JPH04179876A - Sealed type compressor - Google Patents

Sealed type compressor

Info

Publication number
JPH04179876A
JPH04179876A JP30987490A JP30987490A JPH04179876A JP H04179876 A JPH04179876 A JP H04179876A JP 30987490 A JP30987490 A JP 30987490A JP 30987490 A JP30987490 A JP 30987490A JP H04179876 A JPH04179876 A JP H04179876A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
sensor
refrigerating machine
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30987490A
Other languages
Japanese (ja)
Inventor
Hiroto Nakama
啓人 中間
Kenji Takaichi
健二 高市
Toshikazu Sakai
寿和 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP30987490A priority Critical patent/JPH04179876A/en
Publication of JPH04179876A publication Critical patent/JPH04179876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)

Abstract

PURPOSE:To prevent coolant lubrication at the time of starting by providing a mechanical part, a motor part, an oil supplying device, and heater in a sealed type caing wherein coolant and refregerator oil are sealed, and also providing a sensor on a lower part of an oil supplying part of the oil supply device for sensing separation of oil and coolant. CONSTITUTION:When a motor 10 of a sealed type compressor is stopped, an insulative resistance between an insulative resistance sensor 16 and the sealed type compressor is measured. When the insulative compresse is a specified value or lower, electric current is supplied to a heater 14 by means of an electric supply control device 15 for heater to heat refregerator oil and coolant. Separation of the refregerator oil and the coolant is prevented by increasing a temperature and coolant lubrication at the starting time of the compressor is avoided. Electric insulativeness is improved because a solution ratio of the coolant into the refregerator oil is decreased and an oil level is lowered.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫、冷凍庫等に用いる密閉型圧縮機に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a hermetic compressor used in refrigerators, freezers, etc.

従来の技術 近年、クロロフルオロカーボン(以下CFCと称する)
の影響によるオゾン層破壊及び地球の温暖化等の環境問
題が注目されている。このような観点よシ、冷媒である
CFCの使用量削減が、極めて重要なテーマとなってき
ている。従来、CFCとして使用されて来た完全ハロゲ
ン化炭素化合物は、少なくとも水素を1個以上含むハロ
ゲン化炭素化合物に代替化が図られつつある。
Prior art In recent years, chlorofluorocarbons (hereinafter referred to as CFCs)
Environmental problems such as ozone layer depletion and global warming due to the effects of environmental pollution are attracting attention. From this perspective, reducing the amount of CFC refrigerant used has become an extremely important theme. The fully halogenated carbon compounds conventionally used as CFCs are being replaced by halogenated carbon compounds containing at least one hydrogen.

さらに具体的には、代表的な冷媒であるジクロロジフル
オロメタン(以下CFC−12と称する)は、CFCの
代替物質であシ、オゾン破壊に対する影響の少ない1.
1.1.2−テトラフルオロエタン(以下RFC−13
4aと称する)等へ代替化を図るため種々の改善取組み
がなされている。
More specifically, dichlorodifluoromethane (hereinafter referred to as CFC-12), a typical refrigerant, is an alternative substance to CFC, and has 1.
1.1.2-tetrafluoroethane (hereinafter referred to as RFC-13
4a), etc., various improvement efforts are being made to replace them.

例えば、1978年10月発行のDuPont社のRe
s@arch DLsclogureの記載によれば、
RFC−134aは従来のどのような油とも相溶性が悪
くて全ての温度域で二層分離を生じ、唯一グリコール系
油にのみ溶解する。しかし、その後の研究によシ特殊な
エステル系油にも溶解することが判ってきた。例えば、
米国特許第4851144号においてエステル系とグリ
コール系の混合した冷凍機油が冷媒RFC−134aに
溶解することが示されている。
For example, DuPont's Re, published in October 1978.
According to the description of s@arch DLsclogure,
RFC-134a has poor compatibility with any conventional oil, causing two-layer separation in all temperature ranges, and is only soluble in glycol-based oils. However, subsequent research has revealed that it is also soluble in special ester oils. for example,
It is shown in US Pat. No. 4,851,144 that a mixed ester-based and glycol-based refrigerating machine oil dissolves in the refrigerant RFC-134a.

しかし、多くのエステル系冷凍機油は、冷媒RFC−1
34aと溶解しにくく二層分離を生じ、臨界溶解温度は
高かった。しかし、これらのエステル系冷凍機油は、臨
界溶解温度が低い特殊なエステル系冷凍機油に比べ、信
頼性、潤滑性が高い。
However, many ester-based refrigeration oils use refrigerant RFC-1
It was difficult to dissolve with 34a, resulting in two-layer separation, and the critical dissolution temperature was high. However, these ester-based refrigeration oils have higher reliability and lubricity than special ester-based refrigeration oils that have a low critical melting temperature.

冷媒と冷凍機油が二層分離が生じた場合には、冷凍機油
は比重が軽いため冷媒の上側に位置する様になる。反対
に冷媒は下側に位置する。
When a two-layer separation occurs between the refrigerant and the refrigerating machine oil, the refrigerating machine oil is located above the refrigerant because of its light specific gravity. On the contrary, the refrigerant is located at the bottom.

又冷媒RFC−134aは水素原子を多数含むので本質
的に電気を流しやすく、密閉型圧縮機に要求される電気
絶縁性が非常に悪い事も判明している。
It has also been found that since the refrigerant RFC-134a contains a large number of hydrogen atoms, it is inherently easy to conduct electricity, and the electrical insulation required for hermetic compressors is extremely poor.

第4図は、従来の密閉型圧縮機の断面図である。FIG. 4 is a sectional view of a conventional hermetic compressor.

第4図において1は機械部であり、シャフト2゜副軸受
3.軸受4.ピストン6、シリンダー6からなる。前記
シャフト2.副軸受3.軸受4.ピストン6、シリンダ
ー6は圧縮室7を形成している。8は給油管であり、9
は冷tIXCFC−12と冷凍機油の混合油であり給油
管8は混合油9を摺動面に供給する。1oはモーター部
である。また11は前記の機械部1やモーター部1oを
収納する金属性の密閉ケーシングである。
In Fig. 4, reference numeral 1 indicates a mechanical part, including a shaft 2°, a secondary bearing 3. Bearing 4. It consists of a piston 6 and a cylinder 6. The shaft 2. Secondary bearing 3. Bearing 4. The piston 6 and cylinder 6 form a compression chamber 7. 8 is a fuel supply pipe; 9
is a mixed oil of cold tIXCFC-12 and refrigerating machine oil, and the oil supply pipe 8 supplies the mixed oil 9 to the sliding surface. 1o is a motor section. Reference numeral 11 denotes a metal sealed casing that houses the mechanical section 1 and motor section 1o.

発明が解決しようとする課題 以上のように構成された密閉型圧縮機において、シャフ
ト2は、モーター部1oの回転力によって回転し、ピス
トン6を動かし、副軸受3.軸受4及びシリンダー6に
よって形成された圧縮室T内の冷媒を圧縮する。圧縮さ
れた冷媒は冷凍シヌテムで冷却を行ない再び圧縮機に戻
ってくる。
Problems to be Solved by the Invention In the hermetic compressor configured as described above, the shaft 2 is rotated by the rotational force of the motor section 1o, moves the piston 6, and moves the sub-bearing 3. The refrigerant in the compression chamber T formed by the bearing 4 and the cylinder 6 is compressed. The compressed refrigerant is cooled by a freezing system and then returned to the compressor.

また、図に示したような小型の圧縮機は、近年省スペー
ス化を目的として横型、すなわち、機械部1と前記機械
部を駆動させるモーター部1oが水平に設置される事が
多くなっている。すなわち冷媒CFC−12と冷凍機油
の混合油9に浸漬される構造となっている。そこで、電
気絶縁性の劣るHFC−134aをこの圧縮機にそのま
ま使用すると冷凍機油と冷媒RFC−134aとが二層
分離を生じる。つtb油は比重が軽いため上側に油層1
2を形成し、反対に冷媒は下側に冷媒層12を形成する
。さらに、冷媒HFC−1s4aは水素原子を多数含む
ので本質的に電気を流しやすく、モーター部1oから電
気を密閉ケーシング11に流す。そのため漏電や感電の
危険性が生じる可能性があった。
Furthermore, in recent years, small compressors such as the one shown in the figure have become more and more horizontal in order to save space, that is, the mechanical part 1 and the motor part 1o that drives the mechanical part are often installed horizontally. . That is, it has a structure in which it is immersed in a mixed oil 9 of refrigerant CFC-12 and refrigerating machine oil. Therefore, if HFC-134a, which has poor electrical insulation properties, is used as is in this compressor, two-layer separation will occur between the refrigerating machine oil and the refrigerant RFC-134a. Since TB oil has a light specific gravity, there is an oil layer on the upper side.
2, and conversely, the refrigerant forms a refrigerant layer 12 on the lower side. Furthermore, since the refrigerant HFC-1s4a contains a large number of hydrogen atoms, it is essentially easy to conduct electricity, and electricity flows from the motor section 1o to the sealed casing 11. Therefore, there was a possibility that there would be a risk of electrical leakage or electric shock.

また、冷媒RFC−134aと冷凍機油とが圧縮機の起
動前において二層分離を生じている場合には、冷凍機油
は上層、冷媒は下層にそれぞれ層を形成しているため、
起動初期においては圧縮機の機械部1は冷媒層13から
冷媒を吸入し、機械部1内においては冷媒潤滑が生じる
。時間が経過するに従い圧縮機内の冷媒と冷凍機油は圧
縮様の温度が上昇すると共にモーター部10の回転によ
シ混合され、徐々に冷媒潤滑は解消される。
In addition, if the refrigerant RFC-134a and the refrigerating machine oil are separated into two layers before starting the compressor, the refrigerating machine oil forms an upper layer and the refrigerant forms a lower layer.
At the initial stage of startup, the mechanical section 1 of the compressor sucks refrigerant from the refrigerant layer 13, and refrigerant lubrication occurs within the mechanical section 1. As time passes, the refrigerant and refrigerating machine oil in the compressor increase in temperature during compression and are mixed by the rotation of the motor section 10, and refrigerant lubrication is gradually eliminated.

冷蔵庫用の圧縮機においては、通常圧縮機は0N−OF
F運転を行っており、特に低外気温時においては、OF
Fの時間が長くなり、又冷凍機油の温度が低いために二
層分離を生じやすくなる。
Compressors for refrigerators are usually 0N-OF.
OF is being operated, especially when the outside temperature is low.
Since the F time is long and the temperature of the refrigerating machine oil is low, two-layer separation is likely to occur.

この時に前記した様に起動がかかると冷媒潤滑が生じ、
これが繰り返されると、ベーンローラー。
At this time, as mentioned above, when startup is applied, refrigerant lubrication occurs,
When this is repeated, the vane roller.

シリンダー等に摩耗が生じる。Wear occurs in cylinders, etc.

従って、本発明は漏電や感電の危険性を生じることを防
止すると共に圧縮機の起動時において、二層分離を解消
し冷媒潤滑を防止を目的とするものである。
Therefore, it is an object of the present invention to prevent the risk of electrical leakage or electric shock, and also to eliminate the two-layer separation and prevent refrigerant lubrication when starting up the compressor.

課題を解決するための手段 上記課順を解決するために本発明の圧縮機は、冷媒と冷
凍機油を封入した密閉ケーシングと、前記密閉ケーシン
グ内に収納された機械部と前記機械部を駆動させるモー
ター部と、前記機械部に冷凍機油を搬送する給油装置と
、前記密閉ケーシングに密着したヒーターと、前記給油
装置の給油部の下方に設置された二層分離を検知するセ
ンサーを設けるものである。
Means for Solving the Problems In order to solve the above-mentioned order, the compressor of the present invention includes a sealed casing in which refrigerant and refrigeration oil are sealed, a mechanical part housed in the sealed casing, and a mechanical part that drives the mechanical part. A motor section, an oil supply device that conveys refrigerating machine oil to the mechanical section, a heater that is in close contact with the sealed casing, and a sensor that detects two-layer separation that is installed below the oil supply section of the oil supply device. .

また、センサーとして冷媒と冷凍機油の電気抵抗を検知
する絶縁抵抗センサーを用いるものである。
Furthermore, an insulation resistance sensor is used as a sensor to detect the electrical resistance of the refrigerant and the refrigerating machine oil.

また、センサーとして冷媒と冷凍機油の赤外線の透過度
を検知する赤外線濃度センサーを用いるものである。
Furthermore, an infrared concentration sensor that detects the transmittance of infrared rays of the refrigerant and refrigerating machine oil is used as a sensor.

また、センサーとして冷媒と冷凍機油の粘度を検知する
粘度センサーを用いるものである。
In addition, a viscosity sensor is used as a sensor to detect the viscosity of the refrigerant and refrigerating machine oil.

作  用 本発明は上記した構成によって、冷媒と冷凍機油が二層
分離する時点をセンサーが検知することによシ、ヒータ
ーが圧縮機を加熱し、冷媒と冷凍機油の二層分離を解消
することにより、漏電や感電の危険性を生じることを防
止すると共に、圧縮機起動時の冷媒潤滑を防止するもの
である。
According to the above-described configuration, the sensor detects the point at which the refrigerant and refrigerating machine oil separate into two layers, and the heater heats the compressor, thereby eliminating the two-layer separation between the refrigerant and refrigerating machine oil. This prevents the risk of electrical leakage or electric shock, and also prevents refrigerant lubrication when starting the compressor.

実施例 以下、本発明の一実施例の圧縮機について冷媒をRFC
−134a、冷凍機油を臨界溶解温度の高いエステル系
冷凍機油として、第1図〜第3図を参照しながら説明す
るが、従来例と同じものは、同一番号を付して説明を省
略する。
Example Below, the refrigerant is subjected to RFC for a compressor according to an example of the present invention.
-134a, the refrigerating machine oil is an ester-based refrigerating machine oil with a high critical melting temperature, and will be explained with reference to FIGS. 1 to 3, but the same parts as in the conventional example will be given the same numbers and the explanation will be omitted.

第1の実施例について第1図を参照しながら説明する。A first embodiment will be described with reference to FIG.

14は密閉型圧縮機に設置されたヒーター、16はヒー
ター14の通電用制御装置である。
14 is a heater installed in the hermetic compressor, and 16 is a power supply control device for the heater 14.

また、16は圧縮機の給油管8の下方に取り付けられた
絶縁抵抗センサーである。
Further, 16 is an insulation resistance sensor attached below the oil supply pipe 8 of the compressor.

以上のように構成された密閉型圧縮機についてその動作
を説明する。
The operation of the hermetic compressor configured as above will be explained.

シャフト2は、モーター部1oの回転力によって回転し
、ピストン6を動かし、副軸受3、軸受4、及びシリン
ダー6によって形成された圧縮室7内の冷媒を圧縮する
。この時の圧縮熱とモーター部12の発熱により密閉型
圧縮機の温度が上昇する。一方、圧縮された冷媒は冷凍
システムで冷却を行ない再び圧縮機に戻ってくる。この
時、冷媒I’1FC−134aとエステル系冷凍機油が
潤滑のため給油装置8を通じて機械部に供給される。
The shaft 2 is rotated by the rotational force of the motor part 1o, moves the piston 6, and compresses the refrigerant in the compression chamber 7 formed by the sub-bearing 3, the bearing 4, and the cylinder 6. At this time, the temperature of the hermetic compressor increases due to the heat of compression and the heat generated by the motor section 12. Meanwhile, the compressed refrigerant is cooled in the refrigeration system and returned to the compressor. At this time, refrigerant I'1FC-134a and ester-based refrigerating machine oil are supplied to the mechanical part through the oil supply device 8 for lubrication.

上記動作のくシ返しによシ、圧縮機は冷媒圧縮時の発熱
やモーター部1oの発熱等によって圧縮機が高温になる
とエステル系冷凍機油と冷媒RFC−134aとが徐々
に溶解を始め最終的にはエステル系冷凍機油と冷媒RF
C−134aは溶解し二層分離が解消される。しかし、
圧縮機が低下した時に圧縮機内の温度圧力が下がること
によシ、冷媒層13が徐々に析出する。
Contrary to the above operation, when the compressor becomes high temperature due to heat generation during refrigerant compression or heat generation in the motor part 1o, the ester-based refrigerating machine oil and the refrigerant RFC-134a gradually begin to dissolve. Ester-based refrigeration oil and refrigerant RF are used.
C-134a dissolves and the two-layer separation is eliminated. but,
When the compressor is lowered, the temperature and pressure inside the compressor decreases, so that the refrigerant layer 13 gradually precipitates.

次に冷凍機油中に冷媒RFC−134aが溶解した場合
について説明する。
Next, a case where refrigerant RFC-134a is dissolved in refrigerating machine oil will be explained.

絶縁性を示す指標の一つである体積抵抗値を、各々の物
質について示す。
The volume resistance value, which is one of the indicators of insulation properties, is shown for each substance.

HFC134a     10  Ω倒グリコール系冷
凍機油    1010Ω61CFC−1210Ω倒 従来冷凍機油      10 Ω国 エステル系冷凍機油     1o Ω儒(自社内測定
結果による) つまシミ気絶縁性は、体積抵抗の値が大きい方が絶縁性
が高い。冷凍機油中にRFC−134aが多く溶解した
場合には電気絶縁性は急激に低下するために冷凍機油中
の溶解量を少なくするとと又油面を下げることが望まし
い。
HFC134a 10 Ω inverted glycol-based refrigeration oil 1010 Ω61CFC-1210 Ω inverted conventional refrigeration oil 10 Ω country ester-based refrigeration oil 10 Ω (according to in-house measurement results) Regarding the insulation properties of the tabs, the higher the volume resistance, the better the insulation. expensive. If a large amount of RFC-134a is dissolved in the refrigerating machine oil, the electrical insulation properties will drop sharply, so it is desirable to reduce the amount dissolved in the refrigerating machine oil and also to lower the oil level.

本発明は、絶縁抵抗センサー16は、冷凍機油中にとけ
ている冷媒の量により、絶縁抵抗が変化することを利用
し冷凍機油と冷媒RFC−134mの二層分離を解消す
るとともに、冷凍機油中への冷媒134aの溶解量を少
なくするものである。
In the present invention, the insulation resistance sensor 16 eliminates the two-layer separation between the refrigeration oil and the refrigerant RFC-134m by utilizing the fact that the insulation resistance changes depending on the amount of refrigerant dissolved in the refrigeration oil. This is to reduce the amount of refrigerant 134a dissolved in the refrigerant 134a.

すなわち、密閉型圧縮機のモーター停止時において、絶
縁抵抗センサー16にて、絶縁抵抗センサー16と密閉
型圧縮機の間との絶縁抵抗を測定し、絶縁抵抗が所定値
以下になった時に、ヒーター通電用制御装置16により
ヒーター14に通電を行ない冷凍機油を加熱する。
That is, when the motor of the hermetic compressor is stopped, the insulation resistance sensor 16 measures the insulation resistance between the insulation resistance sensor 16 and the hermetic compressor, and when the insulation resistance falls below a predetermined value, the heater is turned off. The energization control device 16 energizes the heater 14 to heat the refrigerating machine oil.

つt、6、ヒーター14及び通電用制御装置16にて密
閉型圧縮機の絶縁抵抗が所定値以下になった時に密閉型
圧縮機を加熱することによシ、冷凍機油と冷媒134a
を加熱し、温度を上げることによシ、冷凍機油と冷媒1
34aの二層分離をなくし圧縮機起動時の冷媒潤滑を解
消すると共に、冷凍機油中の冷媒134aの溶解量が少
なくなり又油面が低下することにより電気絶縁性が向上
しケーシング中に電流が流れず漏電や感電の危険性が生
じなくなる。
By heating the hermetic compressor when the insulation resistance of the hermetic compressor falls below a predetermined value using the heater 14 and the energization control device 16, the refrigerating machine oil and the refrigerant 134a are heated.
By heating and raising the temperature, refrigerating machine oil and refrigerant 1
34a is eliminated, refrigerant lubrication at the time of compressor startup is eliminated, and the amount of refrigerant 134a dissolved in the refrigerating machine oil is reduced, and the oil level is lowered, which improves electrical insulation and allows current to flow inside the casing. There is no risk of current leakage or electric shock.

又ヒーター14を絶縁抵抗センサー16にょシ0N−O
FFすることにより消費電力量は少なくできる。
Also, connect the heater 14 to the insulation resistance sensor 16.
Power consumption can be reduced by switching to FF.

次に第2の実施例について第2図を参照しながら説明す
る。
Next, a second embodiment will be described with reference to FIG.

17は、圧縮機の給油管8の下方に取り付けられた赤外
線濃度センサである。18.19は赤外線濃度センサに
取りつけられた発光部と受光部であり、発光部18よシ
発せられた赤外線を受光部19にて受は赤外線の各波長
毎の吸収を計算し冷凍機油中の冷媒濃度を判定する。
17 is an infrared concentration sensor attached below the oil supply pipe 8 of the compressor. Reference numerals 18 and 19 denote a light emitting part and a light receiving part attached to the infrared concentration sensor.The light receiving part 19 receives the infrared rays emitted by the light emitting part 18, calculates the absorption of each wavelength of the infrared rays, and calculates the absorption of each wavelength of the infrared rays. Determine refrigerant concentration.

以上のように構成された密閉型圧縮機についてその動作
を説明する。
The operation of the hermetic compressor configured as above will be explained.

シャフト2は、モーター部12の回転力によって回転し
、ピストン6を動かし、副軸受3、軸受4、及びシリン
ダー6によって形成された圧縮室γ内の冷媒を圧縮する
。この時の圧縮熱とモーター部12の発熱により密閉型
圧縮機の温度が上昇する。一方、圧縮された冷媒は冷凍
システムで冷却を行ない再び圧縮機に戻ってくる。この
時、冷媒RFC−134aと冷凍機油が潤滑のため給油
装置8を通じて機械部に供給される。
The shaft 2 is rotated by the rotational force of the motor section 12, moves the piston 6, and compresses the refrigerant in the compression chamber γ formed by the sub-bearing 3, the bearing 4, and the cylinder 6. At this time, the temperature of the hermetic compressor increases due to the heat of compression and the heat generated by the motor section 12. Meanwhile, the compressed refrigerant is cooled in the refrigeration system and returned to the compressor. At this time, refrigerant RFC-134a and refrigerating machine oil are supplied to the mechanical part through the oil supply device 8 for lubrication.

上記動作のくシ返しによυ、圧縮機は冷媒圧縮時の発熱
やモーター部の発熱等によって圧縮機が高温になると冷
凍機油と冷媒RFC−134aとが徐々に溶解を始め最
終的には冷凍機油と冷媒RFC−134aは溶解し二層
分離妙5解消される。
As a result of the above operation, when the compressor becomes high temperature due to heat generated during refrigerant compression or heat generated by the motor, the refrigerating machine oil and refrigerant RFC-134a begin to gradually dissolve and eventually freeze. Machine oil and refrigerant RFC-134a are dissolved and the two-layer separation is eliminated.

しかし、圧縮機が停止した時に圧縮機内の温度。However, the temperature inside the compressor when the compressor is stopped.

圧力が下ることによシ冷媒層13が徐々に析出する。As the pressure decreases, the refrigerant layer 13 gradually precipitates.

本発明は、冷凍機油に冷媒134aが溶解した時に、赤
外線の吸収量が、冷媒の溶解量によって異なることを利
用し、冷凍機油と冷媒134aの二層分離を解消すると
ともに、冷凍機油中への冷媒134aの溶解量を少なく
するものである。すなわち、密閉型圧縮機のモーター停
止時において、赤外線濃度センサ17にで、冷凍機油中
の冷媒濃度を測定し、冷媒濃度が所定値以上になった時
に、ヒーター通電用制御装置16にょシヒーター14に
通電を行ない冷凍機油を加熱する。
The present invention utilizes the fact that when refrigerant 134a is dissolved in refrigerant oil, the amount of infrared rays absorbed differs depending on the amount of dissolved refrigerant, and eliminates the two-layer separation between refrigerant oil and refrigerant 134a. This is to reduce the amount of refrigerant 134a dissolved. That is, when the motor of the hermetic compressor is stopped, the infrared concentration sensor 17 measures the refrigerant concentration in the refrigerating machine oil, and when the refrigerant concentration exceeds a predetermined value, the heater energization control device 16 and the heater 14 are activated. Turn on the electricity and heat the refrigerating machine oil.

つまシ、ヒーター16及び通電用制御装置16にて密閉
型圧縮機の冷媒濃度が所定値以上になった時に密閉型圧
縮機を加熱することにょシ、冷凍機油と冷媒134aを
加熱し、温度を上げることによ)、冷凍機油と冷媒13
4aの二層分離をなくし圧縮機起動時の冷媒潤滑を解消
すると共に、冷凍機油中の冷媒134aの溶解量が少な
くなり又油面が低下することにょシミ気絶練性が向上し
ケーシング中に電流が流れず漏電や感電の危険性が生じ
なくなる。又ヒーター14を赤外線冷媒濃度センサー1
7によfiON−OFFすることにより消費電力量は少
なくできる。
When the refrigerant concentration in the hermetic compressor reaches a predetermined value or higher, the refrigerating machine oil and the refrigerant 134a are heated to lower the temperature. ), refrigeration oil and refrigerant 13
By eliminating the two-layer separation of 4a, refrigerant lubrication at the time of compressor startup is eliminated, and the amount of refrigerant 134a dissolved in the refrigerating machine oil is reduced, and the oil level is reduced. There is no risk of current leakage or electric shock. In addition, the heater 14 is connected to the infrared refrigerant concentration sensor 1.
By turning fi ON and OFF according to 7, power consumption can be reduced.

この赤外線濃度センサー17を用いた場合には、冷凍機
油や冷媒の特有波長での赤外透過度で二層分離の判定を
行なう事が可能となる。そのため、第1の実施例である
絶縁抵抗センサー16に比べ、冷凍機油に溶解し電気抵
抗を変化させる水分やイオン物質による影響を受は難く
作動時の信頼性が向上する特徴が有る。
When this infrared concentration sensor 17 is used, it is possible to determine two-layer separation based on the infrared transmittance at a specific wavelength of refrigerating machine oil or refrigerant. Therefore, compared to the insulation resistance sensor 16 of the first embodiment, this sensor is less susceptible to the effects of water and ionic substances that dissolve in refrigerating machine oil and change electrical resistance, and has the feature of improved reliability during operation.

次に第3の実施例について第3図を参照しながら説明す
る。
Next, a third embodiment will be described with reference to FIG.

2oは、圧縮機の給油管8の下方に取りつけられた粘度
センサである。
2o is a viscosity sensor attached below the oil supply pipe 8 of the compressor.

21.22は粘度センサ20に取シっけられた細管及び
温度センサーであり、細管21を通して一定体積の流体
が流れる時間を検出すると共に冷凍機油の油温を検出し
粘度を補正を行う。−次にその動作を説明する。
Reference numerals 21 and 22 designate a capillary and temperature sensor installed in the viscosity sensor 20, which detects the time during which a fixed volume of fluid flows through the capillary tube 21, detects the temperature of the refrigerating machine oil, and corrects the viscosity. - Next, its operation will be explained.

シャフト2は、モーター部12の回転力によって回転し
、ピストン6を勤かし、副軸受3、軸受4、及びシリン
ダー6によって形成された圧縮室7内の冷媒を圧縮する
。この時の圧縮熱とモーター部12の発熱にょシ密閉型
圧縮機の温度が上昇する。一方、圧縮された冷媒は冷凍
システムで冷却を行ない再び圧縮機に戻ってくる。この
時、冷媒RFC−134aと冷凍機油の混合液が潤滑の
ため給油装置8を通じて機械部に供給される。
The shaft 2 is rotated by the rotational force of the motor section 12, operates the piston 6, and compresses the refrigerant in the compression chamber 7 formed by the sub-bearing 3, the bearing 4, and the cylinder 6. At this time, the heat of compression and the heat generated by the motor section 12 cause the temperature of the hermetic compressor to rise. Meanwhile, the compressed refrigerant is cooled in the refrigeration system and returned to the compressor. At this time, a liquid mixture of refrigerant RFC-134a and refrigerating machine oil is supplied to the mechanical part through the oil supply device 8 for lubrication.

上記動作のくシ返しによシ、圧縮機は冷媒圧縮時の発熱
やモーター部の発熱等によって圧縮機が高温になると冷
凍機油と冷媒RFC−134aとが徐々に溶解を始め最
終的には冷凍機油と冷媒HFC−134とは溶解し二層
分離が解消される。
In contrast to the above operation, when the compressor becomes high temperature due to heat generation during refrigerant compression or heat generation in the motor, the refrigerating machine oil and refrigerant RFC-134a begin to gradually dissolve and eventually freeze. Machine oil and refrigerant HFC-134 are dissolved and the two-layer separation is eliminated.

しかし、圧縮機が低下した時に圧縮機内の温度。However, the temperature inside the compressor when the compressor drops.

圧力が下ることにより冷媒層が徐々に析出する。As the pressure decreases, a refrigerant layer gradually precipitates.

本発明は、冷凍機油に玲w、134aが溶解した時に、
冷凍機油と冷媒の粘度が異なるため、冷凍機油の粘度が
低下することを利用し、冷凍機油と冷媒134aの二層
分離を解消するとともに、冷凍機油中への冷媒134a
の溶解量を少なくするものである。すなわち、密閉型圧
縮機のモーター停止時において、粘度センサー2oにて
冷凍機油の粘度を測定し粘度が所定値以下になった時に
、ヒーター通電用制御装置16によシヒーター15に通
電を行ない冷凍機油を加熱する。
In the present invention, when Reiw, 134a is dissolved in refrigerating machine oil,
Since the viscosity of the refrigerant oil and the refrigerant are different, the viscosity of the refrigerant oil is reduced, which eliminates the two-layer separation between the refrigerant oil and the refrigerant 134a, and the refrigerant 134a into the refrigerant oil.
This is to reduce the amount of dissolved. That is, when the motor of the hermetic compressor is stopped, the viscosity of the refrigerating machine oil is measured by the viscosity sensor 2o, and when the viscosity becomes less than a predetermined value, the heater energization control device 16 energizes the heater 15 and the refrigerating machine oil is heat up.

つまり、ヒーター15及び通電用制御装置16にて密閉
型圧縮機の冷凍機油の粘度が所定値以下になった時に密
閉型圧縮機を加熱することにより、冷凍機油と冷媒13
4aを加熱し、温度を上げることにより、冷凍機油と冷
媒134aの二層分離又油面が低下することにより電気
絶縁性が向上しケーシング中に電流が流れず漏電や感電
の危険性が生じなくなる。又ヒーター14を粘度センサ
ー18により0N−OFFすることによシ消費電力量は
少なくできる。
That is, by heating the hermetic compressor when the viscosity of the refrigerating machine oil in the hermetic compressor becomes equal to or less than a predetermined value using the heater 15 and the energization control device 16, the refrigerating machine oil and the refrigerant 13 are heated.
By heating 4a and raising the temperature, the refrigerating machine oil and refrigerant 134a are separated into two layers, and the oil level is lowered, which improves electrical insulation and prevents current from flowing in the casing, eliminating the risk of electrical leakage and electric shock. . Further, by turning off the heater 14 using the viscosity sensor 18, power consumption can be reduced.

この粘度センサー2oを用いた場合には、冷凍機油や冷
媒の物理特性である固有のずれ応力を利用して粘度を検
知し二層分離の判定を行なう事となる。また、この物理
特性である粘度は冷凍機油や冷媒の劣化の影響を受は難
い。そのため、第2の実施例である赤外線センサー17
に比べ、長期的に検知のレベルが一定に保て作動時の信
頼性が向上する。また、第1の実施例である絶縁抵抗セ
ンサー16に比べると、冷凍機油に溶解する水分やイオ
ン物質は粘度に影響を与えない。すなわち、絶縁抵抗セ
ンサー16より作動時の信頼性が向上することは言うま
でもない。
When this viscosity sensor 2o is used, the viscosity is detected using the inherent shear stress, which is a physical property of the refrigerating machine oil or refrigerant, and the two-layer separation is determined. In addition, this physical property, viscosity, is not easily affected by deterioration of refrigerating machine oil or refrigerant. Therefore, the infrared sensor 17 of the second embodiment
Compared to conventional methods, the detection level can be maintained constant over a long period of time, improving reliability during operation. Further, compared to the insulation resistance sensor 16 of the first embodiment, water and ionic substances dissolved in the refrigerating machine oil do not affect the viscosity. That is, it goes without saying that reliability during operation is improved compared to the insulation resistance sensor 16.

前記、第1から第3の実施例については、冷媒RFC−
1s4aとエステル系冷凍機油について説明を行ったが
、 o  冷[HFC162aとアルキルベンゼン系冷凍機
油 03種混合冷媒(HCFC22、HFC162aとHC
FC124あるいはCFC114との混合冷[)とアル
キルベンゼン系冷媒機油03種混合冷媒とナフテン系鉱
油 との組合せにおいても成立する。
Regarding the first to third embodiments, the refrigerant RFC-
1s4a and ester-based refrigerating machine oil, o Cold [HFC162a and alkylbenzene-based refrigerating machine oil 03 mixed refrigerant (HCFC22, HFC162a and HC
This also holds true in combinations of mixed refrigeration with FC124 or CFC114 [), alkylbenzene refrigerant machine oil type 03 mixed refrigerant, and naphthenic mineral oil.

発明の効果 冷媒と冷凍機油が二層分離を生じ、前記二層分離曲線が
上側に凸である冷媒と冷凍機油を封入した密閉ケーシン
グと、前記密閉ケーシング内に収納された機械部と前記
機械部を駆動させるモーター部と、前記機械部に冷凍機
油を搬送する給油装置と、前記密閉ケーシングに密着し
たヒーターと、前記給油装置の給油部の下方に設置され
た二層分離を検知するセンサーとから成る。
Effects of the Invention A sealed casing enclosing a refrigerant and refrigeration oil in which two-layer separation occurs between the refrigerant and refrigeration oil, and the two-layer separation curve is convex upward; a mechanical part housed in the sealed casing; and a mechanical part. a motor section that drives the refrigerating machine, an oil supply device that conveys refrigerating machine oil to the mechanical section, a heater that is in close contact with the sealed casing, and a sensor that detects two-layer separation that is installed below the oil supply section of the oil supply device. Become.

また、センサーとして冷媒と冷凍機油の電気抵抗を検知
する絶縁抵抗センサーを用いるものである。
Furthermore, an insulation resistance sensor is used as a sensor to detect the electrical resistance of the refrigerant and the refrigerating machine oil.

また、センサーとして冷媒と冷凍機油の赤外線の透過度
を検知する赤外線濃度センサーを用いるものである。
Furthermore, an infrared concentration sensor that detects the transmittance of infrared rays of the refrigerant and refrigerating machine oil is used as a sensor.

また、センサーとして冷媒と冷凍機油の粘度を検知する
粘度センサーを用いるものである。
In addition, a viscosity sensor is used as a sensor to detect the viscosity of the refrigerant and refrigerating machine oil.

これよシ以下の効果が得られる。This will give you the following effects.

■ 圧縮機停止時に冷媒と冷凍機油が二層分離する時点
をセンサーが検知することにより、ヒーターが圧縮機を
加熱し、冷媒と冷凍機油の二層分離を解消し圧縮機起動
時における冷媒潤滑をなくす。
■ When the compressor is stopped, the sensor detects the point at which the refrigerant and refrigeration oil separate into two layers, and the heater heats the compressor, eliminating the two-layer separation between the refrigerant and refrigeration oil and providing refrigerant lubrication when the compressor is started. lose.

■ 父上記ヒーターによる加熱により、冷凍機油中の冷
媒134aの溶解量は少なくなり油面が低下することに
よシ′Wl気絶縁性が向上しケーシング中に電流が流れ
ず漏電や感電の危険性が生じなくなる。
■ Due to the heating by the above-mentioned heater, the amount of refrigerant 134a dissolved in the refrigerating machine oil decreases, and the oil level decreases, which improves the insulation properties and prevents current from flowing in the casing, resulting in the risk of electrical leakage and electric shock. will no longer occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における圧縮機の断面図
、第2図は本発明の他の実施例における圧縮機の断面図
、第3図は本発明の他の実施例における圧縮機断面図、
第4図は従来の圧縮機の断面図である。 1・・・・・・機械部、12・・・・・・モーター部、
14・・・・・・ヒーター、16・・・・・・通電用制
御装置、16・・・・・・絶線抵抗センサー、17・・
・・・・遠外線濃度センサー、20・・・・・・粘度セ
ンサー。 代理人の氏名 弁理士 小鍜治  明 ほか2名l−戦
へや /ρ  モータ師 zt   !is  閉グーシシク′ /4 ヒーター 15−通tM副仰装置 lぶ  絶線蒋J九τンブー 第1fり 1−  磯機印 10°”−モータ部 14°° ヒーター ts & t 1@ ll’l J!JP % JL1
7° 承 外 祿濃麿1シツ 第2図 I−横杭印 10− モータ部 14−TL−ター !6  通電用制御メ1 20° fI!lI贋iシツ 菖 311!J
FIG. 1 is a sectional view of a compressor in a first embodiment of the present invention, FIG. 2 is a sectional view of a compressor in another embodiment of the present invention, and FIG. 3 is a sectional view of a compressor in another embodiment of the present invention. machine cross section,
FIG. 4 is a sectional view of a conventional compressor. 1... Mechanical part, 12... Motor part,
14...Heater, 16...Electrification control device, 16...Disconnection resistance sensor, 17...
...Far external radiation concentration sensor, 20...Viscosity sensor. Agent's name: Patent attorney Akira Okaji and 2 others l-senheya/ρ Motor master zt! is Closed Gushishik' /4 Heater 15-Through tM Sub-uplifting device l Bu Zhen wire Jiang J9 τnbu 1st fri 1- Isoki mark 10°"-Motor part 14°° Heater ts & t 1 @ ll'l J !JP % JL1
7° Approved, 1 piece, Figure 2, I-Horizontal stake mark 10-Motor part 14-TL-ter! 6 Energization control mechanism 1 20° fI! lI fake i iris 311! J

Claims (4)

【特許請求の範囲】[Claims] (1)冷媒と冷凍機油を封入した密閉ケーシングと、前
記密閉ケーシング内に収納された機械部と前記機械部を
駆動させるモーター部と、前記機械部に冷凍機油を搬送
する給油装置と、前記密閉ケーシングに密着したヒータ
ーと、前記給油装置の給油部の下方に設置された二層分
離を検知するセンサーとからなる密閉型圧縮機。
(1) A sealed casing containing refrigerant and refrigeration oil, a mechanical part housed in the sealed casing, a motor part that drives the mechanical part, an oil supply device that conveys the refrigeration oil to the mechanical part, and the sealed casing. A hermetic compressor consisting of a heater that is in close contact with the casing and a sensor that detects two-layer separation that is installed below the oil supply section of the oil supply device.
(2)センサーが冷媒と冷凍機油の電気抵抗を検知する
絶縁抵抗センサーであることを特徴とする請求項(1)
記載の密閉型圧縮機。
(2) Claim (1) characterized in that the sensor is an insulation resistance sensor that detects the electrical resistance of the refrigerant and refrigeration oil.
Hermetic compressor as described.
(3)センサーが冷媒と冷凍機油の赤外線の透過度を検
知する赤外線濃度センサーであることを特徴とする請求
項(1)記載の密閉型圧縮機。
(3) The hermetic compressor according to claim (1), wherein the sensor is an infrared concentration sensor that detects the transmittance of infrared rays of the refrigerant and refrigerating machine oil.
(4)センサーが冷媒と冷凍機油の粘度を検知する粘度
センサーであることを特徴とする請求項(1)記載の密
閉型圧縮機。
(4) The hermetic compressor according to claim (1), wherein the sensor is a viscosity sensor that detects the viscosity of the refrigerant and refrigerating machine oil.
JP30987490A 1990-11-14 1990-11-14 Sealed type compressor Pending JPH04179876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30987490A JPH04179876A (en) 1990-11-14 1990-11-14 Sealed type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30987490A JPH04179876A (en) 1990-11-14 1990-11-14 Sealed type compressor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP29062797A Division JP3019923B2 (en) 1997-10-23 1997-10-23 Hermetic compressor and refrigerator and freezer equipped with hermetic compressor
JP2000014522A Division JP2000161210A (en) 2000-01-01 2000-01-24 Horizontal hermetic compressor

Publications (1)

Publication Number Publication Date
JPH04179876A true JPH04179876A (en) 1992-06-26

Family

ID=17998344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30987490A Pending JPH04179876A (en) 1990-11-14 1990-11-14 Sealed type compressor

Country Status (1)

Country Link
JP (1) JPH04179876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9903629B2 (en) 2012-06-20 2018-02-27 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9903629B2 (en) 2012-06-20 2018-02-27 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer

Similar Documents

Publication Publication Date Title
JP5906461B2 (en) Hermetic compressor
Halimic et al. A comparison of the operating performance of alternative refrigerants
EP3421798B1 (en) Compressor and heat cycle system
JP2002266762A (en) Refrigerating cycle device
Al-Sayyab et al. Comprehensive experimental evaluation of R1234yf-based low GWP working fluids for refrigeration and heat pumps
JP2732685B2 (en) Detecting method of refrigerant penetration in compressor
JPH04179876A (en) Sealed type compressor
KR0137844B1 (en) Refrigerant circulation system
JP3160130B2 (en) Air conditioner
JP2003336916A (en) Refrigerating cycle and heat pump water heater
JP2000161210A (en) Horizontal hermetic compressor
Sekhar et al. Ozone friendly HFC134a/HC mixture compatible with mineral oil in refrigeration system improves energy efficiency of a walk in cooler
JP3654702B2 (en) Refrigeration cycle equipment
JP3019923B2 (en) Hermetic compressor and refrigerator and freezer equipped with hermetic compressor
Kasera et al. Energy performance evaluation of variable speed milk refrigerator using propane (R290)
JP2000120542A (en) Refrigeration system
JP6628815B2 (en) Refrigerant compression device and refrigeration device
JP2000145640A (en) Equipment using refrigerant
JP2000130332A (en) Horizontal hermetic compressor
JPH0427780A (en) Refrigerant gas compressor
JP3601442B2 (en) Refrigeration equipment
JP2000110721A (en) Refrigerating device
WO2024069896A1 (en) Air conditioner
JP2002194375A (en) Working medium composition for freezing/air conditioning use and freezing/air conditioning unit using the same
KR102509989B1 (en) Compressor and control method of the same