可E  
 10.0以上       使用不可以上の試験結果
を、第2表にまとめて示す。 比較例については、亜鉛メツキを施さなかった場合の遅
れ破壊強度比も、必わせで掲げた。 比較例において、亜鉛メツキしたものは、引張強ざを1
200MPaより高く調質した場合、遅れ破壊強度比が
著しく低下していることと、一方で亜鉛メツキに傷をつ
けたものは耐食性に乏しいことが明らかである。 これ
に対し本発明のものは、強度レベル1200〜1500
MPaにわたって、すぐれた耐遅れ破壊強度比を有し、
耐食性も良好である。 [発明の効果1 本発明により、耐遅れ破壊性か改善された高強度鋼、と
くに引張強さ1200MPaまたはそれ以上の強度レベ
ルの鋼が実現した。 この鋼は良好な耐食性を示すから、在来の部品に対して
行なわれていた亜鉛メツキのような防食処理を必要とせ
ずに使用でき、亜鉛メツキに伴い不可避であった耐遅れ
破壊性の低下というジレンマから脱却することができる
。 従って本発明は、例に挙げた自動車層廻りのボルトをは
じめとして、比較的苛酷な条件下に使用される機械部品
の製造に適用したときに、とくにその意義を示す。 特許出願人   大同特殊鋼株式会社 代理人  弁理士  須 賀 総 夫
The alloy composition of the high strength steel of the present invention was determined based on the following reasons. C: 0.15 to 0.40% Is it essential to contain 0.15% or more to ensure strength? If it exceeds 0.40%, is it necessary to reduce the firing temperature to prevent alpha cracking? inferior and defeats the purpose. Si: 0.30% or less Since grain boundary oxidation occurs on the surface during hardening, which impairs delayed fracture resistance and reduces workability, the lower the Si content, the better. 0°30% is an acceptable limit. ~In: 0.60% or less Promotes grain boundary segregation of P during quenching, resulting in poor delayed fracture resistance and lower workability. Therefore, like Si, Mn should be as small as possible, and 0.60
The content should be kept within %. Cr:2. O~14.0% Improves hardenability and prevents rust. This effect is observed when 2.0% or more is added, and increases gradually as the amount is increased, but this has a negative effect on workability and increases cost, so 14.0% is set as the upper limit. Mo2: 0.5 to 2.0% and V: 0.05 to 1.0% both contribute to high strength through secondary hardening, so they are used together in amounts equal to or higher than the above lower limit. The above limit was set because if the amount is too large, the effect will be saturated, and giant primary carbides will crystallize and remain until quenching, resulting in a decrease in toughness and hardness. Both P: 0.020% or less and S: 0.010% or less are undesirable impurities, which segregate at grain boundaries during hardening and impair delayed fracture resistance. S reduces toughness due to the formation of MnS. Permissible limits from these viewpoints were determined as described above. The functions and reasons for limiting the composition of alloy components added as desired are as follows. Ni: 4.0% or less It is useful for improving toughness, so it is best to add within the above limits. The value of 4.0% was determined because the effect would reach saturation and the cost would increase. One or more of the following elements: Nb: 0.20% or less, Ti: 0.10% or less, and Zr: 0.10% or less.These elements form fine carbonitrides to make crystal grains fine ( Helps improve toughness and delayed fracture resistance. Excessive addition of 7JO will reduce boT properties. Both B: 0.010% or less and Ca: Q, 0.010% or less have hot workability. The above-mentioned limits were set because the hot workability deteriorates if the amount is added to improve or if the amount is too large. Typically, a temperature of about 950'C is preferable. If hardening is performed at a temperature lower than 900'C, it is necessary to lower the tempering temperature to adjust the strength, but the requirement that the tempering temperature be 500°C or higher The reason why the tempering temperature is set at a high temperature of 500°C or higher is to increase strength by ensuring secondary hardening and improve delayed fracture resistance by spheroidizing grain boundary precipitated carbides. .In addition, A1
Needless to say, the reason for setting the upper limit at this point is that if the structure becomes austenite, the strength cannot be ensured. (Example 1 Steel having the alloy composition shown in Table 1 was melted, rolled, and processed into a wire rod with a diameter of 8M. The wire rod was annealed and processed into a test piece, and a 950'CX30
After quenching for minutes → oil cooling, tempering at various temperatures (440 to 650'C) shown in Table 2 results in a tensile strength of 1.
It was tempered to 100 to 1500 MPa. A test was conducted on each test piece. In addition, the comparative example was galvanized and then subjected to a delayed fracture test and a corrosion test. (Tensile test) Reduced JIS No. 4 test piece (delayed fracture test) The accelerated bending method test piece is a 0.1R round bar with a diameter of 6 shoes and a length of 40 m.
It has a shape that is narrowed to a diameter of 4IIIn by providing a notch. A bending stress was applied to this while dropping 0.1N-HC, l), and a delayed fracture curve was drawn by examining the relationship between the bending stress and the rupture time. (30 hour strength)
/(static bending stress) is defined as "delayed fracture strength ratio", and delayed fracture resistance is evaluated based on the magnitude of the value. (Corrosion test) Condition 1 (assuming environment up to parts assembly): After tempering, #1
Polish the surface with 200 emery paper (after galvanizing it in the comparative example) and 5% NaCf1 at 20°C.
The corrosion weight loss is measured by immersing it in an aqueous solution. Condition 2 (assuming the environment when parts are used): After tempering, the surface is polished with #400 emery paper. In the comparative example, zinc plating is applied on top of that, and further emery polishing is performed to scratch the plating), 40 Measurement of immersion in 5% NaC,Q aqueous solution at ℃. The evaluation of the corrosion test was based on the following criteria. Rank @ Destruction @ Evaluation A 0.
19'm3-11r [T Usage (1) There is no m between B O, 1 or more and less than 1.0 C suitable for use
1.0 or more and less than 3.0 Not suitable for use D 3.0 or more and less than 10.0 Not usable E
Test results of 10.0 or higher, unusable or higher, are summarized in Table 2. For comparative examples, the delayed fracture strength ratio without galvanizing is also listed. In the comparative example, the galvanized one had a tensile strength of 1
It is clear that when tempered to a higher pressure than 200 MPa, the delayed fracture strength ratio decreases markedly, and on the other hand, those with scratches on the galvanized plating have poor corrosion resistance. In contrast, the present invention has an intensity level of 1200 to 1500.
Has an excellent delayed fracture strength ratio over MPa,
Corrosion resistance is also good. [Effect of the Invention 1] The present invention has realized a high-strength steel with improved delayed fracture resistance, particularly a steel with a tensile strength of 1200 MPa or more. Since this steel exhibits good corrosion resistance, it can be used without the need for anti-corrosion treatments such as galvanizing, which is conventionally applied to parts, and reduces the delayed fracture resistance that is unavoidable with galvanizing. You can escape from this dilemma. Therefore, the present invention shows its significance particularly when applied to the production of mechanical parts used under relatively harsh conditions, including the bolts for the automobile tiers cited as an example. Patent applicant Daido Steel Co., Ltd. Agent Patent attorney Souo Suga

Claims (5)

【特許請求の範囲】[Claims] (1)C:0.15〜0.40%、Si:0.30%以
下、Mn:0.60%以下、Cr:2.0〜14.0%
、Mo:0.5〜2.0%およびV:0.05〜1.0
%を含有し、P:0.020%以下、S:0.010%
以下であつて、残部が実質上Feからなる組成を有する
耐遅れ破壊性のすぐれた高強度鋼。
(1) C: 0.15-0.40%, Si: 0.30% or less, Mn: 0.60% or less, Cr: 2.0-14.0%
, Mo: 0.5-2.0% and V: 0.05-1.0
%, P: 0.020% or less, S: 0.010%
A high-strength steel having excellent delayed fracture resistance and having a composition in which the balance is substantially Fe.
(2)請求項1に記載の成分に加えて、さらにNi:4
.0%以下を添加した組成を有する耐遅れ破壊性のすぐ
れた高強度鋼。
(2) In addition to the components described in claim 1, further Ni:4
.. A high-strength steel with excellent delayed fracture resistance and a composition containing 0% or less of additives.
(3)請求項1または2に記載の成分に加えて、さらに
Nb:0.20%以下、Ti:0.10%以下およびZ
r:0.10%以下の1種または2種以上を添加した組
成を有する耐遅れ破壊性のすぐれた高強度鋼。
(3) In addition to the components according to claim 1 or 2, further Nb: 0.20% or less, Ti: 0.10% or less, and Z
r: High-strength steel with excellent delayed fracture resistance and having a composition containing one or more of 0.10% or less.
(4)請求項1ないし3のいずれかに記載の成分に加え
て、さらにB:0.010%以下およびCa:0.01
0%以下の1種または2種を添加した組成を有する耐遅
れ破壊性のすぐれた高強度鋼。
(4) In addition to the components according to any one of claims 1 to 3, B: 0.010% or less and Ca: 0.01%
A high-strength steel with excellent delayed fracture resistance that has a composition containing 0% or less of one or two types.
(5)請求項1ないし4のいずれかに記載の高強度鋼を
機械部品に成形し、焼入れののち、500℃以上A_1
点以下の焼もどし温度で焼もどすことによって引張強さ
を1200MPa以上に調質することからなる機械部品
の製造方法。
(5) The high-strength steel according to any one of claims 1 to 4 is formed into a mechanical part, and after quenching, the temperature is 500°C or higher A_1
1. A method for manufacturing mechanical parts, which comprises tempering the mechanical parts to a tensile strength of 1200 MPa or higher by tempering at a tempering temperature below 1200 MPa.
JP30953090A 1990-11-15 1990-11-15 Production of high strength steel excellent in delayed fracture resistance and machine parts using the same Pending JPH04180544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30953090A JPH04180544A (en) 1990-11-15 1990-11-15 Production of high strength steel excellent in delayed fracture resistance and machine parts using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30953090A JPH04180544A (en) 1990-11-15 1990-11-15 Production of high strength steel excellent in delayed fracture resistance and machine parts using the same

Publications (1)

Publication Number Publication Date
JPH04180544A true JPH04180544A (en) 1992-06-26

Family

ID=17994125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30953090A Pending JPH04180544A (en) 1990-11-15 1990-11-15 Production of high strength steel excellent in delayed fracture resistance and machine parts using the same

Country Status (1)

Country Link
JP (1) JPH04180544A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657378A (en) * 1992-08-13 1994-03-01 Nkk Corp Steel for high strength bolt excellent in delayed fracture resistance
WO2000049190A1 (en) * 1999-02-18 2000-08-24 Nippon Steel Corporation High-strength, high-toughness stainless steel excellent in resistance to delayed fracture
EP2503016A1 (en) * 2009-11-17 2012-09-26 Villares Metals S/A Steel with high temper resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657378A (en) * 1992-08-13 1994-03-01 Nkk Corp Steel for high strength bolt excellent in delayed fracture resistance
WO2000049190A1 (en) * 1999-02-18 2000-08-24 Nippon Steel Corporation High-strength, high-toughness stainless steel excellent in resistance to delayed fracture
JP2000239803A (en) * 1999-02-18 2000-09-05 Nippon Steel Corp Stainless steel with high strength and high toughness, excellent in delayed fracture resistance
US6679954B1 (en) 1999-02-18 2004-01-20 Nippon Steel Corporation High-strength, high-toughness stainless steel excellent in resistance to delayed fracture
EP2503016A1 (en) * 2009-11-17 2012-09-26 Villares Metals S/A Steel with high temper resistance
EP2503016A4 (en) * 2009-11-17 2013-06-26 Villares Metals Sa Steel with high temper resistance

Similar Documents

Publication Publication Date Title
KR100839726B1 (en) High strength spring steel wire with excellent coiling properties and hydrogen embrittlement resistance
JP5306845B2 (en) Steel for vehicle high strength stabilizer excellent in corrosion resistance and low temperature toughness, its manufacturing method and stabilizer
JP2842579B2 (en) High strength spring steel with excellent fatigue strength
WO2012153831A1 (en) Steel for automotive suspension spring component, automotive suspension spring component, and manufacturing method for same
JP5608145B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
KR20000028786A (en) Steel wire for high-strength springs and method of producing the same
JP2019505689A (en) High strength alloyed galvanized steel sheet and method for producing the same
JPH03188217A (en) Production of high carbon sheet
MX2012007088A (en) Steel for leaf spring with high fatigue strength, and leaf spring component.
KR20210047334A (en) Hot rolled steel sheet and its manufacturing method
AU2016238510B2 (en) Parts with a bainitic structure having high strength properties and manufacturing process
JPH032354A (en) Spring steel excellent in durability and settling resistance
JPH08337843A (en) High carbon hot rolled steel sheet excellent in punching workability and its production
JPH07188852A (en) Steel for nitrided spring excellent in fatigue strength and nitrided spring
JPH04180544A (en) Production of high strength steel excellent in delayed fracture resistance and machine parts using the same
JP2001316767A (en) Hot rolled steel having extremely high elastic limit and mechanical strength and particularly useful for production of automotive parts
US10689736B2 (en) Ultra-high-strength spring steel for valve spring
JP2708279B2 (en) Manufacturing method of high strength spring
JPH05148581A (en) Steel for high strength spring and production thereof
WO2004055226A1 (en) Steel wire for spring
JP4937499B2 (en) High strength spring steel excellent in corrosion resistance and fatigue characteristics and method for producing the same
JPH07157846A (en) Steel for high strength spring
KR101776491B1 (en) High strength spring steel having excellent corrosion resistance
JPS6130653A (en) High strength spring steel
JPH0713269B2 (en) High fatigue strength spring manufacturing method