JPH0417675A - Ecr plasma cvd apparatus - Google Patents

Ecr plasma cvd apparatus

Info

Publication number
JPH0417675A
JPH0417675A JP12080990A JP12080990A JPH0417675A JP H0417675 A JPH0417675 A JP H0417675A JP 12080990 A JP12080990 A JP 12080990A JP 12080990 A JP12080990 A JP 12080990A JP H0417675 A JPH0417675 A JP H0417675A
Authority
JP
Japan
Prior art keywords
plasma
magnetic field
chamber
film
field application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12080990A
Other languages
Japanese (ja)
Inventor
Akihiro Ito
彰浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Original Assignee
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Research Institute of General Electronics Co Ltd, Ricoh Co Ltd filed Critical Ricoh Research Institute of General Electronics Co Ltd
Priority to JP12080990A priority Critical patent/JPH0417675A/en
Publication of JPH0417675A publication Critical patent/JPH0417675A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To uniformize the distribution of plasma and to efficiently form film by providing a magnetic field impressing surface in the position parpendicular to a microwave introducing window, and forming a plasma drawing-out opening facing the magnetic field impressing surface. CONSTITUTION:Micro wave is introduced into the plasma chamber 1 consisting of nonmagnetic electroconductive material from the window 2 consisting of electrically insulating material through a rectangular wave guide 3, and moreover magnetic field is impressed by a magnetic field impressing mechanism part 7 through the magnetic field impressing surface 10. By this method, the introduced gas A, such as Ar, is made into plasma by ECR resonance. This plasma is introduced into a film formation chamber 4 from a plasma drawing-out opening 5 to excite an introducted gas B, such as SiH4. Thus, Si, etc., is formed into the film on a base plate 6. In the above- mentioned ECR plasma CVD apparatus, the magnetic field impressing surface 10 is made to be perpendicular to the surface of the introducing window 2 and to be confronted to the plasma drawing-out opening 5. By this method, the direction of magnetic field is diverged to the direction perpendicular to Z-axis, and the plasma is expanded as a whole, and film is uniformly formed on the base plate of optional shape according to the shape of the plasma drawing-out opening 5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はECR(電子サイクロトロン共鳴)を利用した
ECRプラズマCVD装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ECR plasma CVD apparatus that utilizes ECR (electron cyclotron resonance).

[従来の技術] ECR(電子サイクロトロン共鳴)を利用した成膜法は
、低ガス圧下で、大きい割合でイオン化した高い活性度
を有するガス種を発生させることができる特長があるた
め、半導体プロセス上への適用が望まれている。
[Prior Art] A film forming method using ECR (Electron Cyclotron Resonance) has the advantage of being able to generate highly active gas species that are ionized in a large proportion under low gas pressure, so it is suitable for semiconductor processing. It is desired to be applied to

現在までに、ミラー磁界等によりプラズマを閉じ込めて
いるところに基板を置いて成膜する方法と、円筒型プラ
ズマ室の外周にコイルを設け、ECRプラズマを発生さ
せ、前記コイルの発散磁界によってイオンを引き出し成
膜する方法が知られているが、装置のコンパクト性と基
板上への入射粒子のエネルギーが低い特性により、円筒
型プラズマ室ECRプラズマCVD法のほうがより半導
体プロセス上の使用に適していると考えられる。
To date, there are two methods: placing a substrate in a place where the plasma is confined by a mirror magnetic field, etc., to form a film, and a method in which a coil is installed around the outer periphery of a cylindrical plasma chamber to generate ECR plasma, and ions are generated by the divergent magnetic field of the coil. Although extraction film deposition methods are known, the cylindrical plasma chamber ECR plasma CVD method is more suitable for use in semiconductor processes due to the compactness of the equipment and the low energy of particles incident on the substrate. it is conceivable that.

第10図に示した2、45GHzのマイクロ波を用いる
場合の円筒型プラズマ室ECRプラズマCVD装置を参
照してECRプラズマCVD法の成膜のメカニズムと利
点を述べる。第1O図はその装置の断面図、第11図は
マイクロ導波管側から見た図をそれぞれ示す。
The mechanism and advantages of film formation by the ECR plasma CVD method will be described with reference to the cylindrical plasma chamber ECR plasma CVD apparatus shown in FIG. 10, which uses microwaves of 2.45 GHz. FIG. 1O shows a sectional view of the device, and FIG. 11 shows a view from the micro waveguide side.

マイクロ波(2,45GHz)を矩形導波管60を用い
て円筒型のプラズマ室63(内径20cm長さ20am
)に導入し、プラズマ室63の円周面の周囲に磁気コイ
ル61.62を設け、磁界がプラズマ室内では円筒の中
心軸とほぼ平行になり、プラズマ引き出し口66から成
膜室64内の試料基板台65方向に向うに従って磁界(
破線で示す)が発散するようにする。
Microwave (2.45 GHz) is applied to a cylindrical plasma chamber 63 (inner diameter 20 cm, length 20 am) using a rectangular waveguide 60.
), and magnetic coils 61 and 62 are provided around the circumferential surface of the plasma chamber 63, so that the magnetic field is almost parallel to the central axis of the cylinder in the plasma chamber, and the sample in the deposition chamber 64 is introduced from the plasma extraction port 66. The magnetic field (
(indicated by the dashed line) diverge.

次に動作について説明する。Next, the operation will be explained.

圧力10−”〜10−’Torr台で、プラズマ室63
内では電離した電子が磁界中で円運動する。
Plasma chamber 63 at a pressure of 10-'' to 10-' Torr.
Inside, ionized electrons move in a circular motion in a magnetic field.

電子サイクロトロン周波数ωc=eB/m(e:電子の
電荷、B:磁束密度、m:電子の質ji) マイクロ波の周波数ωとωCが同じになったとき、EC
R条件が満たされ、円運動電子に何周期にもわたり、有
効にマイクロ波のエネルギーが注入され加速され続ける
。この高エネルギー電子がガス分子と衝突してイオン化
を強く促進し、励起化、ラジカル化、イオン化した高活
性の分子種を大量に発生させる。
Electron cyclotron frequency ωc = eB/m (e: electron charge, B: magnetic flux density, m: electron quality ji) When microwave frequency ω and ωC become the same, EC
When the R condition is satisfied, microwave energy is effectively injected into the circularly moving electrons and they continue to be accelerated over many cycles. These high-energy electrons collide with gas molecules and strongly promote ionization, generating a large amount of excited, radicalized, and ionized highly active molecular species.

円運動する電子は、反磁性を示すのでプラズマ室中の高
エネルギー円運動電子は弱磁界方向に加速され、試料台
方向に負電位を発生させる。この電界により、プラズマ
室中のイオンは試料基板台65方向に引き出される。
Since circularly moving electrons exhibit diamagnetic properties, high-energy circularly moving electrons in the plasma chamber are accelerated in the direction of a weak magnetic field, generating a negative potential in the direction of the sample stage. Ions in the plasma chamber are drawn out in the direction of the sample substrate table 65 by this electric field.

上記、ECRプラズマCVD法の特徴により、従来のプ
ラズマCVD法と比較して利点を述べる。
The advantages of the above-mentioned ECR plasma CVD method compared to the conventional plasma CVD method will be described.

■高活性の分子種が大量に発生するため、成膜速度が大
きい、(2〜50倍) ■発散磁界によるイオンの引き出し法を用いているため
、基板入射粒子のエネルギーが小さく(10〜30eV
)エネルギーの分布も小さい、このため、従来プラズマ
CVD法の場合にみられる基板への高エネルギー(数百
eV)入射粒子による損傷がほとんどみられない、また
、入射粒子のエネルギーが小さいが、入射頻度が大きい
ことと、上記高活性ガス種の存在により基板温度を低く
でき、はとんどの場合、室温でも良質の膜が得られ、半
導体プロセス上への通用範囲がより広い。
■Since a large amount of highly active molecular species are generated, the film formation rate is faster (2 to 50 times). ■Because the ion extraction method using a divergent magnetic field is used, the energy of particles incident on the substrate is small (10 to 30 eV).
) The energy distribution is also small. Therefore, there is almost no damage to the substrate caused by high-energy (several hundred eV) incident particles that occurs in the conventional plasma CVD method.Also, although the energy of the incident particles is small, the incident Due to the high frequency and the presence of the highly active gas species, the substrate temperature can be lowered, and in most cases, a good quality film can be obtained even at room temperature, making it more applicable to semiconductor processes.

[発明が解決しようとする課題〕 しかしながら、上記円筒型プラズマ室63をもっECR
プラズマCVD装置での膜形成の均一性は中央部10c
mφで±5%程度であるが、中央部から遠くなると急激
に均一性が悪くなる問題がある。
[Problem to be solved by the invention] However, the ECR with the cylindrical plasma chamber 63 described above is
The uniformity of film formation in the plasma CVD device is the center part 10c.
Although it is about ±5% in mφ, there is a problem that the uniformity deteriorates rapidly as the distance from the center increases.

画像入出力装置中のセンサーやプリンターに適用される
1辺がloCQI以上の長尺基板上への成膜には、従来
のECRプラズマCVD装置をそのままで使用すること
はむずかしい、また、円筒型プラズマ室63の周囲にコ
イル61.62があるため、上記装置単位を並列になら
べてもプラズマ弓き出し066間の距離を十分短くする
ことができず、長尺基板の成膜はできない。
It is difficult to use conventional ECR plasma CVD equipment as is to form films on long substrates with one side of loCQI or higher, which are applied to sensors and printers in image input/output devices, and cylindrical plasma CVD equipment is difficult. Since the coils 61 and 62 are located around the chamber 63, even if the above apparatus units are arranged in parallel, it is not possible to sufficiently shorten the distance between the plasma arches 066, making it impossible to form a film on a long substrate.

本発明の目的は、従来のECRプラズマCVD法の利点
を損うことなく長尺基板への成膜を可能にすることがで
きるECRプラズマCVD装置を提供することにある。
An object of the present invention is to provide an ECR plasma CVD apparatus that can form a film on a long substrate without sacrificing the advantages of the conventional ECR plasma CVD method.

[課題を解決するための手段] 上記目的の達成のため、本発明のECRプラズマCVD
装置は、電気絶縁性材からなるマイクロ波導入マドを有
する非磁性電気伝導体材からなるプラズマ室と、該プラ
ズマ室とプラズマ引き出し口で空間的に連続する成膜室
と、前記プラズマ室の一面を磁界印加面とし、該磁界印
加面に垂直に磁界を印加する磁界印加機構部とから構成
され、前記磁界印加面が前記マイクロ波導入マドを設け
た面に対し垂直に位置し、かつ 前記プラズマ引き出し口が前記磁界印加面と正対してい
ることを特徴とする。
[Means for Solving the Problem] In order to achieve the above object, the ECR plasma CVD of the present invention
The apparatus includes a plasma chamber made of a non-magnetic electrically conductive material and having a microwave introduction head made of an electrically insulating material, a film forming chamber spatially continuous with the plasma chamber through a plasma extraction port, and one side of the plasma chamber. is a magnetic field application surface, and a magnetic field application mechanism unit applies a magnetic field perpendicularly to the magnetic field application surface, and the magnetic field application surface is located perpendicularly to the surface on which the microwave introduction head is provided, and the plasma It is characterized in that the extraction port directly faces the magnetic field application surface.

また、前記磁界印加機構部の位置を可変する磁界移動機
構部を設けることもできる。
Further, a magnetic field moving mechanism section that changes the position of the magnetic field applying mechanism section can also be provided.

また、第4図に示すように磁界印加機構部7を起磁力発
生部21と該起磁力発生部21で発生させた磁束を導く
高透磁率材よりなるヨーク20からなる磁石部25で構
成し、該磁気回路部の一方の磁掻面20−Aを前記磁界
印加面10と隣接するように設け、該磁掻面20−Aと
逆の極性を持った磁橿面20−Bを、該プラズマ引き出
し口5を含む面を基準にして該磁界印加面10を設けた
領域と反対の領域に位置するように設けることもできる
Further, as shown in FIG. 4, the magnetic field application mechanism section 7 is composed of a magnetomotive force generating section 21 and a magnet section 25 consisting of a yoke 20 made of a high magnetic permeability material that guides the magnetic flux generated by the magnetomotive force generating section 21. , one magnetic surface 20-A of the magnetic circuit section is provided adjacent to the magnetic field application surface 10, and a magnetic surface 20-B having a polarity opposite to that of the magnetic surface 20-A is provided so as to be adjacent to the magnetic field application surface 10. It can also be provided so as to be located in a region opposite to the region in which the magnetic field application surface 10 is provided with reference to the surface including the plasma extraction port 5.

さらに、プラズマ引き出し口5の外側に、該プラズマ引
き出し口面5に対し、コイル中心軸が垂直に位置するよ
うに1個又は複数個の磁界収束コイル23を設けること
もできる8 また、プラズマ室及び成膜室の面で、該マイクロ波導入
マド面、該磁界印加面及び該プラズマ引き出し口面以外
の面同士を、隣接又は板を共有して複数個の上記単位構
成を結合させて長尺基板への成膜を可能にすることもで
きる。
Furthermore, one or more magnetic field converging coils 23 may be provided outside the plasma extraction port 5 so that the central axis of the coil is located perpendicular to the plasma extraction port surface 5. A plurality of the above-mentioned unit structures are bonded to each other by adjoining each other or sharing a plate on the surface of the film-forming chamber other than the microwave introduction face, the magnetic field application face, and the plasma extraction port face to form a long substrate. It is also possible to form a film on.

[実施例コ 以下、図面に従って本発明の詳細な説明する。[Example code] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1実施例を示す断面図、第2図はそ
の断面平面図をそれぞれ示す。
FIG. 1 is a sectional view showing a first embodiment of the present invention, and FIG. 2 is a sectional plan view thereof.

まず、構成について説明する。First, the configuration will be explained.

本発明の構成を大別すると、非磁性電気伝導体材からな
るプラズマ室lと、該プラズマ室1とプラズマ引き出し
口5で空間的に連続する成膜室4と、前記プラズマ室1
の一面を磁界印加面10とし、該磁界印加面10に垂直
に磁界を印加する磁界印加機構部7とから構成される。
Roughly dividing the configuration of the present invention, a plasma chamber 1 made of a non-magnetic electrically conductive material, a film forming chamber 4 spatially continuous with the plasma chamber 1 through a plasma extraction port 5, and the plasma chamber 1
One surface thereof is a magnetic field application surface 10, and the magnetic field application mechanism section 7 applies a magnetic field perpendicularly to the magnetic field application surface 10.

プラズマ室lと成膜室4の形状は特に限定されないが、
第1図においては、成膜する基板が長方形状なのでそれ
ぞれ直方体のものが示しである。プラズマ室1と成膜室
4はアルミ、5US3(14等の非磁性の金属を用い高
真空まで真空引きできるようにする。プラズマ室lはま
た、矩形導波管3を用いてマイクロ波をプラズマ室1に
導入する石英板よりなるマイクロ波導入マド2と、導入
ガスAを導入する導入管50を有している。マイクロ波
導入マド2は、プラズマ室1の直方体の一面の一部又は
全部に設けられる。また、成膜室4は導入ガスBを導入
する導入管51と真空ポンプにつながる管8を有してい
る。成膜室4には、プラズマ引き出し口5と正対する位
置に試料基板台6が固定される。
Although the shapes of the plasma chamber 1 and the film forming chamber 4 are not particularly limited,
In FIG. 1, since the substrate on which the film is formed is rectangular, a rectangular parallelepiped is shown. The plasma chamber 1 and the film forming chamber 4 are made of non-magnetic metal such as aluminum or 5US3 (14) so that they can be evacuated to a high vacuum. It has a microwave introduction head 2 made of a quartz plate that is introduced into the chamber 1, and an introduction pipe 50 that introduces the introduced gas A.The microwave introduction head 2 has a microwave introduction head 2 that is made of a quartz plate and is introduced into the chamber 1. Further, the film forming chamber 4 has an introduction pipe 51 for introducing introduction gas B and a pipe 8 connected to a vacuum pump. The board stand 6 is fixed.

本発明においては、磁界印加面lOに対し印加する磁界
の方向が垂直になるように、磁界印加機構部7を設ける
。磁界印加機構部7は、空心コイル7−2又は、主磁石
体7−1.7−2カ)らなる。主磁石体7−1.7−2
はコイル7−2の中I1..箋を低炭素鋼。
In the present invention, the magnetic field application mechanism section 7 is provided so that the direction of the applied magnetic field is perpendicular to the magnetic field application surface lO. The magnetic field application mechanism section 7 consists of an air-core coil 7-2 or a main magnet body 7-1, 7-2. Main magnet body 7-1.7-2
is I1. in coil 7-2. .. Notebook made of low carbon steel.

純鉄等の高透磁率材のヨークを通したtla石、アルニ
コやBaフェライト等の永久磁石、永久磁石と高透磁率
材のヨークが一体となった磁石のうちいずれか1つ又は
複数の組み合わせより構成される。また、磁界印加面1
0に正対する面の一部又は全部に穴をあけ、プラズマ引
き出し口5としている。
One or more combinations of TLA stone passed through a yoke made of high magnetic permeability material such as pure iron, permanent magnets such as alnico or Ba ferrite, and magnets in which a permanent magnet and a yoke made of high magnetic permeability material are integrated. It consists of In addition, the magnetic field application surface 1
A hole is made in part or all of the surface directly facing 0 to serve as a plasma extraction port 5.

次に成膜動作について説明する。Next, the film forming operation will be explained.

プラズマ室1に単独では、イオン化して堆積しない導入
ガスA (N!、O□、Ar、l(e等)を入れ成膜室
4に膜の構成元素の一部又は全部となる元素を含む分子
からなる導入ガスB (SiHn、Ga(CHs) s
、 As1(s。
Introducing gas A (N!, O□, Ar, l (e, etc.) that does not ionize and deposit in the plasma chamber 1 alone, and containing elements that will become part or all of the constituent elements of the film into the film forming chamber 4. Introduced gas B consisting of molecules (SiHn, Ga(CHs)
, As1(s.

Zn(CHs)t、5e(CHs)を等)を入れる。プ
ラズマ室1中に磁界を印加してマイクロ波を注入すると
主に導入ガスAが高い割合でイオン化したプラズマが発
生する。ここで磁界印加機構部7の磁界を印加すると、
磁界印加面10に垂直方向(2方向)の磁界は、磁界印
加機構部が最も大きく基板方向に向かうほど小さくなり
、磁界方向が2軸と垂直になる方向に向かい発散する。
Zn(CHs)t, 5e(CHs), etc.) are added. When a magnetic field is applied to the plasma chamber 1 and microwaves are injected into the plasma chamber 1, plasma is generated in which the introduced gas A is mainly ionized at a high rate. When the magnetic field of the magnetic field applying mechanism section 7 is applied here,
The magnetic field in the direction (two directions) perpendicular to the magnetic field application surface 10 is largest in the magnetic field application mechanism section, becomes smaller as it goes toward the substrate, and diverges in the direction in which the direction of the magnetic field is perpendicular to the two axes.

この発散磁界の効果により、プラズマ室1のイオンが引
き出され成膜室4中で導入ガスBをイオン化、ラジカル
化および励起化して活性種を発生させる。これらの活性
種が中心となり基板上で膜形成反応がおこり膜が堆積す
る。
Due to the effect of this divergent magnetic field, ions in the plasma chamber 1 are extracted, and the introduced gas B is ionized, radicalized, and excited in the film forming chamber 4 to generate active species. These active species play a central role in causing a film formation reaction on the substrate, and a film is deposited.

ここで、プラズマ室lが直方体なので、印加磁界の形を
調整することにより、プラズマをプラズマ室l全体に広
げることができ、プラズマ引き出し口5を長尺基板に近
い長方形に形成すれば、プラズマの分布形状はプラズマ
引き出し口5の形に大略一致し、引き出され、効率的に
成膜できる。
Here, since the plasma chamber l is a rectangular parallelepiped, the plasma can be spread throughout the plasma chamber l by adjusting the shape of the applied magnetic field, and if the plasma extraction port 5 is formed in a rectangular shape close to the long substrate, the plasma can be The distribution shape roughly matches the shape of the plasma extraction port 5, allowing the plasma to be drawn out and efficiently formed into a film.

第3図に本発明の第2実施例の断面図を示す。FIG. 3 shows a sectional view of a second embodiment of the invention.

本実施例の特徴は、磁界印加機構部7の位置を可変でき
る磁界移動機構部15を設けたことにある。
The feature of this embodiment lies in the provision of a magnetic field moving mechanism section 15 that can vary the position of the magnetic field applying mechanism section 7.

この移動機構部15は、単にネジ固定の位置を変えて移
動させる方式や、リニアスライド機構を用いる方式に限
定するものではなく、成膜中にモーター駆動等で連続的
に磁界印加機構部7の位置を移動させる方式をも含む、
また、移動させる方向は図において、X軸、Y軸、Z軸
の各方向に取ることができる。このように磁界の分布を
変えることによりプラズマ室内のプラズマの均一性を向
上させることが可能となる。また、成膜中に磁界の分布
を連続的に変える機構を用いる場合は、時間的に平−均
すると結果的にプラズマの均一性を向上することになる
。さらに、成膜室中へ引き出されるイオン流の強度分布
を調節でき、長尺基板上への均一成膜に対応できる。
This moving mechanism section 15 is not limited to a method of simply changing the screw fixing position and moving it, or a method using a linear slide mechanism, but the magnetic field applying mechanism section 7 is continuously operated by a motor drive or the like during film formation. including the method of moving the position,
Further, the direction of movement can be taken in each of the X-axis, Y-axis, and Z-axis directions in the figure. By changing the distribution of the magnetic field in this way, it is possible to improve the uniformity of plasma within the plasma chamber. Furthermore, when a mechanism is used to continuously change the magnetic field distribution during film formation, the uniformity of the plasma can be improved by averaging over time. Furthermore, the intensity distribution of the ion flow drawn into the film forming chamber can be adjusted, making it possible to uniformly form a film on a long substrate.

第4図に本発明の第3実施例の断面図を示す。FIG. 4 shows a sectional view of a third embodiment of the present invention.

第3実施例では、磁界印加機構部7を、1個又は複数個
のコイル、永久磁石等を用いて起磁力を発生させる起磁
力発生部21と、低炭素鋼、純鉄等の高透磁率材からな
るヨーク20とからなる主磁石体25で構成する。主磁
石体25において、ヨーク20の一方の極性の磁極を発
生させる磁極面20−Aを磁界印加面10に近接して設
ける。
In the third embodiment, the magnetic field application mechanism section 7 includes a magnetomotive force generating section 21 that generates magnetomotive force using one or more coils, permanent magnets, etc., and a high magnetic permeability material such as low carbon steel or pure iron. The main magnet body 25 is composed of a yoke 20 made of material and a main magnet body 25 made of a material. In the main magnet body 25, a magnetic pole surface 20-A that generates a magnetic pole of one polarity of the yoke 20 is provided close to the magnetic field application surface 10.

また、ヨーク20は磁極面20−Aからプラズマ室の一
周囲を通り基板台6近辺まで伸ばして設られ、基板近傍
に前記磁極面への極性とは逆の極性の磁極を発生させる
、1個又は複数個の磁極面20−Bを有している@2種
の磁極面を連結するヨーク20は、■系統の磁気回路を
成す場合にかぎらず、複数系統の磁気回路を成す構成も
取ることができる。
Further, the yoke 20 is provided extending from the magnetic pole surface 20-A through the circumference of the plasma chamber to the vicinity of the substrate table 6, and has a single yoke that generates a magnetic pole of opposite polarity to the polarity toward the magnetic pole surface near the substrate. Or, the yoke 20 that has a plurality of magnetic pole surfaces 20-B and connects two types of magnetic pole surfaces is not limited to forming a magnetic circuit of two systems, but may also have a configuration that forms a magnetic circuit of multiple systems. I can do it.

この実施例では、起磁力発生部21で発生する磁束をヨ
ーク20により効率的に磁極面20−Aに導き、プラズ
マ室1にX軸方向に指向性を持つ磁界を発生させる。さ
らに磁極面20−Bは、プラズマ室1及び成膜室4で発
散した磁束の大部分を磁極面20−Bに集める作用があ
るため、Mi掻画面20Bの位置、形状を変えることに
よりプラズマ室1と成膜室4中の発散磁界の形状を調整
することができる。このように、磁極面20−Aの形状
によりプラズマ室l中の磁界を広範に変えることができ
るので、プラズマ室1中のプラズマの均一性を高められ
、均一なイオン流を得ることができ膜質の均一性を向上
できる。
In this embodiment, the magnetic flux generated by the magnetomotive force generating section 21 is efficiently guided to the magnetic pole face 20-A by the yoke 20, and a magnetic field having directivity in the X-axis direction is generated in the plasma chamber 1. Furthermore, since the magnetic pole surface 20-B has the effect of collecting most of the magnetic flux diverged in the plasma chamber 1 and the film forming chamber 4 onto the magnetic pole surface 20-B, by changing the position and shape of the Mi scratched surface 20B, the plasma chamber 1 and the shape of the divergent magnetic field in the film forming chamber 4 can be adjusted. In this way, the magnetic field in the plasma chamber 1 can be varied widely depending on the shape of the magnetic pole face 20-A, so the uniformity of the plasma in the plasma chamber 1 can be improved, a uniform ion flow can be obtained, and the film quality can be improved. uniformity can be improved.

また、ヨーク20を用いることにより、小さい起磁力で
、同じ磁界強度が得られるので起磁力発生部をよりコン
パクト化できる。
Further, by using the yoke 20, the same magnetic field strength can be obtained with a small magnetomotive force, so that the magnetomotive force generating section can be made more compact.

また、本実施例では、プラズマ引き出し口の周囲に、プ
ラズマ引き出し口5面に対し、コイル中心が垂直に位置
するように、1個又は複数個の磁界収束コイル23を設
ける。このコイル23の発生する磁界のX軸方向の向き
は、磁界印加機構部7で発生する磁界のX軸方向の向き
と同じになるようにする。
Further, in this embodiment, one or more magnetic field converging coils 23 are provided around the plasma extraction port so that the center of the coil is located perpendicular to the surface of the plasma extraction port 5. The direction of the magnetic field generated by the coil 23 in the X-axis direction is made to be the same as the direction of the magnetic field generated by the magnetic field application mechanism section 7 in the X-axis direction.

このように1個又は複数個の磁界収束コイル23を設け
ることにより、磁界印加機構部7で発生する磁界の分布
を調節でき、プラズマ室1内のプラズマの強弱の分布、
成膜室4へのイオンの引き出しの大小の分布を調整でき
る。また、プラズマ室l及び成膜室4の磁界の強度及び
分布を広範に変えることができるため、長尺基板上の膜
質の均一性を向上できる。
By providing one or more magnetic field concentrating coils 23 in this way, the distribution of the magnetic field generated in the magnetic field applying mechanism section 7 can be adjusted, and the distribution of the strength of the plasma in the plasma chamber 1,
The size distribution of ion extraction into the film forming chamber 4 can be adjusted. Further, since the strength and distribution of the magnetic fields in the plasma chamber 1 and the film forming chamber 4 can be varied over a wide range, the uniformity of film quality on the long substrate can be improved.

第5図〜第8図に本発明の第4実施例の断面図を示す。5 to 8 show cross-sectional views of a fourth embodiment of the present invention.

第5図及び第6図は第1実施例の単位構成を結合させた
実施例のそれぞれY−2断面平面図。
5 and 6 are respectively Y-2 cross-sectional plan views of an embodiment in which the unit structures of the first embodiment are combined.

部切欠側面図である0本実施例では、基本的には、第1
図の装置をY軸方向に2つ並べ2プラズマ室LA、IB
を壁55で区切り、成膜室4を広くすることにより、長
い成膜基板56に対応させたものである。
In this embodiment, which is a partially cutaway side view, basically the first
Two plasma chambers LA and IB are arranged in two units in the Y-axis direction as shown in the figure.
By dividing the film forming chamber 4 by a wall 55 and widening the film forming chamber 4, it is possible to accommodate a long film forming substrate 56.

また、第7図及び第8図は第3実施例の単位構成を結合
させた実施例のそれぞれX−2断面図。
7 and 8 are cross-sectional views taken along line X-2 of an embodiment in which the unit structures of the third embodiment are combined.

一部切欠平面図である。第7図は第4図で示した実施例
と同様の考え方により、起磁力発生部41.42と、低
炭素鋼、純鉄等の高透磁率材からなるヨーク40をX軸
方向に上下に1対設けたものである。第8図は第7図の
構成単位をY軸方向に4つ並べたもので、成膜室4をき
わめて長くすることができ、細長い長方形状の基板に良
好に成膜できる。このように、コンパクトな構成を単位
構成としているため、複数の単位構成のプラズマ弓き出
し口からイオンを引き出せ、円筒型プラズマ室ECRプ
ラズマCVD装置と比較して単位構成同士をより密着し
て設けることができ、長尺基板上に膜室の均一性よく成
膜できる。この方法は、上記第5図〜第8図に示した実
施例に限らず、単位構成としてプラズマ室及び成膜室の
空いている面(直方体なら1〜3面)を別の複数の単位
構成の空いている面と隣接又は板を共有して設けること
により、各種の構成パターンを構成することができる。
FIG. 3 is a partially cutaway plan view. FIG. 7 shows, based on the same concept as the embodiment shown in FIG. One pair is provided. In FIG. 8, four of the structural units shown in FIG. 7 are arranged in the Y-axis direction, so that the film forming chamber 4 can be made extremely long, and a film can be formed satisfactorily on an elongated rectangular substrate. In this way, since the compact configuration is used as a unit configuration, ions can be extracted from the plasma outlet ports of multiple unit configurations, and the unit configurations can be placed closer together compared to a cylindrical plasma chamber ECR plasma CVD device. Therefore, a film can be formed on a long substrate with good uniformity in the film chamber. This method is not limited to the embodiments shown in FIGS. 5 to 8 above, and the vacant surfaces (1 to 3 surfaces in the case of a rectangular parallelepiped) of the plasma chamber and film-forming chamber as a unit structure can be used to create a plurality of other unit structures. Various configuration patterns can be constructed by providing the board adjacent to the vacant surface of the board or sharing the board.

[詳細な構成例] 第1図〜第4図に示した装置構成の各部の寸法、材質は
以下のとおりである。
[Detailed Configuration Example] The dimensions and materials of each part of the device configuration shown in FIGS. 1 to 4 are as follows.

プラズマ室寸法  (x220X ylol:jX z
llO++oa)プラズマ引き出し口寸法(x180X
 y30)マイクロ波周波数  (2,45GHz)磁
界印加機構部  (X方向±100mm可変)起磁力発
生部    コイル電流2OA(磁掻面Aより30m1
llでZ方向磁束密度900ガウス) ヨーク部材質   軟 鉄 磁礪面へ寸法   (x140X 760mm)磁掻面
A位置 (磁界印加機構部より、マイクロ波導入マドと反対側に
3511II11をずらす(第9図のd))磁界収束コ
イル   コイルを流10A(磁界収束コイル単独で、
プラズマ引き出し口中央で、Z方向磁束密度300ガウ
ス)成膜性寸法    300 X 300 X 30
0m1材質    5U3304 基板−プラズマ引き出し口距離 (z150+++m)
メインポンプ   2000β/Sターボポンプ導入ガ
スA Nt   603CCM 導入ガスB Sin、  205CCMマイクロ波パワ
ー 800W 成膜圧力     7 X 10−’Torr基板温度
     120℃ 基板寸法     (x200X 720mm)く結果
〉 基板上に2gx 200mmの範囲で膜厚分布±5%の
膜が得られた。
Plasma chamber dimensions (x220X ylol:jX z
llO++oa) Plasma outlet dimensions (x180X
y30) Microwave frequency (2,45 GHz) Magnetic field application mechanism section (X direction variable ±100 mm) Magnetomotive force generation section Coil current 2OA (30 m1 from magnetic surface A
Yoke member material: Soft iron Dimensions (x 140 x 760 mm) to magnetic surface d)) Magnetic field convergence coil The coil current is 10A (magnetic field convergence coil alone,
At the center of the plasma outlet, Z-direction magnetic flux density is 300 Gauss) Film formability dimensions: 300 x 300 x 30
0m1 Material 5U3304 Substrate-Plasma outlet distance (z150+++m)
Main pump 2000β/S turbo pump Introduced gas A Nt 603CCM Introduced gas B Sin, 205CCM Microwave power 800W Film forming pressure 7 A film with a film thickness distribution of ±5% was obtained within the range.

膜のエツチングレートの分布は20X 200mmの範
囲で360±5人/minであり、膜質の分布も良好で
あった。
The etching rate distribution of the film was 360±5 persons/min in the range of 20×200 mm, and the film quality distribution was also good.

〔発明の効果コ 以下、本発明のECRプラズマCVD装置によれば、磁
界印加面がマイクロ波導入マドを設けた面に対し垂直に
位置し、かつプラズマ引き出し口が磁界印加面と正対し
ているので、従来のECRプラズマCVD法の利点を損
うことなく長尺基板への成膜に対応できる。
[Effects of the Invention] Hereinafter, according to the ECR plasma CVD apparatus of the present invention, the magnetic field application surface is located perpendicular to the surface on which the microwave introduction window is provided, and the plasma extraction port directly faces the magnetic field application surface. Therefore, it can be applied to film formation on long substrates without sacrificing the advantages of the conventional ECR plasma CVD method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の断面図、第2図は第1実
施例の断面平面図、第3図は第2実施例の断面図、第4
図は本発明の第3実施例の断面図、第5図及び第6図は
第1実施例の単位構成を結合させた実施例のそれぞれ断
面図、一部切欠側面図、第7図及び第8図は第3実施例
の単位構成を結合させた実施例のそれぞれ断面図、一部
切欠平面図、第9図は詳細な構成例の説明図、第10図
及び第11図は従来のECRプラズマCVD装置の断面
図、側面図である。 1−プラズマ室、2−マイクロ波導入マド、4−成膜室
、5−プラズマ引き出し口、7−磁界印加機構部、10
−磁界印加面。 杢4 幻 一〇圀 v)l 壱〇 ■ rF54圀 ろ7 f ’7M図 v)q胆 壱10図 η54イ ν口
FIG. 1 is a sectional view of the first embodiment of the present invention, FIG. 2 is a sectional plan view of the first embodiment, FIG. 3 is a sectional view of the second embodiment, and FIG.
The figure is a sectional view of the third embodiment of the present invention, FIGS. 5 and 6 are sectional views and partially cutaway side views of an embodiment in which the unit structures of the first embodiment are combined, and FIGS. Figure 8 is a sectional view and partially cutaway plan view of an embodiment in which the unit configurations of the third embodiment are combined, Figure 9 is an explanatory diagram of a detailed configuration example, and Figures 10 and 11 are diagrams of a conventional ECR. FIG. 1 is a cross-sectional view and a side view of a plasma CVD apparatus. 1-plasma chamber, 2-microwave introduction chamber, 4-film formation chamber, 5-plasma extraction port, 7-magnetic field application mechanism section, 10
-Magnetic field application surface.杢 4 Genichi 〇圀v)l 1〇■ rF54 圀 7 f '7M fig.v)q gall ichi 10 fig. η54i νmouth

Claims (1)

【特許請求の範囲】  電気絶縁性材からなるマイクロ波導入マドを有する非
磁性電気伝導体材からなるプラズマ室と、該プラズマ室
とプラズマ引き出し口で空間的に連続する成膜室と、前
記プラズマ室の一面を磁界印加面とし、該磁界印加面に
垂直に磁界を印加する磁界印加機構部とから構成され、 前記磁界印加面が前記マイクロ波導入マドを設けた面に
対し垂直に位置し、かつ 前記プラズマ引き出し口が前記磁界印加面と正対してい
ることを特徴とするECRプラズマCVD装置。
[Scope of Claims] A plasma chamber made of a non-magnetic electrically conductive material and having a microwave introduction tube made of an electrically insulating material, a film forming chamber spatially continuous with the plasma chamber at a plasma extraction port, and the plasma one side of the chamber is a magnetic field application surface, and a magnetic field application mechanism unit applies a magnetic field perpendicular to the magnetic field application surface, the magnetic field application surface being located perpendicular to the surface on which the microwave introduction head is provided, An ECR plasma CVD apparatus characterized in that the plasma extraction port directly faces the magnetic field application surface.
JP12080990A 1990-05-10 1990-05-10 Ecr plasma cvd apparatus Pending JPH0417675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12080990A JPH0417675A (en) 1990-05-10 1990-05-10 Ecr plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12080990A JPH0417675A (en) 1990-05-10 1990-05-10 Ecr plasma cvd apparatus

Publications (1)

Publication Number Publication Date
JPH0417675A true JPH0417675A (en) 1992-01-22

Family

ID=14795514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12080990A Pending JPH0417675A (en) 1990-05-10 1990-05-10 Ecr plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JPH0417675A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100230356B1 (en) * 1995-12-22 1999-11-15 윤종용 Ecr cvd and method for forming thin film using the same
JP2007505451A (en) * 2003-09-08 2007-03-08 ロート・ウント・ラウ・アクチェンゲゼルシャフト ECR plasma source with linear plasma discharge opening

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100230356B1 (en) * 1995-12-22 1999-11-15 윤종용 Ecr cvd and method for forming thin film using the same
JP2007505451A (en) * 2003-09-08 2007-03-08 ロート・ウント・ラウ・アクチェンゲゼルシャフト ECR plasma source with linear plasma discharge opening

Similar Documents

Publication Publication Date Title
US4960073A (en) Microwave plasma treatment apparatus
US5401351A (en) Radio frequency electron cyclotron resonance plasma etching apparatus
KR100228534B1 (en) Arrangement for generating a plasma by means of cathode sputtering
KR100223394B1 (en) Plasma treating device
EP0779644A2 (en) Plasma processing apparatus
JPS63216298A (en) Plasma generating treatment apparatus
KR20020081156A (en) Magnetron plasma etching apparatus
JPH02132827A (en) Device and method of plasma treatment
JPH0562940A (en) Dry etching device for rectangular substrate
US6225592B1 (en) Method and apparatus for launching microwave energy into a plasma processing chamber
JPS61213377A (en) Method and apparatus for plasma deposition
US5466295A (en) ECR plasma generation apparatus and methods
JPH0417675A (en) Ecr plasma cvd apparatus
Chen Radiofrequency plasma sources for semiconductor processing
JPS62170475A (en) Plasma treatment device
JPH05182785A (en) Microwave discharge reaction device and electrode device
JP4223143B2 (en) Plasma processing equipment
JPH0578849A (en) High magnetic field microwave plasma treating device
JPH0415921A (en) Method and apparatus for activating plasma
JP4854283B2 (en) Plasma film forming method and plasma film forming apparatus
JPH07211488A (en) Device and method for plasma processing
JPH0530500B2 (en)
JPS61119036A (en) Low temperature plasma electromagnetic field controlling mechanism
JPS62143418A (en) Thin film forming device
JPS63299338A (en) Plasma treatment equipment