JPH04177702A - Composition for thick film resistor - Google Patents
Composition for thick film resistorInfo
- Publication number
- JPH04177702A JPH04177702A JP2305569A JP30556990A JPH04177702A JP H04177702 A JPH04177702 A JP H04177702A JP 2305569 A JP2305569 A JP 2305569A JP 30556990 A JP30556990 A JP 30556990A JP H04177702 A JPH04177702 A JP H04177702A
- Authority
- JP
- Japan
- Prior art keywords
- exceeding
- lead
- composition
- powder
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 35
- 239000000843 powder Substances 0.000 claims abstract description 37
- 239000002245 particle Substances 0.000 claims abstract description 35
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 25
- 229910000464 lead oxide Inorganic materials 0.000 claims abstract description 10
- 239000005368 silicate glass Substances 0.000 claims abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 9
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 7
- 239000011521 glass Substances 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 2
- 239000000470 constituent Substances 0.000 abstract 1
- 239000004020 conductor Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 6
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 101000912874 Schizosaccharomyces pombe (strain 972 / ATCC 24843) Iron-sensing transcriptional repressor Proteins 0.000 description 1
- -1 Sno Chemical compound 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- MLOKPANHZRKTMG-UHFFFAOYSA-N lead(2+);oxygen(2-);tin(4+) Chemical compound [O-2].[O-2].[O-2].[Sn+4].[Pb+2] MLOKPANHZRKTMG-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- CVNKFOIOZXAFBO-UHFFFAOYSA-J tin(4+);tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Sn+4] CVNKFOIOZXAFBO-UHFFFAOYSA-J 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Non-Adjustable Resistors (AREA)
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電子回路形成に用いられるルテニウム酸鉛を
含有する厚膜抵抗体用組成物に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a composition for a thick film resistor containing lead ruthenate used for forming electronic circuits.
近年、酸化ルテニウムやルテニウム酸鉛等の酸化ルテニ
ウム系導電物を用いた厚膜抵抗体がマイクロエレクトロ
ニクス部品の回路形成に多用すれてきており、特にルテ
ニウム酸鉛が高抵抗領域での厚膜抵抗体用導電物として
多用されてきている。In recent years, thick-film resistors using ruthenium oxide-based conductors such as ruthenium oxide and lead ruthenate have been widely used to form circuits in microelectronic components. It has been widely used as an electrical conductor.
これは、ルテニウム酸鉛を用いれば、抵抗値を101〜
106Ω/口の任意の値に設定でき、作成1した抵抗体
の抵抗値が導電性組成物中のルテニウム酸鉛の濃度にあ
まり左右されず、且つ抵抗値の変動率(CV値)が小さ
いからである。If lead ruthenate is used, the resistance value can be increased to 101 ~
It can be set to any value of 106 Ω/hole, the resistance value of the resistor created in 1 is not greatly affected by the concentration of lead ruthenate in the conductive composition, and the rate of variation in resistance value (CV value) is small. It is.
ところで、ルテニウム酸鉛等の酸化ルテニウム系導電物
を用いて抵抗体を作成するに際しては、例えば、導電物
として酸化ルテニウム系導電物の粉末と、軟化点が45
0〜650C程度で熱膨張率がアルミナに近い硼珪酸鉛
系のガラス粉末と、有機ビヒクルとを混合し、次いでス
リーロールミル等を用いて混練し、ペースト化して厚膜
抵抗体用組成物を得、これをアルミナ等の絶縁性基板上
にスクリーン印刷等で印刷し2、回路パターンを形成し
乾燥し、焼成する。そして、所望の抵抗値を得るために
は導電物とガラスとの比を調製する。By the way, when creating a resistor using a ruthenium oxide-based conductive material such as lead ruthenate, for example, a powder of a ruthenium oxide-based conductive material and a powder having a softening point of 45.
Lead borosilicate glass powder with a coefficient of thermal expansion of about 0 to 650 C and close to that of alumina is mixed with an organic vehicle, and then kneaded using a three-roll mill or the like to form a paste to obtain a composition for a thick film resistor. This is printed on an insulating substrate such as alumina by screen printing or the like 2, and a circuit pattern is formed, dried, and fired. Then, in order to obtain a desired resistance value, the ratio of the conductive material and the glass is adjusted.
近年、このようにして形成される厚膜抵抗体に対し、−
iの耐電圧特性の向上が望まれている。In recent years, for thick film resistors formed in this way, -
It is desired to improve the withstand voltage characteristics of i.
具体的にはシート抵抗値がIMQ/D程度の高抵抗域の
CV値を10%以下、短時間過負荷試験の永久抵抗変化
率(以下永久抵抗変化率と示す)を0.2%以下とする
ことが要求されている。しかし、上記従来の抵抗体用組
成物ではこの要求を満足させることは出来ない。と云う
のは、例えば該5&成物を用いて作られた一般に永久抵
抗変化率の小さいとされるシート抵抗値約12KV口の
厚膜抵抗体であっても、その永久抵抗変化率は約15%
と大きく、又シート抵抗値が100にシロ以上となると
抵抗値の導電物濃度依存性が大きくなるという欠点があ
るからである。Specifically, the CV value in the high resistance range where the sheet resistance value is about IMQ/D is 10% or less, and the permanent resistance change rate in the short-time overload test (hereinafter referred to as permanent resistance change rate) is 0.2% or less. is required to do so. However, the conventional resistor compositions described above cannot satisfy this requirement. This is because, for example, even if a thick film resistor made using said 5&compound and has a sheet resistance of about 12 KV, which is generally considered to have a small permanent resistance change rate, its permanent resistance change rate is about 15 KV. %
This is because when the sheet resistance value exceeds 100, the dependence of the resistance value on the conductive material concentration becomes large.
この欠点を解消すべく種々の組成物や方法が提案されて
いるが、その中で最も効果的とされているものに特公昭
55−39883号公報に開示された組成物がある。こ
れは導電性パイロクロア関連酸化物とガラスからなる組
成物にBaTj−0やTi、Oを添加したものを厚膜抵
抗体用組成物とするものである。しかし、この厚膜抵抗
体用組成物を用いて作成したシート抵抗値1 y、Q/
a程度の抵抗体の永久抵抗変化率は0.3〜1%であり
、前記要求を満足させるものとなっていない。Various compositions and methods have been proposed to overcome this drawback, but one of the most effective is the composition disclosed in Japanese Patent Publication No. 55-39883. This is a composition for thick film resistors in which BaTj-0, Ti, and O are added to a composition consisting of a conductive pyrochlore-related oxide and glass. However, the sheet resistance value 1 y, Q/
The permanent resistance change rate of a resistor of about A is 0.3 to 1%, which does not satisfy the above requirements.
本発明の課題は、高抵抗領域で抵抗値の変動率が少なく
、高電圧の短時間過負荷による永久抵抗変化率が小さい
厚膜抵抗体用組成物の提供にある。An object of the present invention is to provide a composition for a thick film resistor, which has a small rate of change in resistance value in a high resistance region and a small rate of change in permanent resistance due to short-term overload of high voltage.
本発明者等は、ルテニウム酸鉛と、鉛を含むガラス粉末
とからなる組成物に酸化錫を特定量添加することにより
上記要求をかなえうるものが得られることを見出し本発
明に至った。即ち、本発明の厚膜抵抗体用組成物は、式
Pb Ru Oで示され2 2X
Xの範囲が6〜1であり粒径が1000″j、以下のル
テニウム酸鉛と10重量%以上の酸化珪素と10重量%
以上の酸化鉛とを含む平均粒径が10μm以下の珪酸鉛
ガラス粉末、又は式Pb2Ru20xで示されXの範囲
が6〜7であり粒径が1000 A以下のルテニウム酸
鉛粉末と、10重量%以上の酸化珪素と10重量%以上
の酸化鉛とを含む平均粒径が10μm以下の珪酸鉛ガラ
ス粉末、及び平均粒径が1μmより小さい酸化錫粉末と
、有機ビヒクルとからなり、該組成物中の無機成分中の
酸化錫の含有割合が0.2〜5重量%であることを特徴
とするものである。The present inventors have discovered that by adding a specific amount of tin oxide to a composition consisting of lead ruthenate and glass powder containing lead, a composition capable of meeting the above requirements can be obtained, leading to the present invention. That is, the composition for a thick film resistor of the present invention is represented by the formula PbRuO, 2 2 silicon oxide and 10% by weight
Lead silicate glass powder with an average particle size of 10 μm or less containing the above lead oxides, or lead ruthenate powder represented by the formula Pb2Ru20x with X in the range of 6 to 7 and a particle size of 1000 A or less, and 10% by weight The composition comprises a lead silicate glass powder having an average particle size of 10 μm or less containing the above silicon oxide and 10% by weight or more of lead oxide, a tin oxide powder having an average particle size of less than 1 μm, and an organic vehicle. The content of tin oxide in the inorganic components is 0.2 to 5% by weight.
本発明組成物を構成するに当たり、酸化ルテニウムと酸
化鉛を所定の割合に混合して溶融し、冷却したものを粒
径が1000R以下になるように粉砕したルテニウム酸
鉛粉末と、平均粒径が10μm以下の珪酸鉛ガラス粉末
と、平均粒径が1μmより小さい酸化錫粉末と、有機ビ
ヒクルとを混練して作るか、酸化ルテニウムと、酸化鉛
と、シリカと、アルミナ等を混合して溶融し、冷却して
平均粒径が10μm以下となるように粉砕したtooo
R以下のルテニウム酸鉛の微細な結晶を含むガラス粉
末と、平均粒径が1μmより小さい酸化錫粉末ト、有機
ビヒクルとを混練して作っても良イ。In constructing the composition of the present invention, lead ruthenate powder is prepared by mixing ruthenium oxide and lead oxide in a predetermined ratio, melting the mixture, cooling it, and pulverizing the mixture to a particle size of 1000R or less, and a lead ruthenate powder having an average particle size of 1000R or less. It is made by kneading lead silicate glass powder of 10 μm or less, tin oxide powder with an average particle size of less than 1 μm, and an organic vehicle, or it is made by mixing and melting ruthenium oxide, lead oxide, silica, alumina, etc. , cooled and crushed to an average particle size of 10 μm or less
It may be made by kneading glass powder containing fine crystals of lead ruthenate of R or less, tin oxide powder having an average particle size of less than 1 μm, and an organic vehicle.
平均粒径が1μmより小さい酸化錫粉末は、通常は粗大
な酸化錫をボールミル等の粉砕機により粉砕し分級する
ことによって得られるが、出来るだけ微細な酸化錫を用
、いることが好ましい。微細な酸化錫としては酸化錫ゾ
ル(多水化学製、平均粒径80χ)や、塩化錫溶液を加
水分解して水酸化錫とし、これを脱水して得られる平均
粒径が約0.2μmの酸化錫がある。Tin oxide powder having an average particle size of less than 1 μm is usually obtained by crushing and classifying coarse tin oxide using a crusher such as a ball mill, but it is preferable to use tin oxide as fine as possible. As fine tin oxide, tin oxide sol (manufactured by Tasui Kagaku, average particle size 80χ) or tin chloride solution is hydrolyzed to form tin hydroxide, which is dehydrated to obtain an average particle size of about 0.2 μm. There is tin oxide.
本発明で使用する有機ビヒクルは抵抗体用ペーストとし
て一般に使用されているものが使用でき、特にその組成
は限定されない。又その使用量は従来と同様にスクリー
ン印刷により適当な抵抗体パターンを形成しうる組成物
全体の20〜40重量%とするのが良い。As the organic vehicle used in the present invention, those commonly used as pastes for resistors can be used, and the composition thereof is not particularly limited. Further, the amount used is preferably 20 to 40% by weight of the entire composition so that a suitable resistor pattern can be formed by screen printing as in the past.
本発明で用いるルテニウム酸鉛はパイロクロア型導電性
酸化物であり、その構造は立方晶のOaF構造からなる
2つのオクタントの組合せからできており、酸素原子は
GaF2構造の立方体内部の四面体に配位した位置に入
る。ルテニウム酸鉛の酸素のうちpb原子の対角線の位
置の酸素が欠落しやすい傾向にあり、この結果、酸素の
化学量論量は6〜7と幅をもち、式Pb Ru、 Oと
しめした場2 2X
合、Xの範囲が6〜7となる。The lead ruthenate used in the present invention is a pyrochlore-type conductive oxide, and its structure is made of a combination of two octants consisting of a cubic OaF structure, and the oxygen atoms are arranged in a tetrahedron inside the cube of the GaF2 structure. position. Of the oxygen in lead ruthenate, the oxygen at the diagonal position of the pb atom tends to be missing, and as a result, the stoichiometric amount of oxygen varies from 6 to 7, and when expressed by the formula Pb Ru, O. 2 2X, the range of X is 6 to 7.
使用するルテニウム酸鉛として最も好ましいのは粒径1
ooo R以下、好ましくは100〜500χのPb2
Ru2O6,5テアル。コレハ、粒径カ100ORヲ超
えると得られる組成物を用いて作成した抵抗体のCV値
が著しく大きくなるからである。The most preferable lead ruthenate to be used is particle size 1.
ooo R or less, preferably 100 to 500χ Pb2
Ru2O6,5theal. This is because when the particle size exceeds 100 OR, the CV value of a resistor made using the resulting composition becomes significantly large.
又、使用する珪酸鉛ガラス粉末は、10M量%以上、好
ましくは15〜35重量%の酸化珪素と、10重N%以
上、好ましくは50〜80重量%の酸化鉛とを含むもの
が目的とする抵抗体を作成するに好適であり、これらの
成分の他にAIO,BO。The lead silicate glass powder to be used is intended to contain 10 M% or more, preferably 15 to 35% by weight of silicon oxide, and 10% by weight or more of lead oxide, preferably 50 to 80% by weight. In addition to these components, AIO and BO are suitable for creating a resistor.
MgO,Cao、 Bad、 Tie□、 ZrO2等
のうちの一種以上を含んでも差し支えはない。使用する
珪酸鉛ガラスの粒径が大きすぎると、ルテニウム酸鉛粉
末とガラス粉末とを混合する場合に均一に混合できず、
又部られる組成物を用いて作成した抵抗体の特性が悪化
し、本発明の目的が達成できなくなる。このため、珪酸
鉛ガラスの平均粒径は10μm以下とすることが必要で
ある。There is no problem in containing one or more of MgO, Cao, Bad, Tie□, ZrO2, etc. If the particle size of the lead silicate glass used is too large, it will not be possible to mix the lead ruthenate powder and glass powder uniformly.
Furthermore, the characteristics of the resistor made using the composition deteriorate, making it impossible to achieve the object of the present invention. For this reason, it is necessary that the average particle size of lead silicate glass is 10 μm or less.
本発明において、Sno やSn、Oのような酸化錫
は、ガラス成分の酸化鉛と反応して錫酸鉛(pbsno
)を形成し、ルテニウム酸鉛の導電ネットワークを分
断し、抵抗値を高める役割を果すと考えられるが、この
機能を十分に発揮させるためには酸化錫の添加量と粒径
とを調整する必要がある。In the present invention, tin oxide such as Sno, Sn, and O reacts with lead oxide, which is a glass component, to form lead stannate (pbsno).
), which is thought to play a role in disrupting the conductive network of lead ruthenate and increasing its resistance, but in order to fully demonstrate this function, it is necessary to adjust the amount of tin oxide added and the particle size. There is.
例えば、通常形成、される抵抗体の厚みは高々15μm
程度であり、依ってあまり大きな粒子が存在する場合に
は、後記の比較例2に示すように当然Cv値や耐電圧特
性が悪化する。このため、本発明に用いる酸化錫の平均
粒径は1μmより小さくする必要がある。For example, the thickness of a resistor that is usually formed is at most 15 μm.
Therefore, if too large particles are present, the Cv value and withstand voltage characteristics will naturally deteriorate, as shown in Comparative Example 2 below. Therefore, the average particle size of tin oxide used in the present invention needs to be smaller than 1 μm.
又、酸化錫の平均粒径が1μmより小さい場合でも、含
有量が0.2重量%未満や5重量%を超える場合も、後
記の比較例1に示すようにaV値や耐電圧特性が悪くな
るので、酸化錫の含有量を0.2〜5重量%の範囲とす
るものである。Furthermore, even if the average particle size of tin oxide is smaller than 1 μm, or if the content is less than 0.2% by weight or more than 5% by weight, the aV value and withstand voltage characteristics are poor, as shown in Comparative Example 1 below. Therefore, the content of tin oxide is set in the range of 0.2 to 5% by weight.
実施例l
Ru06.7 g 、 Pb○68.1 g、 SiO
23,8g、 AI O2、7g 、 MgO1,,2
gを混合し、1000 Cで3時間加熱し溶融した。こ
れを水中に投入し急冷し、ボールミルにて粉砕し平均粒
径が7.3μmの粉末を得た。Example 1 Ru06.7 g, Pb○68.1 g, SiO
23.8g, AI O2, 7g, MgO1,,2
g were mixed and heated at 1000 C for 3 hours to melt. This was poured into water, rapidly cooled, and ground in a ball mill to obtain a powder with an average particle size of 7.3 μm.
得られた粉末は200〜soo xの微細なPb Ru
O結晶を含むガラス粉末であった。次いで、ボールミ
ルでSnOをジルコこア製のボールを用いて粉砕し、分
級して所定の粒径のSnO粉末を得、これと前記のPb
Ru O結晶を含むガラス粉末とを226.6
所定の割合で混合し、この混合物70重量部に対しエチ
ルセルロースのターピネオール溶130重量部を加えて
スリーロールミルで混練し厚膜抵抗体用組成物を得た。The obtained powder contains 200~soo x fine PbRu
It was a glass powder containing O crystals. Next, SnO is ground in a ball mill using Zircoir balls, classified to obtain SnO powder with a predetermined particle size, and this and the above-mentioned Pb
Glass powder containing RuO crystals was mixed at a predetermined ratio of 226.6 mm, and 130 parts by weight of ethyl cellulose dissolved in terpineol was added to 70 parts by weight of this mixture and kneaded in a three-roll mill to obtain a composition for a thick film resistor. Ta.
この組成物をAg/pd電極を設けたアルミナ基板上に
長さ1 trrrn、幅1 m、tnのパターンを用い
て印刷し、120Cで20分間乾燥し、ベルト焼成炉を
用いてピーク温度850r、ピーク時間10分間の焼成
を行なった。このようにし7て得られた長さ1罷、幅1
闘、厚さ15μmの抵抗体のシート抵抗値、aV値、永
久抵抗変化率を測定した。永久抵抗変化率の測定に際し
て印加する電圧強度は、TTS O5202に従い以下
の式で求めた。This composition was printed on an alumina substrate provided with Ag/PD electrodes using a pattern with a length of 1 trrrn, a width of 1 m, and tn, dried at 120 C for 20 minutes, and heated to a peak temperature of 850 r using a belt firing furnace. Firing was performed for a peak time of 10 minutes. The length obtained in this way is 1 line and the width is 1 line.
The sheet resistance value, aV value, and permanent resistance change rate of a resistor with a thickness of 15 μm were measured. The voltage intensity applied when measuring the permanent resistance change rate was determined by the following formula in accordance with TTS O5202.
印加電圧(V)=(過負荷条件×定格電力×シート抵抗
値)1/2こ\で過負荷条件は10倍とし、定格電力は
1/4Wとして計算し、1oO■以下を四捨五入して印
加電圧を求めた。尚、シート抵抗値が1 y、Q/x以
上の場合には印加電圧Ll 1600 V−9とした。Applied voltage (V) = (overload condition x rated power x sheet resistance value) 1/2, overload condition is 10 times, rated power is calculated as 1/4W, and applied after rounding to the nearest whole 1oO. I found the voltage. In addition, when the sheet resistance value was 1 y, Q/x or more, the applied voltage L1 was set to 1600 V-9.
このようにして求めた印加電圧を5秒間印加し、次いで
シート抵抗値を求め、印加前後のシート抵抗値の差から
永久抵抗変化率を求めた。The applied voltage determined in this way was applied for 5 seconds, then the sheet resistance value was determined, and the permanent resistance change rate was determined from the difference between the sheet resistance values before and after the application.
第1表に厚膜抵抗体用組成物の組成と印加電圧と得られ
た測定結果とを示した。Table 1 shows the composition of the composition for thick film resistors, the applied voltage, and the measurement results obtained.
第1表より本発明の厚膜抵抗体用組成物を用いれば高抵
抗値で、Cv値が小さく、且つ永久抵抗変化率が0.2
%未満という優れた特性の抵抗体が得られることが判る
。Table 1 shows that if the composition for thick film resistors of the present invention is used, a high resistance value, a small Cv value, and a permanent resistance change rate of 0.2 can be obtained.
It can be seen that a resistor with excellent characteristics of less than % can be obtained.
第 1 表
実施例2
実施例1で用いたPb Ru O結晶を含むガラス22
6.5
粉末を、市販の酸化錫ゾル(多水化学製、平均粒径80
xの酸化錫のゾル溶液)と所定の割合で混合した後12
0Cで乾燥した粉末を用いて、実施例1と同様にして抵
抗体を作りそのCV値と永久抵抗変化率を測定した。そ
の結果を第2表に示した。Table 1 Example 2 Glass 22 containing Pb Ru O crystal used in Example 1
6.5 The powder was mixed with a commercially available tin oxide sol (manufactured by Tasui Kagaku, average particle size 80
12 after mixing with x (tin oxide sol solution) at a prescribed ratio
Using the powder dried at 0C, a resistor was made in the same manner as in Example 1, and its CV value and permanent resistance change rate were measured. The results are shown in Table 2.
第2表より、酸化錫ゾルを用いた場合も高抵抗でay値
が小さく、且つ永久抵抗変化率が0.2%未満という優
れた特性の抵抗体が得られていることが判る。From Table 2, it can be seen that even when tin oxide sol was used, a resistor with excellent characteristics such as high resistance, small ay value, and permanent resistance change rate of less than 0.2% was obtained.
第 2 表 SnO添加量は、酸化錫ゾルの量から換算した。Table 2 The amount of SnO added was calculated from the amount of tin oxide sol.
比較例1
平均粒径0.2μmのSnO粉末の添加量を0゜0.1
,5.4重量%ととして、実施例1と同様にしてCV値
と永久抵抗変化率を測定し、その結果を第3表に示した
。Comparative Example 1 The amount of SnO powder with an average particle size of 0.2 μm was 0°0.1
, 5.4% by weight, and the CV value and permanent resistance change rate were measured in the same manner as in Example 1, and the results are shown in Table 3.
第1表よりも、Cv値も大きく永久抵抗変化率も大きい
ものしか得られていないことが判る。From Table 1, it can be seen that only those with a large Cv value and a large permanent resistance change rate were obtained.
第 3 表
比較例2
平均粒径が1.3μmのSnO粉末の添加量を0.2゜
2.7.4.4.5.2重量%として実施例1と同様に
測定し、その結果を第4表に示す。Table 3 Comparative Example 2 Measurements were made in the same manner as in Example 1, with the amount of SnO powder with an average particle size of 1.3 μm added at 0.2°2.7.4.4.5.2% by weight, and the results were It is shown in Table 4.
第1表よりも、CV値も大きく、永久抵抗変化率も大き
いものしか得られていないことが判かる。It can be seen from Table 1 that only those with a large CV value and a large permanent resistance change rate were obtained.
第 4 表
〔発明の効果〕
本発明の厚膜抵抗体用導電組成物を用いればCv値が小
さく、短時間過負荷試験による永久抵抗変化率も小さい
厚膜抵抗体の製造が可能になる。Table 4 [Effects of the Invention] By using the conductive composition for a thick film resistor of the present invention, it becomes possible to manufacture a thick film resistor having a small Cv value and a small rate of change in permanent resistance due to a short-time overload test.
出願人 住友金属鉱山株式会社Applicant: Sumitomo Metal Mining Co., Ltd.
Claims (1)
7であり粒径が1000Å以下のルテニウム酸鉛と10
重量%以上の酸化珪素と10重量%以上の酸化鉛とを含
む平均粒径が10μm以下の珪酸鉛ガラス粉末、又は式
Pb_2Ru_2O_xで示されxの範囲が6〜7であ
り粒径が1000Å以下のルテニウム酸鉛粉末と、10
重量%以上の酸化珪素と10重量%以上の酸化鉛とを含
む平均粒径が10μm以下の珪酸鉛ガラス粉末、及び平
均粒径が1μmより小さい酸化錫粉末と、有機ビヒクル
とからなり、該組成物中の無機成分中の酸化錫の含有割
合が0.2〜5重量%であることを特徴とする厚膜抵抗
体用組成物。1) Represented by the formula Pb_2Ru_2O_x, where x ranges from 6 to
7 with a particle size of 1000 Å or less and 10
Lead silicate glass powder containing at least 10% by weight of silicon oxide and 10% by weight or more of lead oxide and having an average particle size of 10 μm or less, or a powder represented by the formula Pb_2Ru_2O_x where x is in the range of 6 to 7 and the particle size is 1000 Å or less lead ruthenate powder, 10
A lead silicate glass powder with an average particle size of 10 μm or less containing at least 10% by weight of silicon oxide and 10% by weight or more of lead oxide, a tin oxide powder with an average particle size of less than 1 μm, and an organic vehicle, and the composition A composition for a thick film resistor, characterized in that the content of tin oxide in the inorganic components is 0.2 to 5% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2305569A JPH04177702A (en) | 1990-11-09 | 1990-11-09 | Composition for thick film resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2305569A JPH04177702A (en) | 1990-11-09 | 1990-11-09 | Composition for thick film resistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04177702A true JPH04177702A (en) | 1992-06-24 |
Family
ID=17946726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2305569A Pending JPH04177702A (en) | 1990-11-09 | 1990-11-09 | Composition for thick film resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04177702A (en) |
-
1990
- 1990-11-09 JP JP2305569A patent/JPH04177702A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4548741A (en) | Method for doping tin oxide | |
JPS648441B2 (en) | ||
US4060663A (en) | Electrical resistor glaze composition and resistor | |
US5534194A (en) | Thick film resistor composition containing pyrochlore and silver-containing binder | |
US4340508A (en) | Resistance material, resistor and method of making the same | |
KR970005085B1 (en) | Thick film resistor compositions | |
US4293838A (en) | Resistance material, resistor and method of making the same | |
WO1993023855A1 (en) | Thick film resistor composition | |
EP1632958B1 (en) | A thick-film resistor paste, a thick-film resistor manufactured using the thick-film resistor paste and an electronic device comprising the thick-film resistor | |
US5474711A (en) | Thick film resistor compositions | |
TWI662561B (en) | Lead-free thick film resistor composition, lead-free thick film resistor and production method thereof | |
US4536329A (en) | Borosilicate glass compositions | |
JPH0740633B2 (en) | Insulating layer composition | |
JPH04177702A (en) | Composition for thick film resistor | |
JPH06247742A (en) | Electronic parts | |
JPH04177701A (en) | Composition for thick film resistor | |
EP0563838A2 (en) | Thick film resistor composition | |
JPS6221739B2 (en) | ||
JPH04206602A (en) | Thick-film resistance composition | |
KR100284785B1 (en) | Memory data processing system and method and communication system having system | |
JPH03176905A (en) | Conductive paste | |
JPS6243937B2 (en) | ||
JPH06140214A (en) | Manufacture of thick film resistor paste and formation of thick film resistor | |
JPH0230101A (en) | Composition for forming resistive film | |
JPH0425001A (en) | Composition for manufacturing thick film resistance body |