JPH04179248A - Production of semiconductor device - Google Patents

Production of semiconductor device

Info

Publication number
JPH04179248A
JPH04179248A JP2307635A JP30763590A JPH04179248A JP H04179248 A JPH04179248 A JP H04179248A JP 2307635 A JP2307635 A JP 2307635A JP 30763590 A JP30763590 A JP 30763590A JP H04179248 A JPH04179248 A JP H04179248A
Authority
JP
Japan
Prior art keywords
reticle
chip
chips
exposure
line width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2307635A
Other languages
Japanese (ja)
Inventor
Takehiro Sato
丈弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu VLSI Ltd
Fujitsu Ltd
Original Assignee
Fujitsu VLSI Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu VLSI Ltd, Fujitsu Ltd filed Critical Fujitsu VLSI Ltd
Priority to JP2307635A priority Critical patent/JPH04179248A/en
Publication of JPH04179248A publication Critical patent/JPH04179248A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the occurrence of wafers without good products by using a reticle designed to expose multiple chip patterns with different pattern measurements in one exposure to form multiple chips and then applying the results of chip feature measurements for these chips to achieve the optimal pattern measurements. CONSTITUTION:When a reticle 1 is used to create the 3 chips 1A, 1B, and 1C with different pattern measurements, the gate has the greatest effect on FET device characteristics and requires the most precise line width control. By adjusting the gate line widths to be, for example, 0.90, 0.85, and 0.80mum, FET devices with dramatically different characteristics can be achieved. In this case, the reticle 1 for forming the gates should be designed with 4.50mum for a chip 11, 4.25mum for a chip 12, and 4.00mum for a chip 13 at X5 size. As a result. when this type of reticle is used for exposure, there is no need to change any other processes.

Description

【発明の詳細な説明】 〔概要〕 試作過程において最適パターン寸法設定のための方法に
関し。
[Detailed Description of the Invention] [Summary] This invention relates to a method for setting optimal pattern dimensions in a trial production process.

フォトプロセス以外の製造条件を振ることなく、パター
ンの線幅制御が容易に行え、良品のとれないウェハをな
くすることを目的とし。
The aim is to easily control pattern line width without changing manufacturing conditions other than the photo process, and to eliminate wafers that fail to produce good quality products.

1回の露光でパターン寸法の異なる複数のチップのパタ
ーンを露光するレチクルを使用して複数のチップを形成
し、これらのチップの特性測定結果から最適パターン寸
法を求める工程を有するように構成する。
The present invention is configured to include the steps of forming a plurality of chips using a reticle that exposes patterns of a plurality of chips having different pattern dimensions in one exposure, and determining an optimum pattern dimension from the results of measuring the characteristics of these chips.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法にかかり、特に試作過程
において最適パターン寸法設定のための方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for setting optimum pattern dimensions during a trial manufacturing process.

近年、半導体装置の高集積化、微細化にともない、製造
プロセスの制御は物理的、化学的な限界以」二の精度が
要求されている。
In recent years, as semiconductor devices have become highly integrated and miniaturized, control of manufacturing processes is required to be more accurate than physical and chemical limits.

本発明はこの要求に対応した製造方法として利用できる
The present invention can be used as a manufacturing method that meets this requirement.

〔従来の技術〕[Conventional technology]

従来の半導体装置の製造においては、上記の限界を超え
る制御を行うために、非常に厳しい管理を行っていた。
In the conventional manufacturing of semiconductor devices, very strict management has been carried out in order to perform control exceeding the above-mentioned limits.

このため、製品のスループットは低下し、先端品種の製
造ラインの流れや開発期間に悪影響をtj。
As a result, product throughput decreases, negatively impacting the flow of manufacturing lines and development periods for advanced products.

えていた。It was happening.

また、設計・製造条件の設定には、ウェハプロセスを経
て試験工程でチエツクを行った後、プロセスに帰還がか
かるためその間に大量のロスを発生する可能性か高い。
Furthermore, in setting the design and manufacturing conditions, feedback is required to the process after going through the wafer process and checking in the test process, so there is a high possibility that a large amount of loss will occur during that time.

〔発明か解決しようとする課題) 従来、デバイスのパターン設計はコンピュータによる自
動設計で最適寸法が決められているか。
[Problem to be solved by the invention] Conventionally, the optimal dimensions for device pattern design have been determined by automatic computer design.

」1記のような限界ぎりぎりの管理による製造プロセス
を採用しなければならないため、設計上の最適値では不
十分となり、デバイスパターンの微妙な線幅制御とイオ
ン注入のドーズ量およびアニール条件等の制御を行って
デバイス特性の改善を行っている。
” 1), the optimum design value is insufficient, and delicate line width control of the device pattern, ion implantation dose, annealing conditions, etc. must be adopted. Control is performed to improve device characteristics.

そこで1本発明は1回の露光で複数のチップを露光する
品種の試作過程において、パターンの線幅制御を容易に
行えるようにし、良品のとれないウェハをなくすること
を目的とする。
Therefore, one object of the present invention is to make it possible to easily control the line width of a pattern in the process of prototyping a product in which a plurality of chips are exposed in one exposure, and to eliminate wafers that cannot be made into good quality.

〔課題を解決するだめの手段〕[Failure to solve the problem]

」1記課題の解決は、1回の露光でパターン寸法の異な
る複数のチップのパターンを露光するレチクルを使用し
て複数のチップを形成し、これらのチップの特性測定結
果から最適パターン寸法を求める工程を有する半導体装
置の製造方法により達成される。
The solution to problem 1 is to form multiple chips using a reticle that exposes multiple chip patterns with different pattern dimensions in a single exposure, and then determine the optimal pattern dimensions from the results of measuring the characteristics of these chips. This is achieved by a method for manufacturing a semiconductor device that includes steps.

〔作用〕[Effect]

本発明は、半導体装置の試作工程において1細かく製造
条件を振ることは困難であるので、同じ条件で製造して
もデバイス特性か変わるようにレチクル中の各チップの
パターン寸法を変えて条件を振るようにして、すなわち
、プロセスは全く同一条件で特性の異なるチップを得る
ことにより。
In the present invention, since it is difficult to vary the manufacturing conditions in detail in the prototyping process of semiconductor devices, the pattern dimensions of each chip in the reticle are changed so that the device characteristics change even if manufactured under the same conditions. In this way, the process can obtain chips with different characteristics under exactly the same conditions.

これらのチップをチエツクして最適パターンを求められ
るようにしたものである。
The optimum pattern can be found by checking these chips.

本発明ては、レチクル自身で微妙な線幅制御を行ってい
るため、露光以外のプロセスに与える影響は少ない。ま
た、レチクルは通常×5.または×10の倍率で描かれ
ているため、レチクル上の線幅制御は容易である。
In the present invention, since delicate line width control is performed by the reticle itself, there is little influence on processes other than exposure. Also, the reticle is normally x5. Since it is drawn at a magnification of x10, it is easy to control the line width on the reticle.

〔実施例〕〔Example〕

第1図は本発明の一実施例によるレチクルの平面図であ
る。
FIG. 1 is a plan view of a reticle according to an embodiment of the present invention.

レチクル1が1例えばパターン寸法の異なる3個のチッ
プIA、 IB、 ICで構成されている場合について
説明する。
A case will be described in which the reticle 1 is composed of, for example, three chips IA, IB, and IC having different pattern dimensions.

FETにいてはデバイス特性に最も影響を与え。For FETs, it has the greatest impact on device characteristics.

線幅の精密な制御か求められているのはゲートである。Gates require precise control of line width.

ゲートの線幅を2例えば0.90.0.85.0.80
μmと振ることにより、特性(スピード)が大幅に異な
るFETが得られる。
Set the line width of the gate to 2 e.g. 0.90.0.85.0.80
By changing the value to μm, FETs with significantly different characteristics (speed) can be obtained.

この場合のゲーI・形成用のレチクル1は、×5のとき
、チップ11では4.50μm、チップ12ては4.2
5μm、チップ13ては4.00μmの線幅で作製すれ
ばよい。
In this case, the reticle 1 for forming the game I is 4.50 μm for the chip 11 and 4.2 μm for the chip 12 when the size is
The line width of the chip 13 may be 4.00 μm.

この結果、露光時のレチクルを上記のものを用いるだけ
で、その他のプロセスは全く変える必要はない。
As a result, it is only necessary to use the above-mentioned reticle during exposure, and there is no need to change any other processes.

゛つぎに2本発明の効果を示す具体例について説明する
Next, two specific examples showing the effects of the present invention will be described.

対象はIMビットのSRAMを選ぶ。Select IM bit SRAM as the target.

この品種はデバイス特性が厳しく、特に、スピードか問
題になり、ゲートの線幅の出来」二がりの狙い幅(規格
)は、0.95±0.05μmて製造ロットを流してい
る。
This product has strict device characteristics, especially speed, and the target line width (standard) for the gate line width is 0.95±0.05 μm in production lots.

これに対して、レジス1〜膜は0.85±0.05μm
の規格にしている。
On the other hand, resist 1~film is 0.85±0.05μm
standards.

この結果、設計上コンピュータシミュレーションのデー
タによりスピードが25 nsのバージョンか得られる
はすであるが、出来幅で0.95μmを超えると25 
nsのバージョンかとれなくなる(ただし、35nsの
バージョンはとれる)。
As a result, it is possible to obtain a version with a speed of 25 ns based on computer simulation data due to the design, but if the width exceeds 0.95 μm, the speed will be 25 ns.
The ns version cannot be changed (however, the 35ns version can be changed).

反対に線幅が細くなる方は0.90μmを切ると全く製
品が得られなくなる。
On the other hand, if the line width becomes thinner than 0.90 μm, no product can be obtained at all.

つまり、目的の25 nsのバージョンを得るためには
極く狭い範囲の条件しかなかったか、この条件を得るた
めに50ロット以上の実験ロットを流すことも稀ではな
く、これを5〜lOロツトに減らすことかできれば開発
手番の短縮や製造原価の切下げに大きく貢献できる。
In other words, to obtain the desired 25 ns version, there was only a very narrow range of conditions, or it is not uncommon for more than 50 experimental lots to be run to obtain this condition, and these were reduced to 5 to 10 lots. If it can be reduced, it will greatly contribute to shortening the development cycle and lowering manufacturing costs.

また、良品か得られないのはプロセス上の問題か設計−
にの問題かを知るのに長時間を要したか。
Also, if you are not able to obtain a good product, is it a process problem or a design problem?
Did it take you a long time to figure out what the problem was?

本発明によると10ツトで多数の条件(特性)が得られ
るため少数の実験ロットで短時間に知ることかできるた
め、不良解析技術にも寄与するところか大きい。
According to the present invention, since a large number of conditions (characteristics) can be obtained in 10 tests, it is possible to obtain information in a short time with a small number of experimental lots, which greatly contributes to failure analysis technology.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、1回の露光で複数
のチップを露光する品種の試作過程において、パターン
の線幅制御が容易に行えるようなり、良品のとれないウ
ェハをなくすることができた。
As explained above, according to the present invention, it is possible to easily control the line width of a pattern in the prototyping process of a product that exposes multiple chips in one exposure, and it is possible to eliminate wafers that cannot be made into good quality. did it.

すなわち、初期試作段階において、少量のロットを工程
に流すたけでいろいろの特性の試料を得ることができ、
各試料をチエツクして最適線幅を決定することかできる
ようになった。
In other words, at the initial prototyping stage, samples with various characteristics can be obtained by simply running a small lot through the process.
It is now possible to check each sample to determine the optimum linewidth.

また、今後現状のプロセスの安定性のままで。Moreover, the stability of the current process will remain unchanged in the future.

集積度か上がってゆくと、ごくわずかの製造条件のずれ
て良品かとれないことか予想されるか、そのときは露光
工程以外の工程の精度か上からないかぎり本発明の適用
を抜きにしては製造不可能であることか予想できる。
As the degree of integration increases, it may be expected that a slight deviation in the manufacturing conditions will result in a failure to produce a good product.In that case, unless the accuracy of processes other than the exposure process can be improved, application of the present invention may be unnecessary. It can be predicted that it is impossible to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるレチクルの平面図であ
る。 図において。 1はレチクル。
FIG. 1 is a plan view of a reticle according to an embodiment of the present invention. In fig. 1 is the reticle.

Claims (1)

【特許請求の範囲】[Claims]  1回の露光でパターン寸法の異なる複数のチップのパ
ターンを露光するレチクルを使用して複数のチップを形
成し、これらのチップの特性測定結果から最適パターン
寸法を求める工程を有することを特徴とする半導体装置
の製造方法。
It is characterized by having a step of forming a plurality of chips using a reticle that exposes patterns of a plurality of chips having different pattern dimensions in one exposure, and determining an optimum pattern dimension from the results of measuring the characteristics of these chips. A method for manufacturing a semiconductor device.
JP2307635A 1990-11-14 1990-11-14 Production of semiconductor device Pending JPH04179248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2307635A JPH04179248A (en) 1990-11-14 1990-11-14 Production of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2307635A JPH04179248A (en) 1990-11-14 1990-11-14 Production of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04179248A true JPH04179248A (en) 1992-06-25

Family

ID=17971412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2307635A Pending JPH04179248A (en) 1990-11-14 1990-11-14 Production of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04179248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195252A (en) * 2005-01-14 2006-07-27 Nikon Corp Manufacturing method of mask substrate and micro lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195252A (en) * 2005-01-14 2006-07-27 Nikon Corp Manufacturing method of mask substrate and micro lens
JP4595548B2 (en) * 2005-01-14 2010-12-08 株式会社ニコン Manufacturing method of mask substrate and microlens

Similar Documents

Publication Publication Date Title
US6334209B1 (en) Method for exposure-mask inspection and recording medium on which a program for searching for portions to be measured is recorded
CN101432658B (en) Method and system for controlling critical dimensions of structures formed on a wafer in semiconductor processing
US7569309B2 (en) Gate critical dimension variation by use of ghost features
US20030054642A1 (en) Production method of semiconductor device and production system of semiconductor device
KR20110010804A (en) Substrate matrix to decouple tool and process effects
KR100509996B1 (en) Manufacturing method of photomask and manufacturing method of semiconductor device using the photomask
US6420077B1 (en) Contact hole model-based optical proximity correction method
JPH097924A (en) Equipment and method for manufacturing semiconductor device
KR20050077167A (en) Method for correction mask layout by ocp using multi simulation model
US7970485B2 (en) Systems and methods for determining width/space limits for a mask layout
JPH04179248A (en) Production of semiconductor device
CN114077166B (en) Method for obtaining critical dimension rocking curve of photoetching technology
CN1833205B (en) Measuring the effect of flare on line width
KR20000034525A (en) Lithography method for fabrication of semiconductor device
KR20220125338A (en) How to check a multi-step process
KR100391158B1 (en) in-line system having function for measuring overlay accuracy and method for measuring same
Ronse et al. Characterization and optimization of CD control for 0.25-um CMOS applications
US7153711B2 (en) Method for improving a drive current for semiconductor devices on a wafer-by-wafer basis
KR100261164B1 (en) Eguipment for fabricating of semiconductor device
US6225134B1 (en) Method of controlling linewidth in photolithography suitable for use in fabricating integrated circuits
JP2000124103A (en) Exposure method and aligner
KR100341531B1 (en) Stepper scanner discretionary lithography and common mask discretionary lithography for integrated circuits
KR100688721B1 (en) Method for measuring a overlay status in a fabricating process of a semiconductor device
KR0175019B1 (en) Semiconductor chip
Levinson Lithography process control