JPH0417713B2 - - Google Patents

Info

Publication number
JPH0417713B2
JPH0417713B2 JP4350983A JP4350983A JPH0417713B2 JP H0417713 B2 JPH0417713 B2 JP H0417713B2 JP 4350983 A JP4350983 A JP 4350983A JP 4350983 A JP4350983 A JP 4350983A JP H0417713 B2 JPH0417713 B2 JP H0417713B2
Authority
JP
Japan
Prior art keywords
water
delay
storage tank
tank
harmful metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4350983A
Other languages
Japanese (ja)
Other versions
JPS59169592A (en
Inventor
Takeshi Oonishi
Takeru Fukuse
Hakobu Myoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4350983A priority Critical patent/JPS59169592A/en
Publication of JPS59169592A publication Critical patent/JPS59169592A/en
Publication of JPH0417713B2 publication Critical patent/JPH0417713B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有害な金属物質が微粉末状で含まれ
ている、有害金属含有水から、有害金属を取り除
き、この液を再度利用することを可能にした有害
金属含有水の処理装置に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention makes it possible to remove harmful metals from water containing harmful metals, which contains harmful metal substances in the form of fine powder, and to reuse this liquid. This invention relates to a treatment device for water containing hazardous metals.

従来例の構成とその問題点 半導体装置産業の分野では、シリコン、ゲルマ
ニウムがその原材料の主流であつたが、近年、こ
れらの原材料に加えて、−族化合物半導体も
多用されるに至つている。この−V族化合物半
導体は、発光ダイオード、半導体レーザあるいは
ホール素子などの原材料となつている。
Structures of Conventional Examples and Their Problems In the field of semiconductor device industry, silicon and germanium have been the mainstream raw materials, but in recent years, in addition to these raw materials, - group compound semiconductors have also come into widespread use. This -V group compound semiconductor is a raw material for light emitting diodes, semiconductor lasers, Hall elements, and the like.

ところで、たとえば、砒化ガリウム(GaAs)、
砒化インジウム(InAs)あるいは砒化アルミニ
ウム(AlAs)などの化合物半導体の構成要素で
ある砒素(As)は、人体に対して極めて有害な
ものであり、このような物質によつて、作業環境
は勿論のこと自然環境が汚染されることを防ぐこ
とは、これを使用するものに課せられる最大の義
務でもある。上記の−V族化合物半導体を用い
て各種の半導体装置を製作するにあたり、−V
族化合物半導体ウエーハに対する機械研磨、切
削、切断などの機械加工を施す場合があるが、こ
の機械加工工程では微粉末状の加工屑の発生が避
けられない。そして、この加工屑にAsが含まれ
ているときには、これの飛散による作業環境汚染
を防止することが極めて大切となる。このため、
従来は、機械加工時に加工部へ水を流し、加工手
段の冷却と加工屑の飛散の防止をはかる方法が採
用されていた。
By the way, for example, gallium arsenide (GaAs),
Arsenic (As), which is a component of compound semiconductors such as indium arsenide (InAs) and aluminum arsenide (AlAs), is extremely harmful to the human body, and such substances can cause harm to the work environment as well as to the human body. Preventing the natural environment from being polluted is the greatest duty of those who use them. When manufacturing various semiconductor devices using the above-mentioned -V group compound semiconductor, -V
BACKGROUND ART Group compound semiconductor wafers are sometimes subjected to mechanical processing such as mechanical polishing, cutting, cutting, etc., but the generation of fine powder-like processing waste is unavoidable in this machining process. When this processing waste contains As, it is extremely important to prevent contamination of the working environment due to its scattering. For this reason,
Conventionally, a method has been adopted in which water is flowed into the machining area during machining to cool the machining means and prevent the scattering of machining debris.

ところで、この方法によると、加工屑の飛散で
作業環境が汚染される問題は解決できるが、加工
部から排出される水の中に微粉末状の加工屑が含
まれるところとなり、これをそのまま排出水とし
て外部へ排出させることができなくなる。
By the way, this method solves the problem of contaminating the working environment due to scattering of processing waste, but the water discharged from the processing section contains fine powder of processing waste, and this method cannot be directly discharged. It becomes impossible to discharge it outside as water.

したがつて、加工部から排出された廃水を産業
廃棄物と取り扱わねばならず、これにかなりの費
用がかかる。また、半導体装置産業の分野で使用
する水の大半は、通常の水よりも高価格な純水で
あるため、これの消費を極力抑えねばならない
が、上記の加工部から排出される水にAs等の有
害な物質が含まれたときには、全ての水を廃棄物
として処分しなければならず、このため、純水の
消費量を少くすることは困難であつた。
Therefore, the wastewater discharged from the processing section must be treated as industrial waste, which incurs considerable costs. In addition, most of the water used in the semiconductor device industry is pure water, which is more expensive than regular water, so consumption of this water must be minimized, but the water discharged from the processing areas mentioned above is If the water contains harmful substances such as deionized water, all of the water must be disposed of as waste, making it difficult to reduce the amount of pure water consumed.

発明の目的 本発明は、有害な金属を含有する水の再利用を
はかり、排出水としてこれを外部に排出させるこ
とあるいは産業廃棄物として処理することを不要
にし、しかも、水の消費を抑えることのできる処
理装置の提供を目的とするものである。
Purpose of the Invention The present invention aims to reuse water containing harmful metals, eliminates the need to discharge it to the outside as wastewater or treat it as industrial waste, and further reduces water consumption. The purpose is to provide a processing device that can perform

発明の構成 本発明の有害金属含有水の処理装置は、加工部
から排出される有害金属含有水の流入ならびに流
出口をもち、前記有害金属含有水の流入、流出の
間に所定の時間遅れを付加する遅延貯水槽と、同
遅延貯水槽から流出する有害金属含有水が流入
し、同有害金属含有水中の有害金属イオンをイオ
ン交換吸着するイオン交換手段と、同イオン交換
手段を通過した水を貯水する貯水槽と、同貯水槽
の水を前記加工部へ送水する送水手段と具備する
ものである。このように構成された本発明の有害
金属含有水の処理装置では、加工部から排出され
る水の中に混入した有害金属微粉末の大半が遅延
貯水槽における遅延期間に水に溶け、また、この
期間に溶けきれなかつたものは沈降する。このた
め、遅延貯水槽からは有害金属イオンを含んだ水
がイオン交換手段へ向けて流出する。したがつ
て、イオン交換手段においてイオン交換吸着され
ることのない有害金属微粉末が、このイオン交換
手段を通過して貯水槽に到達することはなく、加
工部には清浄化された水が戻されることになる。
Structure of the Invention The apparatus for treating hazardous metal-containing water of the present invention has an inlet and an outlet for the hazardous metal-containing water discharged from a processing section, and has a predetermined time delay between the inflow and outflow of the hazardous metal-containing water. An additional delay storage tank, an ion exchange means for ion exchange adsorption of harmful metal ions in the water containing harmful metals, into which the water containing harmful metals flows out from the delay storage tank, and an ion exchange means for ion exchange adsorption of harmful metal ions in the water containing harmful metals; The apparatus includes a water storage tank for storing water, and a water supply means for transporting water from the water storage tank to the processing section. In the hazardous metal-containing water treatment apparatus of the present invention configured as described above, most of the hazardous metal fine powder mixed in the water discharged from the processing section is dissolved in the water during the delay period in the delay water storage tank, and Anything that is not completely dissolved during this period will settle. Therefore, water containing harmful metal ions flows out from the delay water tank toward the ion exchange means. Therefore, harmful metal fine powder that is not ion-exchanged and adsorbed by the ion exchange means does not pass through the ion exchange means and reach the water tank, and purified water is returned to the processing area. It will be.

実施例の説明 以下に図面を参照して本発明を詳しく説明す
る。第1図は、本発明の有害金属含有水の処理装
置をGaAs半導体装置のウエーハ切断工程に適用
した実施例を示す図である。第1図において、1
はウエーハを単位素子に切断するためのダイシン
グソー、2はダイシングソーで使用され、ここか
ら排出される有害金属含有水を貯め、しかも、こ
れの流入と流出との間に所定の遅延時間を与える
遅延貯水槽、3はイオン交換樹脂を有するイオン
交換手段、4はイオン交換手段において処理され
た水を貯める貯水槽、5および6は送水ポンプ、
そして7はダイシングソー1へ貯水槽4の水を送
る給水管である。
DESCRIPTION OF EMBODIMENTS The present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram showing an embodiment in which the apparatus for treating harmful metal-containing water of the present invention is applied to a wafer cutting process for GaAs semiconductor devices. In Figure 1, 1
is a dicing saw for cutting the wafer into unit elements, and 2 is used in the dicing saw to store harmful metal-containing water discharged from the dicing saw, and also provides a predetermined delay time between the inflow and outflow of this water. 3 is an ion exchange means having an ion exchange resin; 4 is a water storage tank for storing water treated in the ion exchange means; 5 and 6 are water pumps;
A water supply pipe 7 supplies water from the water tank 4 to the dicing saw 1.

以上のように構成された本発明の処理装置では
以下のような処理が実行される。
The processing device of the present invention configured as described above executes the following processing.

ダイシングソー1において、たとえば、GaAs
ウエーハの切断がなされるものとすると、ダイシ
ングソー1から排出される水には、GaAs化合物
の切屑である微粉末が混入し、これが遅延貯水槽
2へ流入する。遅延貯水槽2は、その流入口21
へ流入した水が流出口22から流出するまでの間
に所定の時間(3時間程度)の遅延時間を与える
ためのものであり、この遅延の間に有害金属であ
るAsが酸化物となり、水に溶け込んでしまう。
また、この間に完全に溶解しきらないものは沈降
し、さらに長時間にわたつて遅延貯水槽2の中に
とどまるところとなり、これもまた完全に溶解す
る。したがつて、流出口22からイオン交換手段
3へ向つて流出する水にはAsイオンのみが含ま
れるところとなり、イオン交換手段3を通過する
過程でAsイオンはイオン交換吸着により除去さ
れる。貯水槽4には、Asイオンが殆んど除去さ
れた水が流入する。
In the dicing saw 1, for example, GaAs
When the wafer is cut, the water discharged from the dicing saw 1 is mixed with fine powder, which is the chips of the GaAs compound, and this flows into the delay water storage tank 2. The delay water tank 2 has an inlet 21 thereof.
This is to provide a predetermined delay time (approximately 3 hours) before the water flowing into the outlet flows out from the outlet 22. During this delay, the toxic metal As becomes oxide and the water It blends into.
Additionally, during this time, any material that is not completely dissolved will settle and remain in the delay storage tank 2 for an even longer period of time, and will also be completely dissolved. Therefore, the water flowing out from the outlet 22 toward the ion exchange means 3 contains only As ions, and in the process of passing through the ion exchange means 3, the As ions are removed by ion exchange adsorption. Water from which most of the As ions have been removed flows into the water storage tank 4.

ところで、この貯水槽4は、ダイシングソー1
へ送り込む水を常時必要量だけ確保し、送水が途
絶えることのないようにするためのものであり、
その容量は単位時間当りの送水量を考慮して決定
する。この貯水槽4に貯められた水は、給水管7
を通つて再びダイシングソー1へ送水される。
By the way, this water tank 4 is connected to the dicing saw 1.
This is to ensure that only the necessary amount of water is sent to the facility at all times, and that water supply is never interrupted.
Its capacity is determined by considering the amount of water conveyed per unit time. The water stored in this water tank 4 is transferred to the water supply pipe 7
The water is sent to the dicing saw 1 again through the dicing saw.

以上説明した本発明の処理装置では、遅延貯水
槽2を配設することが特に大切であり、これが配
設されていない場合には、微粉末状の切屑が混入
した水がそのままイオン交換手段3へ流入するた
め、有害金属であるAsの除去が不十分となり、
この水を再利用することはできない。
In the treatment apparatus of the present invention described above, it is particularly important to provide the delay water storage tank 2. If this is not provided, the water mixed with fine powder chips will be directly transferred to the ion exchange means 3. As a result, the removal of As, a toxic metal, is insufficient.
This water cannot be reused.

第2図a〜cは、上記の遅延貯水槽の具体的な
構造例を示す図である。同図aは、長大なパイプ
8を図示するように蛇行させたものであり、ダイ
シングソー1から排出される単位時間当りの排水
量と、このパイプ8での遅延時間とを考慮してパ
イプ8の内径と長さは決定される。例えば、パイ
プ8として内径が4cmのものを用い、毎分1の
排水を貯めて、これに3時間の遅延時間を与える
ものとすると、パイプ8の流さは、 =1000/2×2×3.14×180=14331(cm) となる。すなわち、内径4cm、長さが約140mの
パイプを蛇行させたものを遅延貯水槽2として用
いればよいことになる。
FIGS. 2a to 2c are diagrams showing specific structural examples of the above-mentioned delay water tank. Figure a shows a long pipe 8 meandering as shown, and the pipe 8 is designed in consideration of the amount of water discharged from the dicing saw 1 per unit time and the delay time in this pipe 8. The inner diameter and length are determined. For example, if we use a pipe 8 with an inner diameter of 4 cm and store wastewater at a rate of 1 per minute and give it a delay time of 3 hours, the flow rate of pipe 8 is: = 1000/2 x 2 x 3.14 x 180=14331 (cm). In other words, a meandering pipe with an inner diameter of 4 cm and a length of approximately 140 m may be used as the delay water tank 2.

第2図bは、単一の貯水槽9の中に多数の隔壁
板10〜13を配置したものである。この貯水槽
では、流入口91から流入した水の流出口92へ
向う水平方向の流れが隔壁板10〜13によつて
阻止され、矢印で示すように貯水槽内を流れる。
そして、上記と同様、毎分1の排水が流入口9
1から流入し、これに約3時間の遅延時間を与え
るものとすると、貯水槽9の実質貯水量(破線以
下の容積)を180程度に設定することにより目
的が達成される。
FIG. 2b shows a single water tank 9 in which a large number of partition plates 10 to 13 are arranged. In this water tank, a horizontal flow of water flowing from an inlet 91 toward an outlet 92 is blocked by the partition plates 10 to 13, and flows within the tank as shown by arrows.
Then, as above, 1 waste water per minute flows into the inlet 9.
1, and a delay time of about 3 hours is given to this, the purpose can be achieved by setting the actual water storage amount (volume below the broken line) of the water tank 9 to about 180.

第2図cは第3図a,bで示したものにくらべ
てより簡略化した貯水槽であり、貯水槽14の中
に、例えば、ポリプロピレン樹脂塊を粉砕して得
た樹脂破片15を充填して構成されている。この
貯水槽では、流入口141から流入した水は、樹
脂破片15の〓間を通過して流出口142の方向
へ向う。この通路は、樹脂破片15を微細なもの
とすることによつて極めて長くなり、このことに
より遅延時間が与えられる。また、イオン化して
ない金属微粉末が樹脂破片15の表面に付着し、
流出口142から金属微粉末が流出する効果も奏
される。この構造の貯水槽では、遅延時間を単純
な計算に基いて定めることは容易でなく、このた
め、予め実験を行つて遅延時間を定めておくこと
がのぞましい。
FIG. 2c shows a water storage tank that is more simplified than those shown in FIGS. It is configured as follows. In this water tank, water flowing in from the inlet 141 passes between the resin pieces 15 and heads toward the outlet 142 . This path is made extremely long by the fineness of the resin debris 15, which provides a delay time. In addition, non-ionized metal fine powder adheres to the surface of the resin fragments 15,
The effect of the metal fine powder flowing out from the outlet 142 is also achieved. In a water tank having this structure, it is not easy to determine the delay time based on simple calculations, and therefore it is desirable to determine the delay time by conducting experiments in advance.

次に、本発明の処理装置の効果確認のための実
験結果について説明する。この実験では、遅延貯
水槽2を第2図cで示した構造で容量が100の
第1貯水槽と、単に貯水のみを行う構造で容量が
100の第2貯水槽とを直列に繋いで構成し、前
者の流入口にGaAsウエーハのダイシングソーか
ら排出されるAs含有水を1分間当り1の量で
流入させた。なお、遅延貯水槽2における遅延時
間を約3時間、イオン交換手段の通過時間を約30
分に定め、遅延貯水槽2の流入口、すなわち第1
貯水槽の流入口でのAs濃度N1、遅延貯水槽2の
流出口、すなわち第2貯水槽の流出口でのAs濃
度N2、そして、イオン交換手段の流出口でのAs
濃度をN3とし、これらを測定したところ、N1
2.5ppm、N2=1.2ppmそしてN3<0.005ppmの結
果が得られた。また、N2は、時間の経過とはほ
ぼ無関係な一定値であつた。
Next, experimental results for confirming the effects of the processing apparatus of the present invention will be explained. In this experiment, the delay water storage tank 2 has the structure shown in Figure 2c and has a capacity of 100 ml, and the structure that only stores water has a capacity of 1.
100 second water tanks were connected in series, and As-containing water discharged from a GaAs wafer dicing saw was allowed to flow into the inlet of the former at a rate of 1 per minute. The delay time in the delay water tank 2 is approximately 3 hours, and the passage time through the ion exchange means is approximately 30 hours.
the inlet of the delay water tank 2, i.e. the first
As concentration N 1 at the inlet of the water tank, As concentration N 2 at the outlet of the delayed water tank 2, that is, the outlet of the second water tank, and As at the outlet of the ion exchange means.
When the concentration was set to N 3 and these were measured, N 1 =
Results were obtained of 2.5 ppm, N 2 = 1.2 ppm and N 3 <0.005 ppm. Furthermore, N 2 was a constant value that was almost unrelated to the passage of time.

以上、本発明を有害金属としてAsを含有する
排出水の処理を例に説明したのであるが、本発明
の装置による処理はこの例に限られるものではな
く、遅延の過程で微粉末水中に溶けうる他の有害
金属の処理にも適用することができること勿論で
ある。また、イオン交換手段3の交換は、ここか
ら流出する水の純度をチエツクし、純度が所定値
以下に達したところで行うようにすればよい。
The present invention has been explained above using as an example the treatment of waste water containing As as a toxic metal, but the treatment by the apparatus of the present invention is not limited to this example, Of course, the present invention can also be applied to the treatment of other harmful metals. Furthermore, the ion exchange means 3 may be replaced when the purity of the water flowing out from the ion exchange means 3 is checked and the purity reaches a predetermined value or less.

発明の効果 本発明の処理装置は、閉ループ形の構成により
排出される水の再利用をはかるものであるため、
排出水に有害な金属が含まれていても、これの廃
棄処理が不要となり、廃棄費用が不要となるこ
と、使用する水が高価格の純水であつても、これ
が再利用されるため、消費量は極めて少いものと
なることなどの効果を奏する。また、本発明の処
理装置の使用によれば、有害は金属微粉末を水中
にとり込み、これの飛散を防ぐことによつて作業
環境の清浄化をはかつても、有害金属を含む水の
廃棄処理が不要であるため、有害な金属微粉末が
飛散するおそれがある各種の加工工程に適用して
その環境を清浄化することが容易となる。なお、
本発明の処理装置は、単一の加工工程に常に対応
させて設置する必要はなく、複数の加工部から排
出される排出水を処理装置へ流入させ、集中的に
処理するようにしてもよい。
Effects of the Invention Since the treatment device of the present invention aims to reuse discharged water through a closed loop configuration,
Even if the waste water contains harmful metals, there is no need to dispose of it and there are no disposal costs, and even if the water used is expensive pure water, it is reused. This has the effect of reducing consumption to an extremely low level. In addition, by using the treatment device of the present invention, the work environment can be purified by introducing harmful metal fine powder into the water and preventing it from scattering, but it is also possible to dispose of water containing harmful metals. Since this method is unnecessary, it is easy to apply it to various processing steps where harmful fine metal powder may be scattered to clean the environment. In addition,
The treatment device of the present invention does not need to be installed always in correspondence with a single processing step, and wastewater discharged from a plurality of processing sections may be made to flow into the treatment device for intensive treatment. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の処理装置の構成を示す図、
第2図a〜cは、本発明の処理装置で用いる遅延
貯水槽の構造を示す図である。 1……ダイシングソー、2……遅延貯水槽、3
……イオン交換手段、4……貯水槽、5,6……
送水ポンプ、7……給水管、8……遅延貯水槽形
成用のパイプ、9,14……貯水槽、21,9
1,141……有害金属含有水の流入口、22,
92,142……流出口、10〜13……隔壁
板、15……樹脂破片。
FIG. 1 is a diagram showing the configuration of a processing device of the present invention,
FIGS. 2a to 2c are diagrams showing the structure of a delay water storage tank used in the processing apparatus of the present invention. 1... Dicing saw, 2... Delay water tank, 3
...Ion exchange means, 4...Water tank, 5, 6...
Water pump, 7... Water supply pipe, 8... Pipe for forming a delayed water tank, 9, 14... Water tank, 21, 9
1,141...Inlet of water containing harmful metals, 22,
92,142... Outlet, 10-13... Partition plate, 15... Resin debris.

Claims (1)

【特許請求の範囲】 1 加工部から排出される有害金属含有水の流入
ならびに流出口をもち、前記有害金属含有水の流
入、流出の間に所定の時間遅れを与える遅延貯水
槽と、同遅延貯水槽から流出する有害金属イオン
を含有する水を通過させ、通過の過程で前記有害
金属イオンをイオン交換吸着するイオン交換手段
と、同イオン交換手段を通過した水を貯水する貯
水槽と、同貯水槽の水を前記加工部へ送水する循
環路形成用の送水手段を具備する有害金属含有水
の処理装置。 2 遅延貯水槽が、長大なパイプで構成されてい
ることを特徴とする特許請求の範囲第1項に記載
の有害金属含有水の処理装置。 3 遅延貯水槽が、複数枚の隔壁板で横方向の流
れを阻止した貯水槽であることを特徴とする特許
請求の範囲第1項に記載の有害金属含有水の処理
装置。 4 遅延貯水槽が、樹脂破片を充填した貯水槽で
あることを特徴とする特許請求の範囲第1項に記
載の有害金属含有水の処理装置。
[Scope of Claims] 1. A delay storage tank having an inlet and an outlet for harmful metal-containing water discharged from a processing section and providing a predetermined time delay between the inflow and outflow of the harmful metal-containing water; An ion exchange means for passing water containing harmful metal ions flowing out from a water storage tank and ion-exchanging and adsorbing the harmful metal ions during the passage, and a water storage tank for storing water that has passed through the ion exchange means. A treatment device for water containing harmful metals, comprising a water supply means for forming a circulation path for supplying water from a water storage tank to the processing section. 2. The apparatus for treating harmful metal-containing water according to claim 1, wherein the delay water storage tank is composed of a long pipe. 3. The apparatus for treating harmful metal-containing water according to claim 1, wherein the delay water tank is a water tank in which lateral flow is blocked by a plurality of partition plates. 4. The apparatus for treating harmful metal-containing water according to claim 1, wherein the delay water tank is a water tank filled with resin fragments.
JP4350983A 1983-03-15 1983-03-15 Apparatus for treatment of water containing noxious metal Granted JPS59169592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4350983A JPS59169592A (en) 1983-03-15 1983-03-15 Apparatus for treatment of water containing noxious metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4350983A JPS59169592A (en) 1983-03-15 1983-03-15 Apparatus for treatment of water containing noxious metal

Publications (2)

Publication Number Publication Date
JPS59169592A JPS59169592A (en) 1984-09-25
JPH0417713B2 true JPH0417713B2 (en) 1992-03-26

Family

ID=12665700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4350983A Granted JPS59169592A (en) 1983-03-15 1983-03-15 Apparatus for treatment of water containing noxious metal

Country Status (1)

Country Link
JP (1) JPS59169592A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334449A (en) * 1999-05-27 2000-12-05 Miura Co Ltd Pure water production device and operation therefor
JP5086123B2 (en) * 2008-02-15 2012-11-28 株式会社ディスコ Processing waste liquid treatment equipment
JP5086124B2 (en) * 2008-02-19 2012-11-28 株式会社ディスコ Processing waste liquid treatment equipment
JP5086125B2 (en) * 2008-02-19 2012-11-28 株式会社ディスコ Processing waste liquid treatment equipment
JP5149035B2 (en) * 2008-02-28 2013-02-20 株式会社ディスコ Processing waste liquid treatment equipment
GB2547727B (en) * 2016-02-29 2022-05-04 Gold Standard Phantoms Ltd Perfusion phantom

Also Published As

Publication number Publication date
JPS59169592A (en) 1984-09-25

Similar Documents

Publication Publication Date Title
JP3575859B2 (en) Semiconductor substrate surface treatment method and surface treatment device
JP2000190223A (en) Grinding waste liquid reutilizing method and its device in semiconductor manufacturing
JP2003234320A (en) Method, chemical liquid, and device for cleaning substrate, and semiconductor device
JPH0684875A (en) Method and apparatus for reduction of fine- particle concentration in working fluid
JPH0417713B2 (en)
JPH0225030A (en) Wet chemical surfa ce treatment of semiconductor wafer
US4935064A (en) Iodine sterilization of deionized water in semiconductor processing
Wu et al. Process-to-process recycling of high-purity water from semiconductor wafer backgrinding wastes
JP2021087911A (en) Ion exchange unit and exchange method of ion exchange resin
JPS62140423A (en) Manufacturing equipment for semiconductor integrated circuit device
US6907891B2 (en) Radioactive substance decontamination method and apparatus
US6116986A (en) Drainage structure in polishing plant and method of polishing using structure
JP6246537B2 (en) Sampling mechanism
JP7466999B2 (en) Pure Water Generator
JP6360441B2 (en) Water storage tank
JPH04162627A (en) Treatment apparatus by chemical liquid
CN113767071B (en) Apparatus for treating washing water for semiconductor manufacturing/liquid crystal manufacturing and electronic parts, and method for treating washing water for semiconductor manufacturing/liquid crystal manufacturing and electronic parts
JP7337442B2 (en) Machining fluid circulation system
JP6328912B2 (en) Pure water purification equipment
JP2022186379A (en) Cleaning device
JPH0631267A (en) Removing filter for heavy metal in chemical liquid
JPH04286328A (en) Manufacture of high efficiency eilter for removing heavy metal contained in hf chemical solution
KR0174986B1 (en) Liquid Circulation System of Semiconductor Process
JP2021030106A (en) Processing liquid circulation device
JPH03102827A (en) Etching method for hf chemical