JPH04178633A - Formation of semiconductor circuit - Google Patents

Formation of semiconductor circuit

Info

Publication number
JPH04178633A
JPH04178633A JP2306269A JP30626990A JPH04178633A JP H04178633 A JPH04178633 A JP H04178633A JP 2306269 A JP2306269 A JP 2306269A JP 30626990 A JP30626990 A JP 30626990A JP H04178633 A JPH04178633 A JP H04178633A
Authority
JP
Japan
Prior art keywords
substrate
film
circuits
circuit
active matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2306269A
Other languages
Japanese (ja)
Other versions
JP2866730B2 (en
Inventor
Kinya Kato
加藤 謹矢
Kenji Nakazawa
中沢 憲二
Shiro Suyama
史朗 陶山
Keiji Tanaka
敬二 田中
Shigenobu Sakai
酒井 重信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP30626990A priority Critical patent/JP2866730B2/en
Publication of JPH04178633A publication Critical patent/JPH04178633A/en
Application granted granted Critical
Publication of JP2866730B2 publication Critical patent/JP2866730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To allow the transfer of circuits without using a costly polishing device by sticking a 1st substrate which is formed of the circuits with a 1st film or the 1st film and at least one layer of a 2nd film to a 2nd substrate on the side where the above-mentioned circuits are formed to each other, then etching away the 1st film and transferring the circuits onto the 2nd substrate. CONSTITUTION:A molybdenum film is first deposited at the 1st film 12 on the 1st substrate 11 consisting of Si. An SiO2 film is then deposited as the 2nd film 13 thereon and thereafter, TFTs 17 formed by using a-Si as well as picture element electrodes 18 consisting of ITO (indium tin oxide) and wirings consisting of A1 are formed thereon to produce an active matrix 14. An adhesive 15 of, for example, an epoxy system is then applied on the matrix 14 and a PET film is stuck as the 2nd substrate 16 onto the circuits. The assembly is thereafter immersed into hydrogen peroxide and the molybdenum film 12 is completely removed by etching. Finally, the 1st substrate 11 is completely peeled and the above-mentioned circuits are completed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体回路の形成方法に係り、特に、基板の材
質に制約のない半導体回路の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a semiconductor circuit, and particularly to a method for forming a semiconductor circuit without restrictions on the material of a substrate.

[従来の技術1 液晶デイスプレィ(LCD)に代表される薄型で低消費
電力の平面型表示装置(デイスプレィ)の研究開発が盛
んである。これらのデイスプレィでは、配線が形成され
た基板、または高表示品質を得るために、能動素子(ア
モルファスS1薄膜トランジスタ(a−3i  TFT
)や多結晶S1薄膜トランジスタ[poly −S i
  T F 7N )を作り込んだアクティブマトリク
ス基板が必要であり、配線やアクティブマトリクスが形
成される基板材料にはガラスが用いられるのが一般的で
あった。
[Prior Art 1] Research and development of flat display devices (displays), which are thin and have low power consumption, such as liquid crystal displays (LCDs), are actively being conducted. These displays use substrates with wiring or active elements (amorphous S1 thin film transistors (A-3I TFTs) to obtain high display quality.
) and polycrystalline S1 thin film transistors [poly-Si
An active matrix substrate incorporating T F 7N is required, and glass is generally used as the substrate material on which the wiring and active matrix are formed.

しかし、ガラスではその耐熱温度に制約があり、上記配
線や能動素子の製作に大きな制約を課していた。すなわ
ち、安価なガラスの耐熱温度は概して低く、また能動素
子に悪影響を与えるアルカリ金属の含有が避けられない
。このため、不純物含有が少なく、耐熱温度の高い安価
なガラス基板の開発が要請されているが、これらの要求
を満たすガラスの開発がままならない。一方、ガラス基
板を用いるとその剛性のためデイスプレィを未使用時に
小さく折り畳んでおくことができない問題があった。し
たがって、未使用時には小さく折り畳むことができるフ
レキシブル基板を用いたデイスプレィの出現が待望され
ている。
However, glass has limitations in its heat resistance, which imposes significant restrictions on the production of the wiring and active elements. That is, the heat resistance temperature of inexpensive glass is generally low, and it is inevitable that it contains alkali metals that adversely affect active elements. For this reason, there is a demand for the development of inexpensive glass substrates that contain fewer impurities and have a high heat resistance, but there is still no progress in developing glasses that meet these demands. On the other hand, when a glass substrate is used, there is a problem that the display cannot be folded up into a small size when not in use due to its rigidity. Therefore, a display using a flexible substrate that can be folded into a small size when not in use is eagerly awaited.

基板の制約を取り除く技術としては、1989年のイン
ターナショナルエレクトヨシ デバイスミーディング(
Internationa、I ElectronDe
vice Meeting (IEDM))にデバイス
転載技術が報告されている(ケイ・スミヨシ(K、 S
umiyoshi、)他、[デバイス レイア トラン
スフアートポリ−シリコンティーエフティーアレイ フ
ォーハイ レゾル−ジョン リキッドクリスタルプロジ
ェクタ−(”DEVICE LAYERTRANSFE
RED POLY−5iTFT  ARRAY  FO
RHl(J  RESOLUTION  LTQIJI
DCRYSTAL PROJECTOR”)J 、アイ
イーデイ−エム(IEDM)89. p、165.19
89)。
As a technology to remove board constraints, International Electric Yoshi Device Meading (1989)
Internationala, I ElectronDe
device reprinting technology has been reported in Vice Meeting (IEDM) (K. Sumiyoshi (K, S.
umiyoshi, ) et al., [DEVICE LAYERTANSFE
RED POLY-5iTFT ARRAY FO
RHl(J RESOLUTION LTQIJI
DCRYSTAL PROJECTOR”) J, IEDM 89.p, 165.19
89).

1発明が解決しようとする課題] 上記の技術は81基板上に酸化膜(SiC,膜)を介し
てアクティブマトリクスを製作したのち、別の基板と張
り合わせ、その後81基板を研磨工程で除去するもので
ある。研磨工程ではSlより8101の研磨速度が小さ
いため、S10.が現われたところで研磨を止めること
ができ、結果として81基板」−に形成したデバイスを
別の基板上に転載することができる。上記報告では同じ
工程を2回用い、まず別のSi基板に転載したのち、次
にガラス基板に転載している。これは、デバイスの天地
反転を防止するためで本質ではない。この方法では、ア
クティブマトリクスを製作する基板として耐熱温度の高
いS】基板を用いることができるため、マトリクス製作
における製作温度の制約が少なく、高温度で高性能のT
FTの作製を可能にする利点があるが、研磨を用いて転
載を行うため、剛性のないフレキシブル基板に転載しよ
うとするとSi基板が研磨により薄くなるにしたがって
基板が変形し、研磨が均一にできないという根本的問題
があった。さらに、コストの高い研磨装置を準備しなけ
ればならない問題があった。
1. Problems to be Solved by the Invention] The above technology fabricates an active matrix on the 81 substrate via an oxide film (SiC, film), then attaches it to another substrate, and then removes the 81 substrate in a polishing process. It is. In the polishing process, since the polishing rate of 8101 is lower than that of Sl, S10. The polishing can be stopped when the 81-substrate appears, and as a result, the device formed on the 81-substrate can be transferred onto another substrate. In the above report, the same process was used twice, first transferring to another Si substrate and then transferring to a glass substrate. This is to prevent the device from turning over, but is not essential. In this method, a high-temperature S] substrate with high heat resistance can be used as the substrate for fabricating the active matrix, so there are fewer restrictions on the fabrication temperature in matrix fabrication.
It has the advantage of making it possible to fabricate FT, but since the transfer is performed using polishing, if you try to transfer it onto a flexible substrate that has no rigidity, the substrate will deform as the Si substrate becomes thinner due to polishing, making it impossible to polish uniformly. There was a fundamental problem. Furthermore, there is a problem in that an expensive polishing device must be prepared.

本発明の目的は、上記問題を解決し、基板に対する制約
のない回路の転載方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a method for reprinting a circuit without restrictions on the substrate.

[課題を解決するための手段] 本発明は、基板上に形成した回路と基板との間に介在さ
せた膜をエツチングで除去する方法を用いる。この膜の
エツチング速度が大きく、製作した回路、デバイスや基
板に対してこの膜を選択的に除去できれば回路、デバイ
スの転載が可能である。
[Means for Solving the Problems] The present invention uses a method of removing by etching a film interposed between a circuit formed on a substrate and the substrate. If this film has a high etching speed and can be selectively removed from manufactured circuits, devices, or substrates, the circuits and devices can be reprinted.

すなわち、本発明の半導体回路の形成方法は、第1の膜
、または第1の膜および少なくとも1層の第2の膜を介
して回路を形成した第1の基板を上記回路を形成した側
で第2の基板に張り合わせたのち、上記第1の膜をエツ
チングにより除去することにより」二記回路を上記第2
の基板上に転載することを特徴とする。
That is, in the method for forming a semiconductor circuit of the present invention, a first substrate on which a circuit is formed via a first film, or a first film and at least one layer of a second film is placed on the side on which the circuit is formed. After attaching the first film to the second substrate, the first film is removed by etching to form the second circuit.
It is characterized by being transferred onto a board.

し作用] 本発明では、回路を形成する基板に耐熱温度が高い基板
や、回路に悪影響を与える物質を含まない基板を用いる
ことができ、基板の制約を少なくすることができる。ま
た、回路を転載するのに、従来技術のように研磨を行わ
なくて済むので、コストの高い研磨装置が不用であり、
かつ剛性のないフレキシブル基板に転載しようとする場
合も基板が変形する問題もない。
Effect] In the present invention, it is possible to use a substrate with a high heat resistance or a substrate that does not contain substances that adversely affect the circuit as a substrate forming a circuit, and it is possible to reduce restrictions on the substrate. In addition, unlike conventional technology, polishing is not required when reprinting a circuit, so expensive polishing equipment is not required.
In addition, even when attempting to transfer onto a flexible substrate without rigidity, there is no problem of the substrate deforming.

[実施例] 実施例1 第1図(a)〜(f)は、本発明の半導体回路の形成方
法の第1の実施例の工程断面図である。
[Example] Example 1 FIGS. 1(a) to 1(f) are process cross-sectional views of a first example of the method for forming a semiconductor circuit of the present invention.

本実施例では、例えば4インチ径の81の第1の基板上
に回路としてアクティブマトリクスを形成し、ポリエチ
レンテレフタレート(PUT)の第2の基板上に転載し
た例を示す。
In this embodiment, an example is shown in which an active matrix is formed as a circuit on a first substrate 81 having a diameter of 4 inches, and is transferred onto a second substrate made of polyethylene terephthalate (PUT).

まず、第1図(a)に示すように、Siの第1の基板l
l上に第1の膜12としてモリブデン膜を約〕μm堆積
する。次いで、(b)に示すように、製作工程中にモリ
ブデン膜12が酸化性雰囲気に曝されないよう、第2の
膜13としてSi、O,膜を堆積したのち、通常のアク
ティブマトリクス製作法でa−3iを用いたTFT17
およびIT○(酸化インジウム錫)の画素電極18、A
1の配線を形成し、アクティブマトリクス14を製作す
る。次いで、(c)に示すように、例えばエポキシ系の
接着剤15をアクティブマトリクス14上に塗布し、(
d)に示すように第2の基板]6としてPETMを回路
上に張り合わせる。
First, as shown in FIG. 1(a), a first substrate l of Si is prepared.
A molybdenum film is deposited as a first film 12 on the substrate 1 to a thickness of about 1 μm. Next, as shown in (b), in order to prevent the molybdenum film 12 from being exposed to an oxidizing atmosphere during the manufacturing process, Si, O, and other films are deposited as the second film 13, and then a film is deposited using a normal active matrix manufacturing method. -TFT17 using 3i
and IT○ (indium tin oxide) pixel electrode 18, A
1 wiring is formed, and the active matrix 14 is manufactured. Next, as shown in (c), for example, an epoxy adhesive 15 is applied onto the active matrix 14, and (
As shown in d), PETM is laminated on the circuit as a second substrate]6.

その後、過酸化水素水中に浸漬し、(e)に示すように
モリブデン膜12をエツチングする。このとき、エツチ
ング速度を向上させるためエツチング液は加熱した。こ
のようにしてエツチングを進行させてモリブデン膜12
を完全に除去し、最後に(f)に示すように第1の基板
11が完全に離れれば完成する。
Thereafter, the molybdenum film 12 is etched by immersing it in hydrogen peroxide water as shown in (e). At this time, the etching solution was heated to improve the etching speed. In this way, the etching progresses and the molybdenum film 12 is etched.
is completely removed, and finally, the first substrate 11 is completely separated as shown in (f), and the process is completed.

ここでモリブデンを第1の膜12に用いたのは酸化性雰
囲気に弱く、過酸化水素水への浸漬により容易にエツチ
ング除去できること、過酸化水素水はSl、5103、
Al、ITO等アクティブマトリクス製作に用いた材料
を全くエツチングしないため、きわめて高い選択エツチ
ング性を有するためである。また、第2の膜13を設け
たのは、モリブデン膜12がアクティブマトリクス製作
時に酸化性雰囲気に直接曝されないようにするためであ
る。
Here, molybdenum was used for the first film 12 because it is sensitive to oxidizing atmosphere and can be easily removed by etching by immersion in hydrogen peroxide solution.
This is because the materials used for producing the active matrix, such as Al and ITO, are not etched at all, and therefore have extremely high selective etching properties. Further, the reason why the second film 13 is provided is to prevent the molybdenum film 12 from being directly exposed to an oxidizing atmosphere during active matrix fabrication.

こののち、この基板(第2の基板16)と対向電極を形
成したPETからなる対向基板を高分子分散型液晶を挾
んで張り付け、デイスプレィを完成さセた。このデイス
プレィを表示させたところ、ガラス基板上に形成したの
と同等な表示特性か得られることを確認した、また、こ
のデイスプレィはフしキシプル性があり、適度な曲げに
は酎えられることが分かった。したがって、未使用時に
は小さく折り畳むことができるデイスブしイを実現する
ことができる。
Thereafter, this substrate (second substrate 16) and a counter substrate made of PET on which a counter electrode was formed were attached with the polymer dispersed liquid crystal sandwiched therebetween, thereby completing the display. When this display was displayed, it was confirmed that display characteristics equivalent to those formed on a glass substrate were obtained.Also, this display has flexible properties and can be easily bent to a moderate degree. Do you get it. Therefore, it is possible to realize a display that can be folded into a small size when not in use.

実施例2 実施例1のモリブデン膜12の代わりにモリブデン膜形
成時に酸素を含有したガスでスパッタしたモリブデン膜
を用いた。このため、モリブデン膜は酸素を高濃度に含
んでいる。酸素を高濃度に含むモリブデン膜はモリブデ
ン膜より過酸化水素水でのエツチング速度が大きい。そ
の後の工程は実施例1と同様とした。この結果、第1図
(e)でのモリブデン膜の除去がきわめて高速度に行わ
れる効果があった。特性等は全く同じであった。
Example 2 In place of the molybdenum film 12 of Example 1, a molybdenum film sputtered with an oxygen-containing gas during formation of the molybdenum film was used. Therefore, the molybdenum film contains oxygen at a high concentration. A molybdenum film containing a high concentration of oxygen has a higher etching rate with hydrogen peroxide than a molybdenum film. The subsequent steps were the same as in Example 1. As a result, the molybdenum film shown in FIG. 1(e) was removed at an extremely high speed. The characteristics etc. were exactly the same.

実施例3 実施例1の第1の膜12として、モリブデン膜の代わり
にCaF、(弗化カルシウム)膜を用いた。この材料は
単結晶Si基板上にエピタキシャル成長させることがで
き、さらにCaF、上に81をエピタキシャル成長させ
ることができる。
Example 3 As the first film 12 of Example 1, a CaF (calcium fluoride) film was used instead of the molybdenum film. This material can be epitaxially grown on a single crystal Si substrate, and CaF 81 can also be epitaxially grown on top of it.

本実施例ではエピタキシャル成長させたS1膜をTPT
の活性層として用いてアクティブマトリクスを製作した
。第2の基板としてPET膜を張り合わせ、希釈弗酸で
CaF、を除去した。CaFtは希釈弗酸で容易にエツ
チングでき、実施例1および2と同様にアクティブマト
リクスを第2の基板に転載できた。本実施例では、第2
の膜13(SiC,膜〕は形成しなかった。その後の工
程は実施例1と同様にしてデイスプレィを製作した。
In this example, the epitaxially grown S1 film was
An active matrix was fabricated using this as an active layer. A PET film was laminated as a second substrate, and CaF was removed with diluted hydrofluoric acid. CaFt could be easily etched with diluted hydrofluoric acid, and the active matrix could be transferred to the second substrate as in Examples 1 and 2. In this example, the second
The film 13 (SiC, film) was not formed.The subsequent steps were the same as in Example 1 to produce a display.

その結果、表示特性が得られることを確認した。As a result, it was confirmed that display characteristics could be obtained.

実施例4 第2図(a)は、本発明の第4の実施例を示す図、第2
図(b)は、第2図(a)の要部拡大断面図である。実
施例1で述べた手法で多数の81基板を第1の基板41
としてその上にアクティブマトリクスを製作し、これら
を第2図(a)に示すようにPETの第2の基板42上
に張り合わせた。その後、実施例1と同様にしてアクテ
ィブマトリクスを第2の基板」−42に転載した。その
後、第2図(b)に示すように、フォトプロセスにより
スルーホール43を開口し、その後金属膜を堆積し、フ
ォトプロセスを用いて各アクティブマトリクスを接続す
る金属配線44とした。この結果、個々のアクティブマ
トリクスを接続した大面積のアクティブマトリクスを完
成できた。
Embodiment 4 FIG. 2(a) is a diagram showing a fourth embodiment of the present invention.
FIG. 2(b) is an enlarged sectional view of the main part of FIG. 2(a). Using the method described in Example 1, a large number of 81 substrates are connected to the first substrate 41.
An active matrix was fabricated thereon, and these were laminated onto a second PET substrate 42 as shown in FIG. 2(a). Thereafter, in the same manner as in Example 1, the active matrix was transferred onto a second substrate "42". Thereafter, as shown in FIG. 2(b), a through hole 43 was opened by a photo process, and then a metal film was deposited to form a metal wiring 44 connecting each active matrix using a photo process. As a result, we were able to complete a large-area active matrix in which individual active matrices were connected.

こののち、この基板(第2の基板42)と対向電極を形
成したPETからなる対向基板を高分子分散型液晶を挾
んで張り付け、デイスプレィを完成させた。このデイス
プレィを表示させたところ、表示特性が得られることを
確認した。
Thereafter, this substrate (second substrate 42) and a counter substrate made of PET on which a counter electrode was formed were attached with the polymer dispersed liquid crystal sandwiched therebetween, thereby completing a display. When this display was used, it was confirmed that the display characteristics could be obtained.

スルーホール43と配線44の形成は低温で行えるため
、PET基板(42)のような耐熱温度の低い基板上で
も問題なく行うことができた。また、配線の形成はスク
リーン印刷でも可能であった。
Since the through-holes 43 and wiring 44 could be formed at low temperatures, they could be formed without any problem even on a substrate with a low heat-resistant temperature, such as a PET substrate (42). Also, the wiring could be formed by screen printing.

このように、回路を分割して形成し、それらを大面積基
板上に転載することにより、容易に大面積基板上に大規
模な回路を形成できる。この場合、分割された回路は大
面積基板に張り合わせる前に個別の試験により選別でき
、良品のみを転載することができるので、大規模回路の
製造歩留まりを上げることかできる。
In this way, by dividing and forming a circuit and transferring them onto a large-area substrate, a large-scale circuit can be easily formed on a large-area substrate. In this case, the divided circuits can be selected through individual tests before being pasted onto a large-area board, and only non-defective products can be transferred, thereby increasing the manufacturing yield of large-scale circuits.

実施例5 第3図は、本発明の第5の実施例を示す図である。実施
例1で述べたのと同様な手法で81基板を第1の基板5
1としてその上にシフトレジスタからなるアクティブマ
トリクスの駆動回路53をpoly−3i  T F 
Tで形成し、第3図に示すようにa−3i  TFTを
用いたアクティブマトリクス54を形成したガラスの第
2の基板52に張り合わせた。次いで、実施例1と同様
に駆動回路を第2の基板52に転載した。その後、実施
例4と同様な手法で駆動回路53とアクティブマトリク
スを接続した。回路動作を試験したところ、駆動回路か
らの信号がアクティブマトリクス54に転送されている
ことを確認した。実施例1と同様にデイスプレィを完成
させ、表示動作が確認できた、実施例6 第4図は、本発明の第6の実施例を示す図である。実施
例1で述べたのと同様な手法で81基板を第1の基板と
してその上にpoly−5iで1〕チヤネル1”FT6
 ]を形成し、同じく他の81基板上にpチャネルTF
T62を形成した。これらを第4図に示すようにガラス
の第2の基板63に転載し、実施例4の方法で相補形M
、OS (CM、OS)回路を構成するように接続した
。この回路を試験したところ、CMO3動作することが
確認できた。
Embodiment 5 FIG. 3 is a diagram showing a fifth embodiment of the present invention. The 81 substrate was made into the first substrate 5 using the same method as described in Example 1.
A poly-3i T F
As shown in FIG. 3, the active matrix 54 using A-3i TFTs was bonded to a second glass substrate 52 on which an active matrix 54 was formed. Next, the drive circuit was transferred to the second substrate 52 in the same manner as in Example 1. Thereafter, the drive circuit 53 and the active matrix were connected in the same manner as in Example 4. When the circuit operation was tested, it was confirmed that the signal from the drive circuit was transferred to the active matrix 54. Example 6 The display was completed in the same manner as Example 1, and the display operation was confirmed. FIG. 4 is a diagram showing a sixth example of the present invention. Using the same method as described in Example 1, the 81 substrate was used as the first substrate and poly-5i was applied on it to form 1] channel 1" FT6.
] and p-channel TF on another 81 substrate.
T62 was formed. These are transferred onto a second glass substrate 63 as shown in FIG.
, OS (CM, OS) were connected to form a circuit. When this circuit was tested, it was confirmed that it operated in CMO3 mode.

このように、一連の工程で製作すると工程が複雑となる
CMO3回路を、丁1チャネルとpチャネル部分に分割
して形成し、転載して回路を構成することにより、工程
が単純化できる。
In this way, the process can be simplified by forming the CMO3 circuit, which would be complicated if manufactured in a series of steps, by dividing it into the 1-channel and p-channel parts, and then reprinting them to configure the circuit.

以上説明したように、上記各実施例では、回路を形成す
る基板に耐熱温度が高い基板や、回路に悪影響を与える
物質を含まない基板を用いることができ、基板の制約を
少なくすることができる。
As explained above, in each of the above embodiments, it is possible to use a substrate that has a high heat resistance temperature and a substrate that does not contain substances that adversely affect the circuit as the substrate forming the circuit, and it is possible to reduce restrictions on the substrate. .

また、回路を転載するのに、従来技術のように研磨を行
わなくて済むので、コストの高い研磨装置が不用であり
、低コスト化を達成でき、かつ剛性のないフレキシブル
基板に転載しようとする場合も基板が変形する問題もな
い。
In addition, unlike conventional technology, polishing is not required when reprinting a circuit, eliminating the need for expensive polishing equipment, reducing costs, and reprinting onto non-rigid flexible substrates. In this case, there is no problem of the board deforming.

本発明の主旨は、容易にエツチング除去できる第1の膜
を第1の基板上に形成し、その上に回路を形成したのち
、第2の基板と張り合わせたのち、第1の膜を除去する
ことにより、回路を第2の基板上に転載することである
。第2の膜は第1の膜が回路製作時に損傷を受けるのを
防止するものである。したがって、本発明の主旨を逸脱
しない限りにおいて種々の変更が可能なことは言うまで
もなく、上記実施例において、例えば回路としてa−3
i  TFT、 poly−8i  TFTやエピタキ
シャル成長させたS]膜を用いたアクティブマトリゲス
、駆動回路を示したが、データバッファ回路等の回路で
あってもよい。第2の膜についてはSjO,膜の他にS
 lNx膜等を用いることができる。接着剤は用途によ
って選べばよく、何等の制限もないことは明らかである
The gist of the present invention is to form a first film that can be easily removed by etching on a first substrate, form a circuit thereon, bond it to a second substrate, and then remove the first film. In other words, the circuit is transferred onto a second substrate. The second film protects the first film from being damaged during circuit fabrication. Therefore, it goes without saying that various changes can be made without departing from the gist of the present invention.
Although active matrices and drive circuits using i TFTs, poly-8i TFTs, and epitaxially grown S] films have been shown, circuits such as data buffer circuits may also be used. For the second film, SjO, S
An INx film or the like can be used. It is clear that the adhesive can be selected depending on the purpose and there are no restrictions.

[発明の効果] 以上に説明したように、本発明は高価な研磨装置を使用
することなく回路を転載できるので、低コスト化が達成
できる。また、回路を分割して形成し、それらを大面積
基板上に転載することにより、容易に大規模回路を形成
できる。このとき、分割された回路は個別の試験により
選別でき、良品のみを転載することができるので、大規
模回路の製造歩留まりを上げることができる。さらに、
一連の工程で製作すると工程が複雑となるCMO3回路
をnチャネルとpチャネル部分に分割して形成し、転載
して回路を構成することにより、工程が単純化できる。
[Effects of the Invention] As explained above, according to the present invention, circuits can be transferred without using expensive polishing equipment, so that cost reduction can be achieved. Further, by forming the circuit in sections and transferring them onto a large-area substrate, a large-scale circuit can be easily formed. At this time, the divided circuits can be selected through individual tests and only non-defective products can be reprinted, making it possible to increase the manufacturing yield of large-scale circuits. moreover,
The process can be simplified by forming the CMO3 circuit, which would be complicated if manufactured in a series of steps, by dividing it into n-channel and p-channel parts, and then reprinting the circuit to configure the circuit.

【図面の簡単な説明】 第1図(a)〜(f)は、本発明の半導体回路の形成方
法の第1の実施例の工程断面図、第2図(a)は、本発
明の第4の実施例を示す図、第2図(b)は、第2図(
a)の要部拡大断面図、第3図は、本発明の第5の実施
例を示す図、第4図は、本発明の第6の実施例を示す図
である。 11.41.51.62・・・第1の基板12・・・第
1の膜 13・・第2の膜 14・・・アクティブマトリクス 15・・・接着剤 16.42.52.63・・・第2の基板61・・・n
チャネルT F ’I” 62・・・pチャネル1”FT 特許出願人 日本電信電話株式会社
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1(a) to 1(f) are process cross-sectional views of a first embodiment of the method for forming a semiconductor circuit of the present invention, and FIG. 2(b) is a diagram showing the embodiment of No. 4, FIG.
FIG. 3 is a diagram showing a fifth embodiment of the present invention, and FIG. 4 is a diagram showing a sixth embodiment of the present invention. 11.41.51.62...First substrate 12...First film 13...Second film 14...Active matrix 15...Adhesive 16.42.52.63...・Second substrate 61...n
Channel TF 'I" 62...p channel 1" FT Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 1、第1の膜、または第1の膜および少なくとも1層の
第2の膜を介して回路を形成した第1の基板を上記回路
を形成した側で第2の基板に張り合わせたのち、上記第
1の膜をエッチングにより除去することにより上記回路
を上記第2の基板上に転載することを特徴とする半導体
回路の形成方法。
1. After laminating the first substrate on which a circuit is formed via the first film or the first film and at least one layer of the second film to the second substrate on the side on which the circuit is formed, A method for forming a semiconductor circuit, comprising transferring the circuit onto the second substrate by removing the first film by etching.
JP30626990A 1990-11-14 1990-11-14 Method of forming semiconductor circuit Expired - Fee Related JP2866730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30626990A JP2866730B2 (en) 1990-11-14 1990-11-14 Method of forming semiconductor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30626990A JP2866730B2 (en) 1990-11-14 1990-11-14 Method of forming semiconductor circuit

Publications (2)

Publication Number Publication Date
JPH04178633A true JPH04178633A (en) 1992-06-25
JP2866730B2 JP2866730B2 (en) 1999-03-08

Family

ID=17955052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30626990A Expired - Fee Related JP2866730B2 (en) 1990-11-14 1990-11-14 Method of forming semiconductor circuit

Country Status (1)

Country Link
JP (1) JP2866730B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254686A (en) * 1995-03-16 1996-10-01 Semiconductor Energy Lab Co Ltd Production of display device
JPH08264796A (en) * 1995-03-18 1996-10-11 Semiconductor Energy Lab Co Ltd Display device and its forming method
JP2000089249A (en) * 1998-09-09 2000-03-31 Sony Corp Electrooptical device, driving substrate for the device and their production
JP2001044445A (en) * 1995-02-16 2001-02-16 Semiconductor Energy Lab Co Ltd Thin-film integrated circuit manufacturing method
JP2003031780A (en) * 2001-06-07 2003-01-31 Ind Technol Res Inst Method for manufacturing thin film transistor panel
JP2003318195A (en) * 2002-04-24 2003-11-07 Ricoh Co Ltd Thin-film device and its manufacturing method
JP2004072050A (en) * 2002-08-09 2004-03-04 Ricoh Co Ltd Thin film device and its manufacturing method
JP2004119991A (en) * 2003-12-12 2004-04-15 Semiconductor Energy Lab Co Ltd Semiconductor integrated circuit
JP2004140383A (en) * 1996-08-27 2004-05-13 Seiko Epson Corp Method of transferring thin film element, thin film element, thin film integrated circuit device, active matrix substrate, and liquid crystal display device
JP2004140381A (en) * 1996-08-27 2004-05-13 Seiko Epson Corp Method of transferring thin film element, thin film element, thin film integrated circuit device, active matrix substrate, and liquid crystal display device
JP2004153290A (en) * 2003-12-12 2004-05-27 Semiconductor Energy Lab Co Ltd Process for fabricating semiconductor integrated circuit
JP2004341557A (en) * 2004-08-23 2004-12-02 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2005005724A (en) * 2004-07-06 2005-01-06 Semiconductor Energy Lab Co Ltd Semiconductor integrated circuit and its manufacturing method
JP2006072372A (en) * 2005-09-02 2006-03-16 Seiko Epson Corp Substrate for liquid crystal panel and liquid crystal panel
US7050138B1 (en) 1995-03-10 2006-05-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a display device having a driver circuit attached to a display substrate
JP2006135305A (en) * 2004-10-05 2006-05-25 Semiconductor Energy Lab Co Ltd Semiconductor device, manufacturing method therefor, and inspection method therefor
WO2006129741A1 (en) * 2005-05-31 2006-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2007501525A (en) * 2003-08-04 2007-01-25 ナノシス・インコーポレイテッド Nanowire composites and systems and methods for making electronic substrates derived therefrom
US7285476B2 (en) 1996-08-27 2007-10-23 Seiko Epson Corporation Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
JP2007311827A (en) * 2007-08-16 2007-11-29 Semiconductor Energy Lab Co Ltd Peeling method
US7323717B2 (en) 1996-12-30 2008-01-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
USRE40601E1 (en) 1996-11-12 2008-12-09 Seiko Epson Corporation Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
US7820495B2 (en) 2005-06-30 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7972910B2 (en) 2005-06-03 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of integrated circuit device including thin film transistor
WO2012060430A1 (en) * 2010-11-05 2012-05-10 シャープ株式会社 Semiconductor substrate, method for manufacturing semiconductor substrate, thin-film transistor, semiconductor circuit, liquid crystal display device, electroluminescent device, wireless communication device, and light-emitting device
CN107253394A (en) * 2012-08-06 2017-10-17 株式会社尼康 Transfer device and substrate board treatment

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361519B2 (en) 1995-02-16 2008-04-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7425931B1 (en) 1995-02-16 2008-09-16 Semiconductor Energy Laboratory Co. Ltd. Display unit of a helmet or a vehicle or an airplane
US6998282B1 (en) 1995-02-16 2006-02-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP2001044445A (en) * 1995-02-16 2001-02-16 Semiconductor Energy Lab Co Ltd Thin-film integrated circuit manufacturing method
JP2005051207A (en) * 1995-02-16 2005-02-24 Semiconductor Energy Lab Co Ltd Helmet, windshield, windshield glass, and method of manufacturing them
JP2001060697A (en) * 1995-02-16 2001-03-06 Semiconductor Energy Lab Co Ltd Thin-film integrated circuit
US8497509B2 (en) 1995-02-16 2013-07-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7375782B2 (en) 1995-02-16 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP2001053290A (en) * 1995-02-16 2001-02-23 Semiconductor Energy Lab Co Ltd Manufacture of thin-film integrated circuit
JP2004297084A (en) * 1995-02-16 2004-10-21 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US8013972B2 (en) 1995-03-10 2011-09-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the same
US7050138B1 (en) 1995-03-10 2006-05-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a display device having a driver circuit attached to a display substrate
US8547516B2 (en) 1995-03-10 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the same
US7446843B2 (en) 1995-03-10 2008-11-04 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the same
JPH08254686A (en) * 1995-03-16 1996-10-01 Semiconductor Energy Lab Co Ltd Production of display device
JPH08264796A (en) * 1995-03-18 1996-10-11 Semiconductor Energy Lab Co Ltd Display device and its forming method
JP4619644B2 (en) * 1996-08-27 2011-01-26 セイコーエプソン株式会社 Thin film element transfer method
US7285476B2 (en) 1996-08-27 2007-10-23 Seiko Epson Corporation Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
JP4619645B2 (en) * 1996-08-27 2011-01-26 セイコーエプソン株式会社 Thin film element transfer method
JP2004140381A (en) * 1996-08-27 2004-05-13 Seiko Epson Corp Method of transferring thin film element, thin film element, thin film integrated circuit device, active matrix substrate, and liquid crystal display device
JP2004140383A (en) * 1996-08-27 2004-05-13 Seiko Epson Corp Method of transferring thin film element, thin film element, thin film integrated circuit device, active matrix substrate, and liquid crystal display device
USRE40601E1 (en) 1996-11-12 2008-12-09 Seiko Epson Corporation Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
US7550325B2 (en) 1996-12-30 2009-06-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an active matrix display device
USRE43782E1 (en) 1996-12-30 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having wiring layers which are connected over multiple contact parts
US8168975B2 (en) 1996-12-30 2012-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7323717B2 (en) 1996-12-30 2008-01-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2000089249A (en) * 1998-09-09 2000-03-31 Sony Corp Electrooptical device, driving substrate for the device and their production
JP2003031780A (en) * 2001-06-07 2003-01-31 Ind Technol Res Inst Method for manufacturing thin film transistor panel
JP2003318195A (en) * 2002-04-24 2003-11-07 Ricoh Co Ltd Thin-film device and its manufacturing method
JP2004072050A (en) * 2002-08-09 2004-03-04 Ricoh Co Ltd Thin film device and its manufacturing method
JP2007501525A (en) * 2003-08-04 2007-01-25 ナノシス・インコーポレイテッド Nanowire composites and systems and methods for making electronic substrates derived therefrom
JP2004153290A (en) * 2003-12-12 2004-05-27 Semiconductor Energy Lab Co Ltd Process for fabricating semiconductor integrated circuit
JP2004119991A (en) * 2003-12-12 2004-04-15 Semiconductor Energy Lab Co Ltd Semiconductor integrated circuit
JP2005005724A (en) * 2004-07-06 2005-01-06 Semiconductor Energy Lab Co Ltd Semiconductor integrated circuit and its manufacturing method
JP2004341557A (en) * 2004-08-23 2004-12-02 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2006135305A (en) * 2004-10-05 2006-05-25 Semiconductor Energy Lab Co Ltd Semiconductor device, manufacturing method therefor, and inspection method therefor
US8101990B2 (en) 2005-05-31 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2006129741A1 (en) * 2005-05-31 2006-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8492246B2 (en) 2005-06-03 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing integrated circuit device
US7972910B2 (en) 2005-06-03 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of integrated circuit device including thin film transistor
US7820495B2 (en) 2005-06-30 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8361845B2 (en) 2005-06-30 2013-01-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2006072372A (en) * 2005-09-02 2006-03-16 Seiko Epson Corp Substrate for liquid crystal panel and liquid crystal panel
JP2007311827A (en) * 2007-08-16 2007-11-29 Semiconductor Energy Lab Co Ltd Peeling method
WO2012060430A1 (en) * 2010-11-05 2012-05-10 シャープ株式会社 Semiconductor substrate, method for manufacturing semiconductor substrate, thin-film transistor, semiconductor circuit, liquid crystal display device, electroluminescent device, wireless communication device, and light-emitting device
CN107253394A (en) * 2012-08-06 2017-10-17 株式会社尼康 Transfer device and substrate board treatment
JP2018082214A (en) * 2012-08-06 2018-05-24 株式会社ニコン Device manufacturing method
JP2019096890A (en) * 2012-08-06 2019-06-20 株式会社ニコン Device manufacturing method

Also Published As

Publication number Publication date
JP2866730B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
JPH04178633A (en) Formation of semiconductor circuit
CN101615593B (en) Semiconductor device, method of manufacturing the same, peeling method, and transfer method
KR100275828B1 (en) Single crystal silicon on quartz
US7274413B1 (en) Flexible video display apparatus and method
JP5094776B2 (en) Method for manufacturing semiconductor device
US6118502A (en) Using a temporary substrate to attach components to a display substrate when fabricating a passive type display device
JP2006308699A (en) Display apparatus and manufacturing method of same
JPH11212116A (en) Liquid crystal display device and production thereof
JP2929704B2 (en) Method of manufacturing liquid crystal display substrate
JP2004047975A (en) Method of transferring laminate and method of manufacturing semiconductor device
JP2001249626A (en) Display device and method of manufacturing display device
JP3211995B2 (en) Method for manufacturing semiconductor device
JPH01181570A (en) Manufacture of thin film transistor
JPS6390859A (en) Thin film transistor and manufacture thereof
JP2000047259A (en) Liquid crystal display device
JP2007311590A (en) Method for transcribing object to be transcribed, method for manufacturing semiconductor device, and transcribing device
JP3941401B2 (en) Manufacturing method of liquid crystal device
JP2002072905A (en) Producing method of thin film laminated device and producing method of liquid crystal display element
JP2004252296A (en) Thin film transistor display panel and its manufacturing method
JP3432420B2 (en) COG type liquid crystal display device
JPH08278519A (en) Production of liquid crystal display device
TW200826055A (en) Display apparatus and manufacturing method thereof
JP4757469B2 (en) Method for manufacturing semiconductor device
KR101054820B1 (en) Manufacturing method of liquid crystal display device using plastic substrate
JPH07509105A (en) VLSI-quality crystal semiconductor substrate supply method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees