JP2000161210A - Horizontal hermetic compressor - Google Patents

Horizontal hermetic compressor

Info

Publication number
JP2000161210A
JP2000161210A JP2000014522A JP2000014522A JP2000161210A JP 2000161210 A JP2000161210 A JP 2000161210A JP 2000014522 A JP2000014522 A JP 2000014522A JP 2000014522 A JP2000014522 A JP 2000014522A JP 2000161210 A JP2000161210 A JP 2000161210A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerating machine
machine oil
compressor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000014522A
Other languages
Japanese (ja)
Inventor
Hiroto Nakama
啓人 中間
Kenji Takaichi
健二 高市
Toshikazu Sakai
寿和 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2000014522A priority Critical patent/JP2000161210A/en
Publication of JP2000161210A publication Critical patent/JP2000161210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a danger of leakage and an electric shock by detecting two-layer separation installed in a lower part of an oiling part and a heater brought into close contact with a sealed casing. SOLUTION: A shaft 2 rotates by torque of a motor part 10 to move a piston 5 to compress a refrigerant in a compression chamber 7 formed of a sub-bearing 3, a bearing 4 and a cylinder 6. A temperature of a horizontal hermetic compressor rises by compression heat and heating of the motor part 10. The compressed refrigerant performs clooling by a refrigerating system, and returns to the compressor. The refrigerant and ester refrigerating machine oil are supplied to a machine part through an oiling device 8 for lubrication. The compressor becomes a high temperature by heating at refrigerant compressing time and heating of the motor part 10 by a repetition of operation, and the ester base refrigerating machine oil and the refrigerant are dissolved so as to eliminate two-layer separation. At compressore reducing time, a temperature/pressure in the compressor lower so as to deposit a refrigerant layer 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷蔵庫,冷凍庫等
に用いる横型密閉型圧縮機に関する。
The present invention relates to a horizontal hermetic compressor used for refrigerators, freezers and the like.

【0002】[0002]

【従来の技術】近年、クロロフルオロカーボン(以下C
FCと称する)の影響によるオゾン層破壊及び地球の温
暖化等の環境問題が注目されている。このような観点よ
り、冷媒であるCFCの使用量削減が、極めて重要なテ
ーマとなってきている。従来、CFCとして使用されて
来た完全ハロゲン化炭素化合物は、少なくとも水素を1
個以上含むハロゲン化炭素化合物に代替化が図られつつ
ある。
2. Description of the Related Art In recent years, chlorofluorocarbon (hereinafter referred to as C)
Attention has been focused on environmental problems such as ozone layer depletion and global warming caused by the influence of FC. From this point of view, reducing the amount of CFC used as a refrigerant has become a very important theme. Conventionally, fully halogenated carbon compounds that have been used as CFCs contain at least one hydrogen.
Substitution is being attempted with halogenated carbon compounds containing more than one.

【0003】さらに具体的には、代表的な冷媒であるジ
クロロジフルオロメタン(以下CFC−12と称する)
は、CFCの代替物質であり、オゾン破壊に対する影響
の少ない1,1,1,2−テトロフルオロエタン(以下
HFC−134aと称する)等へ代替化を図るため種々
の改善取組みがなされている。
More specifically, dichlorodifluoromethane (hereinafter referred to as CFC-12) which is a typical refrigerant
Is an alternative substance to CFC, and various improvements have been made to replace it with 1,1,1,2-tetrofluoroethane (hereinafter referred to as HFC-134a) or the like which has little effect on ozone depletion.

【0004】例えば、1978年10月発行のDuPo
nt社のResearch Disclosureの記
載によれば、HFC−134aは従来のどのような油と
も相溶性が悪くて全ての温度域で二層分離を生じ、唯一
グリコール系油にのみ溶解する。しかし、その後の研究
により特殊なエステル系油にも溶解することが判ってき
た。例えば、米国特許第4851144号においてエス
テル系とグリコール系の混合した冷凍機油が冷媒HFC
−134aに溶解することが示されている。
[0004] For example, DuPo issued in October 1978
According to Research Disclosure of nt, HFC-134a is poorly compatible with any conventional oils, causes two-phase separation in all temperature ranges, and is only soluble in glycol-based oils only. However, subsequent studies have shown that it can also be dissolved in special ester-based oils. For example, in U.S. Pat. No. 4,851,144, a refrigerating machine oil in which an ester type and a glycol type are mixed is used as a refrigerant HFC.
-134a.

【0005】しかし、多くのエステル系冷凍機油は、冷
媒HFC−134aと溶解しにくく二層分離を生じ、臨
界溶解温度は高かった。しかし、これらのエステル系冷
凍機油は、臨界溶解温度が低い特殊なエステル系冷凍機
油に比べ、信頼性,潤滑性が高い。
However, many ester refrigerating machine oils are hardly soluble in the refrigerant HFC-134a and cause two-layer separation, and the critical melting temperature is high. However, these ester refrigerating machine oils have higher reliability and lubricity than special ester refrigerating machine oils having a low critical solution temperature.

【0006】冷媒と冷凍機油が二層分離が生じた場合に
は、冷凍機油は比重が軽いため冷媒の上側に位置する様
になる。反対に冷媒は下側に位置する。
When the refrigerant and the refrigerating machine oil are separated into two layers, the refrigerating machine oil is located above the refrigerant because of its low specific gravity. Conversely, the refrigerant is located on the lower side.

【0007】又冷媒HFC−134aは水素原子を多数
含むので本質的に電気を流しやすく、横型密閉型圧縮機
に要求される電気絶縁性が非常に悪い事も判明してい
る。
[0007] It has also been found that the refrigerant HFC-134a contains a large number of hydrogen atoms, so that it is essentially easy to conduct electricity, and that the electrical insulation required for a horizontal hermetic compressor is very poor.

【0008】図4は、従来の横型密閉型圧縮機の断面図
である。図4において1は機械部であり、シャフト2,
副軸受3,軸受4,ピストン5,シリンダー6からな
る。前記シャフト2,副軸受3,軸受4,ピストン5,
シリンダー6は圧縮室7を形成している。8は給油管で
あり、9は冷媒CFC−12と冷凍機油の混合油であり
給油管8は混合油9を摺動面に供給する。10はモータ
ー部である。また11は前記の機械部1やモーター部1
0を収納する金属性の密閉ケーシングである。
FIG. 4 is a sectional view of a conventional horizontal hermetic compressor. In FIG. 4, reference numeral 1 denotes a mechanical unit,
It comprises a sub bearing 3, a bearing 4, a piston 5 and a cylinder 6. The shaft 2, the sub bearing 3, the bearing 4, the piston 5,
The cylinder 6 forms a compression chamber 7. 8 is an oil supply pipe, 9 is a mixed oil of the refrigerant CFC-12 and the refrigerating machine oil, and the oil supply pipe 8 supplies the mixed oil 9 to the sliding surface. Reference numeral 10 denotes a motor unit. 11 is the mechanical unit 1 and the motor unit 1
0 is a metallic hermetic casing.

【0009】[0009]

【発明が解決しようとする課題】以上のように構成され
た横型密閉型圧縮機において、シャフト2は、モーター
部10の回転力によって回転し、ピストン5を動かし、
副軸受3,軸受4及びシリンダー6によって形成された
圧縮室7内の冷媒を圧縮する。圧縮された冷媒は冷凍シ
ステムで冷却を行ない再び圧縮機に戻ってくる。
In the horizontal hermetic compressor constructed as described above, the shaft 2 is rotated by the rotational force of the motor unit 10 to move the piston 5,
The refrigerant in the compression chamber 7 formed by the sub bearings 3, the bearing 4 and the cylinder 6 is compressed. The compressed refrigerant is cooled in the refrigeration system and returns to the compressor again.

【0010】また、図に示したような小型の圧縮機は、
近年省スペース化を目的として横型、すなわち、機械部
1と前記機械部を駆動させるモーター部10が水平に設
置される事が多くなっている。すなわち冷媒CFC−1
2と冷凍機油の混合油9に浸漬される構造となってい
る。そこで、電気絶縁性の劣るHFC−134aをこの
圧縮機にそのまま使用すると冷凍機油と冷媒HFC−1
34aとが二層分離を生じる。つまり油は比重が軽いた
め上側に油層12を形成し、反対に冷媒は下側に冷媒層
13を形成する。さらに、冷媒HFC−134aは水素
原子を多数含むので本質的に電気を流しやすく、モータ
ー部10から電気を密閉ケーシング11に流す。そのた
め漏電や感電の危険性が生じる可能性があった。
A small compressor as shown in FIG.
In recent years, the horizontal type, that is, the mechanical unit 1 and the motor unit 10 for driving the mechanical unit are often installed horizontally for the purpose of saving space. That is, the refrigerant CFC-1
2 and refrigeration oil 9 are immersed in a mixed oil 9. Therefore, when HFC-134a having poor electrical insulation is used as it is in this compressor, refrigeration oil and refrigerant HFC-1 are used.
34a produce a two-layer separation. That is, since the oil has a low specific gravity, the oil forms the oil layer 12 on the upper side, and the refrigerant forms the refrigerant layer 13 on the lower side. Furthermore, since the refrigerant HFC-134a contains a large number of hydrogen atoms, it is essentially easy to flow electricity, and electricity flows from the motor unit 10 to the closed casing 11. For this reason, there is a possibility that a risk of electric leakage or electric shock may occur.

【0011】また、冷媒HFC−134aと冷凍機油と
が圧縮機の起動前において二層分離を生じている場合に
は、冷凍機油は上層、冷媒は下層にそれぞれ層を形成し
ているため、起動初期においては圧縮機の機械部1は冷
媒層13から冷媒を吸入し、機械部1内においては冷媒
潤滑が生じる。時間が経過するに従い圧縮機内の冷媒と
冷凍機油は圧縮機の温度が上昇すると共にモーター部1
0の回転により混合され、徐々に冷媒潤滑は解消され
る。
When the refrigerant HFC-134a and the refrigerating machine oil are separated into two layers before the compressor is started, the refrigerating machine oil and the refrigerant form layers in an upper layer and a lower layer, respectively. Initially, the mechanical part 1 of the compressor draws refrigerant from the refrigerant layer 13, and refrigerant lubrication occurs in the mechanical part 1. As the time elapses, the refrigerant in the compressor and the refrigerating machine oil increase in temperature of the compressor and the motor unit 1
Mixing is performed by the rotation of 0, and the refrigerant lubrication is gradually eliminated.

【0012】冷蔵庫用の圧縮機においては、通常圧縮機
はON−OFF運転を行っており、特に低外気温時にお
いては、OFFの時間が長くなり、又冷凍機油の温度が
低いために二層分離を生じやすくなる。この時に前記し
た様に起動がかかると冷媒潤滑が生じ、これが繰り返さ
れると、ベーンローラー,シリンダー等に摩耗が生じ
る。
[0012] In a compressor for a refrigerator, the compressor normally performs an ON-OFF operation. Particularly, at a low outside air temperature, the OFF time is long and the temperature of the refrigerating machine oil is low, so that the two-layer operation is performed. Separation is likely to occur. At this time, when the starting is performed as described above, refrigerant lubrication occurs, and when this is repeated, wear occurs on the vane rollers, cylinders, and the like.

【0013】従って、本発明は漏電や感電の危険性を生
じることを防止すると共に圧縮機の起動時において、二
層分離を解消し冷媒潤滑を防止を目的とするものであ
る。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to prevent a danger of electric leakage or electric shock, and to eliminate two-layer separation and prevent refrigerant lubrication when starting a compressor.

【0014】[0014]

【課題を解決するための手段】上記課題を解決する横型
密閉型圧縮機は、冷媒と冷凍機油を封入した密閉ケーシ
ングと、前記密閉ケーシング内に収納された機械部と前
記機械部を駆動させるモーター部と、前記機械部に冷凍
機油を搬送する給油装置と、前記密閉ケーシングに密着
したヒーターと、前記給油装置の給油部の下方に設置さ
れた二層分離を検知するセンサーとからなる。
A horizontal hermetic compressor which solves the above-mentioned problems has a hermetic casing in which a refrigerant and a refrigerating machine oil are sealed, a mechanical part housed in the hermetic casing, and a motor for driving the mechanical part. A refueling device that conveys refrigerating machine oil to the mechanical unit, a heater that is in close contact with the closed casing, and a sensor that is installed below the refueling unit of the refueling device and that detects two-layer separation.

【0015】具体的なセンサーとしては、冷媒と冷凍機
油の電気抵抗を検知する絶縁抵抗センサー、冷媒と冷凍
機油の赤外線の透過度を検知する赤外線濃度センサー、
および冷媒と冷凍機油の粘度を検知する粘度センサーが
用いられる。
As specific sensors, an insulation resistance sensor for detecting the electric resistance between the refrigerant and the refrigerating machine oil, an infrared concentration sensor for detecting the infrared transmittance of the refrigerant and the refrigerating machine oil,
A viscosity sensor for detecting the viscosity of the refrigerant and the refrigerating machine oil is used.

【0016】また、上記のような横型密閉型圧縮機を備
えた冷凍装置および冷蔵庫も本願発明の趣旨に包含され
る。
Further, a refrigerating apparatus and a refrigerator provided with the above-mentioned horizontal hermetic compressor are also included in the gist of the present invention.

【0017】本発明は上記した構成によって、冷媒と冷
凍機油が二層分離する時点をセンサーが検知することに
より、ヒーターが圧縮機を加熱し、冷媒と冷凍機油の二
層分離を解消することにより、漏電や感電の危険性を生
じることを防止すると共に、圧縮機起動時の冷媒潤滑が
防止される。
According to the present invention, the sensor detects the point at which the refrigerant and the refrigerating machine oil separate into two layers, and the heater heats the compressor to eliminate the two-layer separation between the refrigerant and the refrigerating machine oil. In addition, it is possible to prevent a risk of electric leakage and electric shock, and to prevent refrigerant lubrication at the time of starting the compressor.

【0018】[0018]

【発明の実施の形態】以下、本発明の一実施例の圧縮機
について冷媒をHFC−134a,冷凍機油を臨界溶解
温度の高いエステル系冷凍機油として、図1〜図3を参
照しながら説明するが、従来例と同じものは、同一番号
を付して説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A compressor according to an embodiment of the present invention will be described below with reference to FIGS. 1 to 3 by using HFC-134a as a refrigerant and ester-based refrigerant oil having a high critical solution temperature as a refrigerant oil. However, the same components as those in the conventional example are denoted by the same reference numerals and description thereof is omitted.

【0019】第1の実施例について図1を参照しながら
説明する。
The first embodiment will be described with reference to FIG.

【0020】14は横型密閉型圧縮機に設置されたヒー
ター、15はヒーター14の通電用制御装置である。
Reference numeral 14 denotes a heater installed in the horizontal hermetic compressor, and reference numeral 15 denotes a controller for energizing the heater 14.

【0021】また、16は圧縮機の給油管8の下方に取
り付けられた絶縁抵抗センサーである。
Reference numeral 16 denotes an insulation resistance sensor mounted below the oil supply pipe 8 of the compressor.

【0022】以上のように構成された横型密閉型圧縮機
についてその動作を説明する。
The operation of the horizontal hermetic compressor constructed as described above will be described.

【0023】シャフト2は、モーター部10の回転力に
よって回転し、ピストン5を動かし、副軸受3,軸受
4、及びシリンダー6によって形成された圧縮室7内の
冷媒を圧縮する。この時の圧縮熱とモーター部12の発
熱により横型密閉型圧縮機の温度が上昇する。一方、圧
縮された冷媒は冷凍システムで冷却を行ない再び圧縮機
に戻ってくる。この時、冷媒HFC−134aとエステ
ル系冷凍機油が潤滑のため給油装置8を通じて機械部に
供給される。
The shaft 2 is rotated by the rotational force of the motor unit 10 to move the piston 5 to compress the refrigerant in the compression chamber 7 formed by the auxiliary bearing 3, bearing 4 and cylinder 6. The temperature of the horizontal hermetic compressor rises due to the compression heat and the heat generated by the motor section 12 at this time. On the other hand, the compressed refrigerant is cooled by the refrigeration system and returns to the compressor again. At this time, the refrigerant HFC-134a and the ester-based refrigerating machine oil are supplied to the machine unit through the oil supply device 8 for lubrication.

【0024】上記動作のくり返しにより、圧縮機は冷媒
圧縮時の発熱やモーター部10の発熱等によって圧縮機
が高温になるとエステル系冷凍機油と冷媒HFC−13
4aとが徐々に溶解を始め最終的にはエステル系冷凍機
油と冷媒HFC−134aは溶解し二層分離が解消され
る。しかし、圧縮機が低下した時に圧縮機内の温度圧力
が下がることにより、冷媒層13が徐々に析出する。
When the compressor is heated to a high temperature due to the heat generated during compression of the refrigerant or the heat generated by the motor unit 10 due to the repetition of the above operation, the ester-based refrigerating machine oil and the refrigerant HFC-13 are discharged.
4a gradually begins to dissolve, and finally the ester-based refrigerating machine oil and the refrigerant HFC-134a dissolve and the two-layer separation is eliminated. However, when the temperature of the compressor is lowered when the compressor is lowered, the refrigerant layer 13 is gradually deposited.

【0025】次に冷凍機油中に冷媒HFC−134aが
溶解した場合について説明する。
Next, the case where the refrigerant HFC-134a is dissolved in the refrigerating machine oil will be described.

【0026】絶縁性を示す指標の一つである体積抵抗値
を、各々の物質について示す。
The volume resistance, which is one of the indices indicating the insulating properties, is shown for each substance.

【0027】[0027]

【表1】 [Table 1]

【0028】つまり電気絶縁性は、体積抵抗の値が大き
い方が絶縁性が高い。冷凍機油中にHFC−134aが
多く溶解した場合には電気絶縁性は急激に低下するため
に冷凍機油中の溶解量を少なくすること又油面を下げる
ことが望ましい。
That is, the larger the value of volume resistance, the higher the electrical insulation. When a large amount of HFC-134a is dissolved in the refrigerating machine oil, the electrical insulation property is rapidly lowered.

【0029】本発明は、絶縁抵抗センサー16は、冷凍
機油中にとけている冷媒の量により、絶縁抵抗が変化す
ることを利用し冷凍機油と冷媒HFC−134aの二層
分離を解消するとともに、冷凍機油中への冷媒134a
の溶解量を少なくするものである。すなわち、横型密閉
型圧縮機のモーター停止時において、絶縁抵抗センサー
16にて、絶縁抵抗センサー16と横型密閉型圧縮機の
間との絶縁抵抗を測定し、絶縁抵抗が所定値以下になっ
た時に、ヒーター通電用制御装置15によりヒーター1
4に通電を行ない冷凍機油を加熱する。
According to the present invention, the insulation resistance sensor 16 eliminates the two-layer separation between the refrigerant oil and the refrigerant HFC-134a by utilizing the fact that the insulation resistance changes depending on the amount of the refrigerant dissolved in the refrigerant oil. Refrigerant 134a in refrigerating machine oil
Is to reduce the amount of dissolution. That is, when the motor of the horizontal hermetic compressor is stopped, the insulation resistance between the insulation resistance sensor 16 and the horizontal hermetic compressor is measured by the insulation resistance sensor 16, and when the insulation resistance becomes equal to or less than a predetermined value. The heater 1 is controlled by the heater energizing controller 15.
4 is energized to heat the refrigerator oil.

【0030】つまり、ヒーター14及び通電用制御装置
15にて横型密閉型圧縮機の絶縁抵抗が所定値以下にな
った時に横型密閉型圧縮機を加熱することにより、冷凍
機油と冷媒134aを加熱し、温度を上げることによ
り、冷凍機油と冷媒134aの二層分離をなくし圧縮機
起動時の冷媒潤滑を解消すると共に、冷凍機油中の冷媒
134aの溶解量が少なくなり又油面が低下することに
より電気絶縁性が向上しケーシング中に電流が流れず漏
電や感電の危険性が生じなくなる。
That is, when the insulation resistance of the horizontal hermetic compressor becomes equal to or less than a predetermined value by the heater 14 and the control device 15 for energization, the horizontal hermetic compressor is heated to heat the refrigerating machine oil and the refrigerant 134a. By raising the temperature, the two-layer separation between the refrigerating machine oil and the refrigerant 134a is eliminated, the refrigerant lubrication at the time of starting the compressor is eliminated, and the amount of the refrigerant 134a dissolved in the refrigerating machine oil decreases, and the oil level decreases. The electric insulation is improved, and no current flows in the casing, and the danger of electric leakage and electric shock does not occur.

【0031】又ヒーター14を絶縁抵抗センサー16に
よりON−OFFすることにより消費電力量は少なくで
きる。
The power consumption can be reduced by turning on and off the heater 14 by the insulation resistance sensor 16.

【0032】次に第2の実施例について図2を参照しな
がら説明する。
Next, a second embodiment will be described with reference to FIG.

【0033】17は、圧縮機の給油管8の下方に取り付
けられた赤外線濃度センサーである。18,19は赤外
線濃度センサーに取りつけられた発光部と受光部であ
り、発光部18より発せられた赤外線を受光部19にて
受け赤外線の各波長毎の吸収を計算し冷凍機油中の冷媒
濃度を判定する。
Reference numeral 17 denotes an infrared concentration sensor mounted below the oil supply pipe 8 of the compressor. Reference numerals 18 and 19 denote a light emitting unit and a light receiving unit attached to the infrared concentration sensor. The infrared light emitted from the light emitting unit 18 is received by the light receiving unit 19, the absorption of each wavelength of the infrared light is calculated, and the refrigerant concentration in the refrigerator oil is calculated. Is determined.

【0034】以上のように構成された横型密閉型圧縮機
についてその動作を説明する。
The operation of the horizontal hermetic compressor constructed as described above will be described.

【0035】シャフト2は、モーター部12の回転力に
よって回転し、ピストン5を動かし、副軸受3,軸受
4、及びシリンダー6によって形成された圧縮室7内の
冷媒を圧縮する。この時の圧縮熱とモーター部12の発
熱により横型密閉型圧縮機の温度が上昇する。一方、圧
縮された冷媒は冷凍システムで冷却を行ない再び圧縮機
に戻ってくる。この時、冷媒HFC−134aと冷凍機
油が潤滑のため給油装置8を通じて機械部に供給され
る。
The shaft 2 is rotated by the rotational force of the motor unit 12 to move the piston 5 to compress the refrigerant in the compression chamber 7 formed by the auxiliary bearing 3, bearing 4 and cylinder 6. The temperature of the horizontal hermetic compressor rises due to the compression heat and the heat generated by the motor section 12 at this time. On the other hand, the compressed refrigerant is cooled by the refrigeration system and returns to the compressor again. At this time, the refrigerant HFC-134a and the refrigerating machine oil are supplied to the mechanical unit through the oil supply device 8 for lubrication.

【0036】上記動作のくり返しにより、圧縮機は冷媒
圧縮時の発熱やモーター部の発熱等によっで圧縮機が高
温になると冷凍機油と冷媒HFC−134aとが徐々に
溶解を始め最終的には冷凍機油と冷媒HFC−134a
は溶解し二層分離が解消される。しかし、圧縮機が停止
した時に圧縮機内の温度,圧力が下ることにより冷媒層
13が徐々に析出する。
By repeating the above operation, when the compressor becomes high temperature due to heat generation during compression of the refrigerant or heat generation of the motor part, the refrigerant oil and the refrigerant HFC-134a gradually begin to melt, and finally. Refrigeration oil and refrigerant HFC-134a
Dissolves and the two-layer separation is eliminated. However, when the compressor is stopped, the temperature and pressure in the compressor decrease, so that the refrigerant layer 13 is gradually deposited.

【0037】本発明は、冷凍機油に冷媒134aが溶解
した時に、赤外線の吸収量が、冷媒の溶解量によって異
なることを利用し、冷凍機油と冷媒134aの二層分離
を解消するとともに、冷凍機油中への冷媒134aの溶
解量を少なくするものである。すなわち、横型密閉型圧
縮機のモーター停止時において、赤外線濃度センサー1
7にて、冷凍機油中の冷媒濃度を測定し、冷媒濃度が所
定値以上になった時に、ヒーター通電用制御装置15に
よりヒーター14に通電を行ない冷凍機油を加熱する。
The present invention utilizes the fact that when the refrigerant 134a is dissolved in the refrigerating machine oil, the amount of infrared absorption varies depending on the amount of the refrigerant dissolved, thereby eliminating the two-layer separation between the refrigerating machine oil and the refrigerant 134a and the refrigerating machine oil. This is to reduce the amount of the refrigerant 134a dissolved therein. That is, when the motor of the horizontal hermetic compressor is stopped, the infrared concentration sensor 1
At 7, the refrigerant concentration in the refrigerating machine oil is measured, and when the refrigerant concentration becomes a predetermined value or more, the heater 14 is energized by the heater energizing control device 15 to heat the refrigerating machine oil.

【0038】つまり、ヒーター15及び通電用制御装置
15にて横型密閉型圧縮機の冷媒濃度が所定値以上にな
った時に横型密閉型圧縮機を加熱することにより、冷凍
機油と冷媒134aを加熱し、温度を上げることによ
り、冷凍機油と冷媒134aの二層分離をなくし圧縮機
起動時の冷媒潤滑を解消すると共に、冷凍機油中の冷媒
134aの溶解量が少なくなり又油面が低下することに
より電気絶縁性が向上しケーシング中に電流が流れず漏
電や感電の危険性が生じなくなる。又ヒーター14を赤
外線冷媒濃度センサー17によりON−OFFすること
により消費電力量は少なくできる。
That is, by heating the horizontal hermetic compressor when the refrigerant concentration of the hermetic hermetic compressor becomes equal to or higher than a predetermined value by the heater 15 and the control device 15 for electric current, the refrigerating machine oil and the refrigerant 134a are heated. By raising the temperature, the two-layer separation between the refrigerating machine oil and the refrigerant 134a is eliminated, the refrigerant lubrication at the time of starting the compressor is eliminated, and the amount of the refrigerant 134a dissolved in the refrigerating machine oil decreases, and the oil level decreases. The electric insulation is improved, and no current flows in the casing, and the danger of electric leakage and electric shock does not occur. Further, by turning on and off the heater 14 by the infrared refrigerant concentration sensor 17, the power consumption can be reduced.

【0039】この赤外線濃度センサー17を用いた場合
には、冷凍機油や冷媒の特有波長での赤外透過度で二層
分離の判定を行なう事が可能となる。そのため、第1の
実施例である絶縁抵抗センサー16に比べ、冷凍機油に
溶解し電気抵抗を変化させる水分やイオン物質による影
響を受け難く作動時の信頼性が向上する特徴が有る。
When this infrared concentration sensor 17 is used, it is possible to determine the two-layer separation based on the infrared transmittance at a specific wavelength of the refrigerating machine oil or the refrigerant. Therefore, as compared with the insulation resistance sensor 16 according to the first embodiment, there is a feature that it is hardly affected by moisture or ionic substances which dissolve in the refrigerating machine oil and changes the electric resistance, thereby improving reliability during operation.

【0040】次に第3の実施例について図3を参照しな
がら説明する。
Next, a third embodiment will be described with reference to FIG.

【0041】20は、圧縮機の給油管8の下方に取り付
けられた粘度センサーである。
Reference numeral 20 denotes a viscosity sensor mounted below the oil supply pipe 8 of the compressor.

【0042】21,22は粘度センサー20に取りつけ
られた細管及び温度センサーであり、細管21を通して
一定体積の流体が流れる時間を検出すると共に冷凍機油
の油温を検出し粘度を補正を行う。
Numerals 21 and 22 denote a thin tube and a temperature sensor attached to the viscosity sensor 20, which detect the time during which a fixed volume of fluid flows through the thin tube 21 and detect the oil temperature of the refrigerating machine oil to correct the viscosity.

【0043】次にその動作を説明する。Next, the operation will be described.

【0044】シャフト2は、モーター部12の回転力に
よって回転し、ピストン5を動かし、副軸受3,軸受
4、及びシリンダー6によって形成された圧縮室7内の
冷媒を圧縮する。この時の圧縮熱とモーター部12の発
熱により横型密閉型圧縮機の温度が上昇する。一方、圧
縮された冷媒は冷凍システムで冷却を行ない再び圧縮機
に戻ってくる。この時、冷媒HFC−134aと冷凍機
油の混合液が潤滑のため給油装置8を通じて機械部に供
給される。
The shaft 2 is rotated by the rotational force of the motor section 12 to move the piston 5 to compress the refrigerant in the compression chamber 7 formed by the sub-bearing 3, bearing 4 and cylinder 6. The temperature of the horizontal hermetic compressor rises due to the compression heat and the heat generated by the motor section 12 at this time. On the other hand, the compressed refrigerant is cooled by the refrigeration system and returns to the compressor again. At this time, a mixed liquid of the refrigerant HFC-134a and the refrigerating machine oil is supplied to the mechanical unit through the oil supply device 8 for lubrication.

【0045】上記動作のくり返しにより、圧縮機は冷媒
圧縮時の発熱やモーター部の発熱等によって圧縮機が高
温になると冷凍機油と冷媒HFC−134aとが徐々に
溶解を始め最終的には冷凍機油と冷媒HFC−134a
は溶解し二層分離は解消される。しかし、圧縮機が低下
した時に圧縮機内の温度,圧力が下ることにより冷媒層
が徐々に析出する。
By repeating the above operation, when the compressor becomes high temperature due to heat generated during compression of the refrigerant or heat generated by the motor portion, the refrigerant oil and the refrigerant HFC-134a gradually begin to melt, and finally the refrigerant oil And refrigerant HFC-134a
Dissolves and the two-layer separation is eliminated. However, when the temperature and pressure in the compressor decrease when the compressor is lowered, the refrigerant layer is gradually deposited.

【0046】本発明は、冷凍機油に冷媒134aが溶解
した時に、冷凍機油と冷媒の粘度が異なるため、冷凍機
油の粘度が低下することを利用し、冷凍機油と冷媒13
4aの二層分離を解消するとともに、冷凍機油中の冷媒
134aの溶解量を少なくするものである。すなわち、
横型密閉型圧縮機のモーター停止時において、粘度セン
サー20にて冷凍機油の粘度を測定し粘度が所定値以下
になった時に、ヒーター通電用制御装置16によりヒー
ター15に通電を行ない冷凍機油を加熱する。
The present invention utilizes the fact that when the refrigerant 134a is dissolved in the refrigerating machine oil, the viscosity of the refrigerating machine oil and the refrigerant are reduced because the viscosity of the refrigerating machine oil and the refrigerant 13a are reduced.
This is to eliminate the two-layer separation of 4a and reduce the amount of refrigerant 134a dissolved in the refrigerating machine oil. That is,
When the motor of the horizontal hermetic compressor is stopped, the viscosity of the refrigerating machine oil is measured by the viscosity sensor 20 and when the viscosity becomes a predetermined value or less, the heater 15 is energized by the heater energizing controller 16 to heat the refrigerating machine oil. I do.

【0047】つまり、ヒーター15及び通電用制御装置
16にて横型密閉型圧縮機の冷凍機油の粘度が所定値以
下になった時に横型密閉型圧縮機を加熱することによ
り、冷凍機油と冷媒134aを加熱し、温度を上げるこ
とにより、冷凍機油と冷媒134aの二層分離をなくし
圧縮機起動時の冷媒潤滑を解消すると共に、冷凍機油中
の冷媒134aの溶解量が少なくなり又油面が低下する
ことにより電気絶縁性が向上しケーシング中に電流が流
れず漏電や感電の危険性が生じなくなる。又ヒーター1
4を粘度センサー18によりON−OFFすることによ
り消費電力量は少なくできる。
That is, when the viscosity of the refrigerating machine oil of the horizontal hermetic compressor becomes equal to or less than a predetermined value by the heater 15 and the control device 16 for energization, the refrigerating machine oil and the refrigerant 134a are heated by heating the horizontal hermetic compressor. By heating and raising the temperature, the two-layer separation of the refrigerating machine oil and the refrigerant 134a is eliminated, the refrigerant lubrication at the time of starting the compressor is eliminated, and the amount of the refrigerant 134a dissolved in the refrigerating machine oil is reduced and the oil level is reduced. As a result, the electric insulation is improved, and no current flows in the casing, and the danger of electric leakage and electric shock does not occur. Also heater 1
The power consumption can be reduced by turning ON / OFF of 4 by the viscosity sensor 18.

【0048】この粘度センサー20を用いた場合には、
冷凍機油や冷媒の物理特性である固有のずれ応力を利用
して粘度を検知し二層分離の判定を行なう事となる。ま
た、この物理特性である粘度は冷凍機油や冷媒の劣化の
影響を受け難い。そのため、第2の実施例である赤外線
センサー17に比べ、長期的に検知のレベルが一定に保
て作動時の信頼性が向上する。また、第1の実施例であ
る絶縁抵抗センサー16に比べると、冷凍機油に溶解す
る水分やイオン物質は粘度に影響を与えない。すなわ
ち、絶縁抵抗センサー16より作動時の信頼性が向上す
ることは言うまでもない。
When this viscosity sensor 20 is used,
Viscosity is detected using inherent shear stress, which is a physical characteristic of refrigerating machine oil or refrigerant, to determine two-layer separation. Further, the viscosity, which is a physical property, is hardly affected by deterioration of the refrigerating machine oil or the refrigerant. Therefore, as compared with the infrared sensor 17 of the second embodiment, the level of detection is kept constant over a long period, and the reliability during operation is improved. Also, compared to the insulation resistance sensor 16 of the first embodiment, the water and ionic substances dissolved in the refrigerating machine oil do not affect the viscosity. That is, it goes without saying that the reliability during operation is higher than that of the insulation resistance sensor 16.

【0049】前記、第1から第3の実施例については、
冷媒HFC−134aとエステル系冷凍機油について説
明を行ったが、 ○ 冷媒HFC152aとアルキルベンゼン系冷凍機油 ○ 3種混合冷媒(HCFC22,HFC152aとH
CFC124あるいはCFC114との混合冷媒)とア
ルキルベンゼン系冷凍機油 ○ 3種混合冷媒とナフテン系鉱油 との組合せにおいても成立する。
Regarding the first to third embodiments,
The refrigerant HFC-134a and the ester-based refrigerating machine oil have been described. ○ Refrigerant HFC152a and alkylbenzene-based refrigerating machine oil ○ Three kinds of refrigerant mixture (HCFC22, HFC152a and H
Refrigerant oil mixed with CFC124 or CFC114) and alkylbenzene-based refrigerating machine oil.

【0050】[0050]

【発明の効果】冷媒と冷凍機油が二層分離を生じ、前記
二層分離曲線が上側に凸である冷媒と冷凍機油を封入し
た密閉ケーシングと、前記密閉ケーシング内に収納され
た機械部と前記機械部を駆動させるモーター部と、前記
機械部に冷凍機油を搬送する給油装置と、前記密閉ケー
シングに密着したヒーターと、前記給油装置の給油部の
下方に設置された二層分離を検知するセンサーとから成
る。
The refrigerant and the refrigerating machine oil undergo two-layer separation, and the two-layer separation curve is upwardly convex. The hermetically sealed casing enclosing the refrigerant and the refrigerating machine oil, the mechanical part housed in the hermetically sealed casing, and A motor unit that drives a mechanical unit, an oil supply device that conveys refrigerating machine oil to the mechanical unit, a heater that is in close contact with the closed casing, and a sensor that detects two-layer separation installed below the oil supply unit of the oil supply device. Consisting of

【0051】また、センサーとして冷媒と冷凍機油の電
気抵抗を検知する絶縁抵抗センサーを用いるものがあ
る。
Some sensors use an insulation resistance sensor for detecting the electrical resistance between the refrigerant and the refrigerating machine oil.

【0052】また、センサーとして冷媒と冷凍機油の赤
外線の透過度を検知する赤外線濃度センサーを用いるも
のである。
Further, as the sensor, an infrared concentration sensor for detecting the infrared transmittance of the refrigerant and the refrigerating machine oil is used.

【0053】また、センサーとして冷媒と冷凍機油の粘
度を検知する粘度センサーを用いるものである。
Further, a viscosity sensor for detecting the viscosity of the refrigerant and the refrigerating machine oil is used as the sensor.

【0054】これより以下の効果が得られる。Thus, the following effects can be obtained.

【0055】a 圧縮機停止時に冷媒と冷凍機油が二層
分離する時点をセンサーが検知することにより、ヒータ
ーが圧縮機を加熱し、冷媒と冷凍機油の二層分離を解消
し圧縮機起動時における冷媒潤滑をなくす。
A When the sensor detects the point at which the refrigerant and the refrigerating machine oil separate into two layers when the compressor is stopped, the heater heats the compressor, cancels the two-layer separation between the refrigerant and the refrigerating machine oil, and operates when the compressor starts. Eliminate refrigerant lubrication.

【0056】b 又上記ヒーターによる加熱により、冷
凍機油中の冷媒134aの溶解量は少なくなり油面が低
下することにより電気絶縁性が向上しケーシング中に電
流が流れず漏電や感電の危険性が生じなくなる。
B. Heating by the heater reduces the amount of the refrigerant 134a dissolved in the refrigerating machine oil and lowers the oil level, thereby improving the electrical insulation and preventing the current from flowing in the casing, thereby reducing the risk of electric leakage and electric shock. No longer occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例おける圧縮機の断面図FIG. 1 is a sectional view of a compressor according to a first embodiment of the present invention.

【図2】本発明の他の実施例における圧縮機の断面図FIG. 2 is a sectional view of a compressor according to another embodiment of the present invention.

【図3】本発明の他の実施例における圧縮機断面図FIG. 3 is a sectional view of a compressor according to another embodiment of the present invention.

【図4】従来の圧縮機の断面図FIG. 4 is a sectional view of a conventional compressor.

【符号の説明】[Explanation of symbols]

1 機械部 12 モーター部 14 ヒーター 15 通電用制御装置 16 絶縁抵抗センサー 17 赤外線濃度センサー 20 粘度センサー DESCRIPTION OF SYMBOLS 1 Mechanical part 12 Motor part 14 Heater 15 Control device for electric conduction 16 Insulation resistance sensor 17 Infrared density sensor 20 Viscosity sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 HFC系冷媒とエステル系冷凍機油を封
入した密閉ケーシングと、前記密閉ケーシング内に収納
された機械部と前記機械部を駆動させるモーター部と、
前記機械部に冷凍機油を搬送する給油装置と、前記密閉
ケーシングに密着したヒーターと、前記密閉ケーシング
内に封入された前記HFC系冷媒が下層に、前記エステ
ル系冷凍機油が上層に分離したことを検知して前記ヒー
ターに通電を行うセンサーとからなる横型密閉型圧縮
機。
A closed casing enclosing an HFC-based refrigerant and an ester-based refrigerating machine oil, a mechanical unit housed in the closed casing, and a motor unit for driving the mechanical unit;
An oil supply device that conveys refrigerating machine oil to the mechanical unit, a heater that is in close contact with the closed casing, that the HFC-based refrigerant sealed in the closed casing is separated into a lower layer, and that the ester-based refrigerating machine oil is separated into an upper layer. A horizontal hermetic compressor comprising a sensor that detects and energizes the heater.
【請求項2】 センサーが冷媒と冷凍機油の電気抵抗を
検知する絶縁抵抗センサーであることを特徴とする請求
項1記載の横型密閉型圧縮機。
2. The horizontal hermetic compressor according to claim 1, wherein the sensor is an insulation resistance sensor for detecting electric resistance between the refrigerant and the refrigerating machine oil.
【請求項3】 センサーが冷媒と冷凍機油の赤外線の透
過度を検知する赤外線濃度センサーであることを特徴と
する請求項1記載の横型密閉型圧縮機。
3. The horizontal hermetic compressor according to claim 1, wherein the sensor is an infrared concentration sensor for detecting the infrared transmittance of the refrigerant and the refrigerating machine oil.
【請求項4】 センサーが冷媒と冷凍機油の粘度を検知
する粘度センサーであることを特徴とする請求項1記載
の横型密閉型圧縮機。
4. The horizontal hermetic compressor according to claim 1, wherein the sensor is a viscosity sensor for detecting the viscosity of the refrigerant and the refrigerating machine oil.
【請求項5】 請求項1から4までのいずれかに記載の
横型密閉型圧縮機を備えた冷凍装置。
5. A refrigerating apparatus comprising the horizontal hermetic compressor according to claim 1.
【請求項6】 請求項1から4までのいずれかに記載の
横型密閉型圧縮機を備えた冷蔵庫。
6. A refrigerator comprising the horizontal hermetic compressor according to claim 1.
JP2000014522A 2000-01-01 2000-01-24 Horizontal hermetic compressor Pending JP2000161210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014522A JP2000161210A (en) 2000-01-01 2000-01-24 Horizontal hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014522A JP2000161210A (en) 2000-01-01 2000-01-24 Horizontal hermetic compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30987490A Division JPH04179876A (en) 1990-11-14 1990-11-14 Sealed type compressor

Publications (1)

Publication Number Publication Date
JP2000161210A true JP2000161210A (en) 2000-06-13

Family

ID=18541972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014522A Pending JP2000161210A (en) 2000-01-01 2000-01-24 Horizontal hermetic compressor

Country Status (1)

Country Link
JP (1) JP2000161210A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189240A (en) * 2011-03-09 2012-10-04 Mitsubishi Electric Corp Air-conditioning apparatus
US9903629B2 (en) 2012-06-20 2018-02-27 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer
CN109113997A (en) * 2018-08-29 2019-01-01 珠海凌达压缩机有限公司 Compressor and mounted air conditioner system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189240A (en) * 2011-03-09 2012-10-04 Mitsubishi Electric Corp Air-conditioning apparatus
EP2498029A3 (en) * 2011-03-09 2014-05-07 Mitsubishi Electric Corporation Air-conditioning apparatus
US8966915B2 (en) 2011-03-09 2015-03-03 Mitsubishi Electric Corporation Air-conditioning apparatus utilizing compressor preheating
US9903629B2 (en) 2012-06-20 2018-02-27 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer
CN109113997A (en) * 2018-08-29 2019-01-01 珠海凌达压缩机有限公司 Compressor and mounted air conditioner system

Similar Documents

Publication Publication Date Title
CN109072900B (en) Compressor and heat cycle system
JP6504172B2 (en) Thermal cycle system
CN105907376B (en) compressor for refrigeration and air-conditioning and refrigeration and air-conditioning device
JP5906461B2 (en) Hermetic compressor
JP2002266762A (en) Refrigerating cycle device
JP2732685B2 (en) Detecting method of refrigerant penetration in compressor
WO2020050020A1 (en) Electric compressor, and refrigeration and air conditioning device using same
JP2000161210A (en) Horizontal hermetic compressor
JP2003336916A (en) Refrigerating cycle and heat pump water heater
JP6897119B2 (en) Refrigerator
JP3654702B2 (en) Refrigeration cycle equipment
JP3019923B2 (en) Hermetic compressor and refrigerator and freezer equipped with hermetic compressor
JPH04179876A (en) Sealed type compressor
JP2000130332A (en) Horizontal hermetic compressor
JP2000120542A (en) Refrigeration system
JP2000145640A (en) Equipment using refrigerant
JP2000110721A (en) Refrigerating device
JPH0885798A (en) Refrigerating machine oil composition
JP2000136788A (en) Vertical compressor
WO2019102532A1 (en) Compressor and refrigeration cycle device
JP2000297967A (en) Refrigerating cycle device
JPH0427780A (en) Refrigerant gas compressor
JP2002194375A (en) Working medium composition for freezing/air conditioning use and freezing/air conditioning unit using the same
JPH11294334A (en) Compressor for refrigeration cycle device and refrigeration cycle device
WO2018139316A1 (en) Refrigeration device