JPH04176031A - Optical recording and/or reproducing device - Google Patents

Optical recording and/or reproducing device

Info

Publication number
JPH04176031A
JPH04176031A JP2289234A JP28923490A JPH04176031A JP H04176031 A JPH04176031 A JP H04176031A JP 2289234 A JP2289234 A JP 2289234A JP 28923490 A JP28923490 A JP 28923490A JP H04176031 A JPH04176031 A JP H04176031A
Authority
JP
Japan
Prior art keywords
recording
polarization
polarized light
light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2289234A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Tsujioka
強 辻岡
Kotaro Matsuura
松浦 宏太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to KR1019900023010A priority Critical patent/KR100196015B1/en
Priority to EP90125700A priority patent/EP0436228B1/en
Priority to DE69028908T priority patent/DE69028908T2/en
Publication of JPH04176031A publication Critical patent/JPH04176031A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase working speed, and to improve accuracy by changing the state of polarized light by an electrical means when a recording layer composed of an optical recording material is irradiated with polarized light and information is recorded or information is reproduced. CONSTITUTION:P waves 11 branched by a first polarization beam splitter 1 are projected to a second polarization beam splitter 2, and S waves 12 are projected to an electro-optic element 4 through a mirror 3. The reflectivity of the electro-optic element 4 is changed by applied voltage, a phase shift is generated in light projected in response to applied voltage, and applied voltage is controlled by a polarization varying signal 18 determining the state of polarization. Consequently, S waves 12 passed through the electro-optic element 4 have a phase shift to P waves 11 in response to applied voltage, and are projected to the second polarization beam splitter 2 through a mirror 5. As a result, P waves 11 and S waves 12 are synthesized by the second polarization beam splitter 2, and light 15 under the state of polarization corresponding to the phase shift is acquired. Accordingly, working speed is increased, and accuracy is improved.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は光記録及び若しくは再生装置に関する。[Detailed description of the invention] (b) Industrial application field The present invention relates to an optical recording and/or reproducing device.

(ロ)従来の技術 最近、7オトクロミツク材料を媒体の記録層に用いる研
究が盛んに進められている。斯かる7オトクロミツク材
料は、所定波長の光を照射すると、光化学反応によって
分子の構造が変化し、該分子の構造変化に応じて特定の
波長を有する光に対する光学的特性が変化するといった
様な性質を有している。また他の所定の波長の光が照射
されると、上記変化した分子の構造が元の構造に戻ると
いった性質を有している。
(b) Prior Art Recently, research on the use of 7 otochromic materials in the recording layer of media has been actively conducted. Such 7 otochromic materials have properties such that when irradiated with light of a predetermined wavelength, the molecular structure changes due to a photochemical reaction, and the optical properties for light with a specific wavelength change in accordance with the structural change of the molecule. have. Furthermore, when irradiated with light of another predetermined wavelength, the changed molecular structure returns to its original structure.

7オトクロミツク材料を無配向に分散した記録層に直線
偏光の光を照射すると上記直線偏光の偏光面方位に応じ
た分子だけが主に光化学反応を起こす。この結果、記録
層に分散した分子のうち、主に特定の分子のみが、他の
分子に対して分子構造を興にする(異方性の発生)よう
になり、情報の記録が行うことができる。上記異方性(
光学的異方性)の種類によって、次の様な情報の記録ま
たは再生方法等が提案されている。例えば、上記記録層
に所定の波長を有する直線偏光の光を照射することによ
り吸光度の差異を生じせしめて情報の記録を行い、特定
の波長を有する偏光の光が記録または未記録に対する前
記記録層の吸収が異なることを利用して再生する記録再
生方法が知られている。また所定の波長を有する直線偏
光の光により上記記録層に複屈折を生じさせて情報の記
録を行い、前記記録層による吸収が小さな偏光した光を
照射してその透過光又は反射光により記録層の複屈折の
有無を検出して再生を行う記録再生方法が知られている
。更に、上述の記録再生方法において、クロストークを
低減したものとして、隣接するトラックを互いに直交す
る直線偏光の光で記録、再生及び記録再生する方法等が
提案されている。
When a recording layer in which an otochromic material is dispersed in a non-oriented manner is irradiated with linearly polarized light, only molecules corresponding to the orientation of the polarization plane of the linearly polarized light mainly cause a photochemical reaction. As a result, among the molecules dispersed in the recording layer, only specific molecules exhibit their molecular structure relative to other molecules (occurrence of anisotropy), making it difficult to record information. can. The above anisotropy (
Depending on the type of optical anisotropy, the following information recording or reproducing methods have been proposed. For example, information is recorded by irradiating the recording layer with linearly polarized light having a predetermined wavelength to cause a difference in absorbance, and polarized light having a specific wavelength is applied to the recording layer for recording or non-recording. There is a known recording/reproducing method that takes advantage of the fact that the absorption of different types of data is different. In addition, information is recorded by causing birefringence in the recording layer using linearly polarized light having a predetermined wavelength, and by irradiating polarized light with little absorption by the recording layer, the transmitted or reflected light is used to record information on the recording layer. A recording/reproduction method is known in which the reproduction is performed by detecting the presence or absence of birefringence. Furthermore, in the above-mentioned recording/reproducing method, a method has been proposed in which crosstalk is reduced by recording, reproducing, and recording/reproducing adjacent tracks using mutually orthogonal linearly polarized light.

以下、従来の例について、図面を参照しつつ説明する。A conventional example will be described below with reference to the drawings.

第6図は、従来例に係る記録再生装置の光学系を示す図
である。
FIG. 6 is a diagram showing an optical system of a recording/reproducing apparatus according to a conventional example.

図中、(200)はディスク状の記録媒体である。上記
記録媒体q四)は、透明な基板(201)上に記録層(
203)が形成されており、更に上記記録層(203)
上にはAI又はAu等の反射層(202)が形成されて
構成されている。
In the figure, (200) is a disk-shaped recording medium. The recording medium q4) has a recording layer (201) on a transparent substrate (201).
203) is formed, and further the recording layer (203) is formed.
A reflective layer (202) made of AI or Au or the like is formed thereon.

従来例において上記記録層(203)に含有される7オ
トクロミツク材料としては、フルキト系、ジアリルエチ
ン系及びスピロピラン系等のフォトクロミック材等が使
用できる。上記記録層(203)には、フォトクロミッ
ク材料を分子を配向させることなく無配向な状態に含有
させている。斯かる媒体に、フォトクロミック材料によ
って吸収される波長の直線偏光の光を照射せしめると、
フォトクロミック材料のうち、この直線偏光の光の偏光
面に応じて特定の分子が光化学反応を起こす確率が高い
。従って、上記直線偏光の光にて記録層(203)に走
査すると該直線偏光の偏光面に応じた光学的異方性方向
をもつ記録部分が形成される。
In the conventional example, as the photochromic material contained in the recording layer (203), photochromic materials such as flukyto-based, diallylethyne-based, spiropyran-based, etc. can be used. The recording layer (203) contains a photochromic material in a non-oriented state without oriented molecules. When such a medium is irradiated with linearly polarized light of a wavelength that is absorbed by the photochromic material,
Among photochromic materials, there is a high probability that a specific molecule will cause a photochemical reaction depending on the polarization plane of this linearly polarized light. Therefore, when the recording layer (203) is scanned with the linearly polarized light, a recording portion having an optical anisotropy direction corresponding to the polarization plane of the linearly polarized light is formed.

以下、記録方法について述べる。The recording method will be described below.

Arイオンレーザ等の第1光源(21)から出射された
直線偏光を有する記録用入射光ビーム(例えば、λ=3
60nm)は、情報信号に応じて該記録入射光ビームの
強度変調を行うビーム変調器(22)によりパルスビー
ムに変換された後、記録用入射光ビームの直線偏光の偏
光面の方向を回転させるための1/2波長板(23)に
入射される。前記1/2波長板(23)はその中性軸の
方向を45度回転させることにより上記記録用入射光ビ
ームの直線偏光の偏光方向を90度回転させる。その後
、ダイクロツクミラー(24)を介して対物レンズ(2
5)に入射され、該対物レンズ(25)により記録媒体
(銭!2)の記録層(203)上に収束される。斯様に
第1光源(21)が駆動されている状態において、ディ
スク駆動装置(301)により記記録媒体(200)を
所定方向に相対移動させつつ、ビーム変調器(22)に
より上記記録用入射光ビームを情報に応じて変調するこ
とにより、記録層(203)に記録用入射光ビームの直
線偏光の偏光面に応じた光学的異方性方向をもつ記録ト
ラックが形成される。上記記録トラックは同心円状に構
成される。上記記録トラックは記録層(203)中の分
子のうち、上記記録用入射光ビームの直線偏光の偏光方
向に応じて特定の方向に配列した分子が主に光化学反応
を起こすことにより形成される。
A recording incident light beam having linearly polarized light emitted from a first light source (21) such as an Ar ion laser (for example, λ=3
60 nm) is converted into a pulse beam by a beam modulator (22) that modulates the intensity of the recording incident light beam according to the information signal, and then rotates the direction of the polarization plane of the linearly polarized light of the recording incident light beam. The light is incident on the 1/2 wavelength plate (23). The half-wave plate (23) rotates the polarization direction of the linearly polarized light of the recording incident light beam by 90 degrees by rotating the direction of its neutral axis by 45 degrees. Thereafter, the objective lens (2) is passed through the dichroic mirror (24).
5) and is focused by the objective lens (25) onto the recording layer (203) of the recording medium (ZEN!2). While the first light source (21) is being driven in this manner, the recording medium (200) is relatively moved in a predetermined direction by the disk drive device (301), and the beam modulator (22) is used to adjust the recording incidence to the recording medium (200). By modulating the light beam according to the information, a recording track having an optical anisotropy direction corresponding to the polarization plane of the linearly polarized light of the incident recording light beam is formed on the recording layer (203). The recording tracks are arranged concentrically. The recording track is formed mainly by a photochemical reaction of molecules in the recording layer (203) that are arranged in a specific direction according to the polarization direction of the linearly polarized light of the recording incident light beam.

上記1/2波長板(23)の中性軸の方向は機械的手段
により回転させられて、記録層(203)に収束される
前記記録用入射光ビームの直線偏光の偏光方向が隣接す
るトラック毎に直交させられる。
The direction of the neutral axis of the half-wave plate (23) is rotated by mechanical means, so that the polarization direction of the linearly polarized light of the recording incident light beam converged on the recording layer (203) is aligned with the adjacent track. perpendicular to each other.

このように形成された記録トラックは、第7図に示すよ
うに上記直線偏光の記録用入射光ビームの偏光面路じて
特定の光学的異方性方向(図中、斜線方向で示す)を有
する。即ち、隣接した記録トラック(A )(B )(
C)は互いに直交した光学的異方性方向を有する。この
時、光学的異方性方向は一般に記録及び再生用の光に対
して、吸光度の差異が大きい方向と定義する。尚、複屈
折が大きい場合には、光学的異方性方向は記録用入射光
ビームの偏光方向(偏光面)と一致した方向が望ましい
As shown in FIG. 7, the recording track formed in this way has a specific optical anisotropy direction (indicated by the diagonal line in the figure) using the polarization plane path of the linearly polarized incident recording light beam. have That is, adjacent recording tracks (A) (B) (
C) have mutually orthogonal optical anisotropy directions. At this time, the optical anisotropy direction is generally defined as the direction in which the difference in absorbance is large for recording and reproducing light. In addition, when birefringence is large, it is desirable that the optical anisotropy direction coincides with the polarization direction (polarization plane) of the incident recording light beam.

情報の再生は、第8図に示すように無配向のフォトクロ
ミック材料からなる記録層(203)において、直線偏
光の光が照射された上記記録層(203)と照射されて
いない上記記録層(203)とでは吸光度が異なり、且
つ、直線偏光の光を照射した上記記録層(203)に対
して、上記直線偏光の光の偏光面と角度θを有する直線
偏光の光の吸光度が上記角度θに依存して異なることを
利用して行われる。即ち、上記記録トラックの光学的異
方性方向と直線偏光の光の偏光方向が一致した場合は大
きな再生出力が得られ、他方未記録トラック及び上記記
録トラックの光学的異方性方向と直線偏光のビームの偏
光方向が一致していない場合は再生出力が低下すること
を利用する。
As shown in FIG. 8, information is reproduced in a recording layer (203) made of a non-oriented photochromic material. ), and the absorbance of linearly polarized light having an angle θ with the polarization plane of the linearly polarized light is at the angle θ with respect to the recording layer (203) irradiated with linearly polarized light. It is done using different things depending on. That is, when the optical anisotropy direction of the recorded track and the polarization direction of the linearly polarized light match, a large reproduction output can be obtained; This method takes advantage of the fact that when the polarization directions of the beams do not match, the reproduction output decreases.

以下、情報の再生方法について詳細に述べる。The information reproduction method will be described in detail below.

前記第6図に示すHe−Neレーザ等の第2光源(26
) (例えば、λ=633nm)から出射される入射光
ビームにより各記録トラックを走査することによって再
生が行われる。この第2光源(26)から出射される入
射光ビームの強度は、各記録層(203)がこの入射光
ビームによって反応を起こさない程度に十分小さく設定
され、且つ新入射光ビームは直線偏光を有している。上
記出射された入射光ビームはビームスプリッタ(27)
を透過して1/2波長板(28)に入射される。前記1
/2波長板(28)は記録トラック毎にその光学的異方
性方向と直線偏光の入射光ビームの偏光面とが一致する
ように回転される。その後、ダイクロ、ツクミラー(2
4)及び対物レンズ(25)を介して上記記録媒体(≦
四)の記録層(203)に照射される。その後、前記入
射光ビームは反射層(202)に反射される。反射され
た入射光ビームは対物レンズ(25)、ダイクロツクミ
ラー(24)、1/2波長板(28)、ビームスプリッ
タ(27)及びレンズ(29)を介してセンサ(30)
により受光される。而して、センサ(30)からは各記
録トラックに保持された情報に応じて変調された電気信
号が出力される。
A second light source (26) such as a He-Ne laser shown in FIG.
) (for example, λ=633 nm). Reproduction is performed by scanning each recording track with an incident light beam emitted from a wavelength of λ=633 nm. The intensity of the incident light beam emitted from the second light source (26) is set to be sufficiently small so that each recording layer (203) does not react with the incident light beam, and the new incident light beam has linear polarization. are doing. The emitted incident light beam is sent to a beam splitter (27)
The light passes through and enters the 1/2 wavelength plate (28). Said 1
The /2 wavelength plate (28) is rotated for each recording track so that its optical anisotropy direction coincides with the polarization plane of the linearly polarized incident light beam. After that, Daikuro, Tsukumira (2
4) and the recording medium (≦
4) The recording layer (203) is irradiated. The incident light beam is then reflected onto the reflective layer (202). The reflected incident light beam passes through the objective lens (25), dichroic mirror (24), half-wave plate (28), beam splitter (27) and lens (29) to the sensor (30).
The light is received by Thus, the sensor (30) outputs an electrical signal modulated according to the information held in each recording track.

上述の1/2波長板(23)(28)はディスク回転同
期信号を発生するディスク回転同期回路(300)に接
続され、トラック毎にその中性軸を回転させている。
The above-mentioned 1/2 wavelength plates (23) and (28) are connected to a disk rotation synchronization circuit (300) that generates a disk rotation synchronization signal, and rotate their neutral axes for each track.

尚、複屈折の有無により記録再生を行う方法においても
、上記と類似した方法が用いられている。
Note that a method similar to the above is also used for recording and reproducing depending on the presence or absence of birefringence.

(ハ)発明が解決しようとする課題 然し乍ら、上述の光記録再生方法において、直線偏光の
偏光面の回転は1/2波長板を機械的に回転させること
により実現していた。従って、記録及び再生を高速に、
且つ精度良く実現することが困難であった。
(c) Problems to be Solved by the Invention However, in the above-mentioned optical recording and reproducing method, rotation of the polarization plane of linearly polarized light was achieved by mechanically rotating a 1/2 wavelength plate. Therefore, recording and playback can be performed at high speed.
Moreover, it was difficult to realize this with high precision.

この様に従来光記録再生装置では、光の偏光状態は1/
2波長板及び1/4波長板等を機械的に回転させて変化
させており、動作の高速性及び精度に問題があった。
In this way, in conventional optical recording and reproducing devices, the polarization state of light is 1/
Changes are made by mechanically rotating a two-wave plate, a quarter-wave plate, etc., and there are problems with high speed and accuracy of operation.

(ニ)課題を解決するための手段 上記課題に鑑み、光記録材料からなる記録層に偏光した
光を照射して情報の記録及び若しくは情報の再生を行う
際、上記偏光の状態を切り換える光記録媒体の記録及び
若しくは再生装置において、上記偏光の状態を電気的な
手段により変化させることを特徴とする。
(d) Means for solving the problem In view of the above problem, optical recording is performed in which the state of polarization is switched when recording and/or reproducing information by irradiating a recording layer made of an optical recording material with polarized light. The recording and/or reproducing apparatus for a medium is characterized in that the state of polarization is changed by electrical means.

又、光記録材料からなる記録層に偏光した光を照射して
情報の記録及び若しくは情報の再生を行う際、上記偏光
の状態を切り換える光記録媒体の記録及び若しくは再生
装置において、上記偏光した光を2つの成分に分岐させ
る手段と一方の該成分と他方の該成分に位相差を生じせ
しめる手段と前記位相差を有する2つの成分を再度合成
する手段により上記偏光状態を変化させることを特徴と
する。
Furthermore, when recording and/or reproducing information by irradiating a recording layer made of an optical recording material with polarized light, an optical recording medium recording and/or reproducing apparatus that switches the state of polarization may be used. The polarization state is changed by means for splitting the light into two components, means for causing a phase difference between one of the components and the other component, and means for recombining the two components having the phase difference. do.

(ホ)作用 よって、本発明によれば、偏光状態を変化させるのは、
電気的な手段であるため、又は位相差を生じせしめる手
段において上記2つの成分の光路差に微小な変化を発生
させるだけであるため、動作の速比及び高精度化を図る
ことができる。
(e) According to the present invention, the polarization state is changed by:
Since it is an electrical means or a means for generating a phase difference, only a minute change is generated in the optical path difference between the two components, so it is possible to improve the speed ratio and precision of the operation.

(へ)実施例 以下、図面を参照しつつ本発明の実施例について詳細に
説明する。
(F) Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

直線偏光の光は、該直線偏光の偏光面と角度45度と一
45度の傾きを持つ2つの直交した電場ベクトル成分の
電ね合わせで表される。上記2つの直交成分は位相差が
M×π(M:整数)である。従って、上記位相差を変化
させることにより、上記直線偏光の偏光面を回転させ、
又上記直線偏光を楕円偏光及び円偏光に変化させること
ができる。
Linearly polarized light is represented by the electrical combination of two orthogonal electric field vector components having angles of 45 degrees and 145 degrees with respect to the polarization plane of the linearly polarized light. The phase difference between the two orthogonal components is M×π (M: integer). Therefore, by changing the phase difference, the plane of polarization of the linearly polarized light is rotated,
Furthermore, the linearly polarized light can be changed into elliptically polarized light and circularly polarized light.

即ち、上記直交成分のうち、少なくとも一方の成分の位
相をL×π(L:奇数)ずらして上記位相差を(M±L
)Xπにすることにより、上記直線偏光と直交する直線
偏光の光を得ることができる。第1図にX成分の位相が
偏光状態を変える偏光状態変換装置によりπだけ興なる
直線偏光の光に変換された図を示す。又、上記位相差を
L×π/2だけずらすことにより、上記直線偏光を円偏
光に変えることができる。
That is, the phase of at least one of the orthogonal components is shifted by L×π (L: an odd number) to obtain the phase difference (M±L
)Xπ, linearly polarized light orthogonal to the above linearly polarized light can be obtained. FIG. 1 shows a diagram in which the phase of the X component is converted into linearly polarized light by π using a polarization state converter that changes the polarization state. Further, by shifting the phase difference by L×π/2, the linearly polarized light can be changed to circularly polarized light.

又、円偏光の光も2つの直交した電気ベクトル成分で表
される。従って、上記直線偏光の光と同様の方法で他の
偏光状態に変化させることができる。
Furthermore, circularly polarized light is also represented by two orthogonal electric vector components. Therefore, it is possible to change the polarization state to another one using the same method as for the linearly polarized light described above.

第2図は、本発明の第1実施例に係る偏光状態変換装置
である。
FIG. 2 shows a polarization state conversion device according to a first embodiment of the present invention.

図中、(囮)は偏光状態変換装置である。(1)は第1
偏光ビームスプリツタであり、入射される直線偏光又は
円偏光の光(10)をP波成分(11)とS波成分(1
2)の強度が等しく分岐されるように設定されている。
In the figure, (decoy) is a polarization state converter. (1) is the first
It is a polarizing beam splitter that splits the incident linearly polarized or circularly polarized light (10) into a P wave component (11) and an S wave component (11).
2) is set so that the intensities are equally divided.

この設定は上記第1(Ei光ビームスプリッタ(1)の
配置等により可能であり、また第1偏光ビームスプリツ
タ(1)に入射される光が直線偏光の光の場合1/2波
長板(図示せず)によって偏光面を調整することによっ
て容易に実現できる。上記第1偏光ビームスプリ・Zり
(1)により分岐された等しい強度のP波(11)及び
S波(12)のうち、P波(11)は第2偏光ビームス
プリツタ(2)に入射される。一方、S波(12)はミ
ラー(3)を介して電気光学素子(4)に入射される。
This setting is possible by the arrangement of the first (Ei optical beam splitter (1)), and if the light incident on the first polarizing beam splitter (1) is linearly polarized light, a half-wave plate ( This can be easily realized by adjusting the plane of polarization using a polarizing beam splitter (not shown).Of the P waves (11) and S waves (12) of equal intensity split by the first polarized beam splitting/Z-splitting (1), The P wave (11) is incident on the second polarizing beam splitter (2), while the S wave (12) is incident on the electro-optical element (4) via the mirror (3).

前記電気光学素子(4)は印加電圧により屈折率が変化
し、該印加電圧に応じて入射される光に位相ずれを生じ
せしめる。上記印加電圧は偏光状態を決定する偏光方向
変更信号(18)により制御されている。上記電気光学
素子(4)を通過したS波(12)は該電気光学素子(
4)に印加された電圧に応じてP波(11)に対して位
相ずれ(P波とS波の光路差に基づく位相差も含む)を
有し、ミラー(5)を介して第2偏光ビームスプリツタ
(2)に入射される。この結果、P波(11)とS波(
12)は第2偏光ビームスプリツタ(2)で合成され、
上記位相ずれに応じた偏光状態の光(15)が得られる
。。
The refractive index of the electro-optical element (4) changes depending on the applied voltage, causing a phase shift in the incident light depending on the applied voltage. The applied voltage is controlled by a polarization direction changing signal (18) that determines the polarization state. The S wave (12) that has passed through the electro-optical element (4) passes through the electro-optical element (
4) has a phase shift (including a phase difference based on the optical path difference between the P wave and the S wave) with respect to the P wave (11) according to the voltage applied to the second polarized light via the mirror (5). The beam is incident on the beam splitter (2). As a result, P wave (11) and S wave (
12) are combined by the second polarizing beam splitter (2),
Light (15) having a polarization state corresponding to the phase shift is obtained. .

尚、上記電気光学素子(4)の配置位置はミラー(3)
とミラー(5)の間に限らず、P波(11)と5(12
)波に分岐されている光路中であれば、上記と同様の効
果を得られる。例えば、P波(11)に位相ずれを生じ
せしめて偏光状態を変化させてもよい。
Note that the electro-optical element (4) is located at the mirror (3).
and mirror (5), but also between P wave (11) and 5 (12).
) If the optical path is branched into waves, the same effect as above can be obtained. For example, the polarization state may be changed by causing a phase shift in the P wave (11).

又、2つの電気光学素子を用いてP波(11)とS波(
12)に位相ずれを生じさせる構成でもよい。
In addition, two electro-optical elements are used to generate P waves (11) and S waves (
12) may be configured to cause a phase shift.

従って、上述のような第1実施例の偏光状態変換装置で
は、直線偏光又は円偏光の光を電気的な手段を用いて偏
光状態に変化を起こさせるため、前記偏光状態の変化を
高速、且つ高精度に行うことができる。
Therefore, in the polarization state conversion device of the first embodiment as described above, in order to cause a change in the polarization state of linearly polarized light or circularly polarized light using electrical means, the change in the polarization state is performed at high speed and This can be done with high precision.

以下、本発明の第2実施例について説明する。A second embodiment of the present invention will be described below.

第3図は第2実施例の偏光状態変換装置である。FIG. 3 shows a polarization state converter according to a second embodiment.

尚、第1実施例と同一部分には同一符号を付してその説
明は割愛する。
Incidentally, the same parts as in the first embodiment are given the same reference numerals, and the explanation thereof will be omitted.

図中、(輿)は偏光状態変換装置である。(4o)は反
射面(41)(42)を有するミラーである。ミラー(
40)には圧電素子(50)が付設されている。前記圧
電素子(50)は印加電圧により変位して、上記ミラー
(40)を移動させる(図中、矢印で移動方向を示す)
。従って、第1偏光ビームスプリツタ(1)により分岐
されて生じたS波(12)の光路長が変化し、上記印加
電圧に応じた位相ずれを発生される。尚、上記では上記
圧電素子(5o)をミラー(4o)に付設したが、第1
偏光ビームスプリツタ(1)または第2偏光ビームスプ
リツタ(2)に付設することにより位相ずれを発生させ
てもよい。
In the figure, (palan) is a polarization state conversion device. (4o) is a mirror having reflective surfaces (41) and (42). mirror(
40) is attached with a piezoelectric element (50). The piezoelectric element (50) is displaced by an applied voltage to move the mirror (40) (arrows indicate the direction of movement in the figure).
. Therefore, the optical path length of the S wave (12) generated by being split by the first polarizing beam splitter (1) changes, and a phase shift is generated in accordance with the applied voltage. Note that in the above, the piezoelectric element (5o) is attached to the mirror (4o), but the first piezoelectric element (5o) is attached to the mirror (4o).
The phase shift may be generated by attaching it to the polarizing beam splitter (1) or the second polarizing beam splitter (2).

従って、上述のような第2実施例の偏光状態変換装置で
は、第1実施例の偏光状態変換装置と同様に偏光状態を
高速、且つ高精度に変化させることができる。
Therefore, in the polarization state conversion device of the second embodiment as described above, the polarization state can be changed at high speed and with high precision, similarly to the polarization state conversion device of the first embodiment.

次に、本発明の第3実施例について説明する。Next, a third embodiment of the present invention will be described.

第4図及び第5図は、第3実施例に係る記録再生装置の
記録用の光学系を示す図である。
4 and 5 are diagrams showing a recording optical system of a recording/reproducing apparatus according to a third embodiment.

尚、従来例、第1実施例及び第2実施例と同一部分には
同一符号を付してその説明は割愛する。
Incidentally, the same parts as in the conventional example, the first embodiment, and the second embodiment are given the same reference numerals, and the explanation thereof will be omitted.

第4図は、本発明の第1実施例を従来例の記録用の光学
系に適用した図である。
FIG. 4 is a diagram in which the first embodiment of the present invention is applied to a conventional recording optical system.

直線偏光の入射光ビームが記録層(203)に照射され
る際、隣接するトラックにおいて上記直線偏光が直交さ
れるように、第1実施例で述べた偏光状態変換装置q四
)を用いて上記直線偏光の方向を回転させる。上記直線
偏光の偏光方向は偏光方向を決定する偏光方向変更信号
(18)に基づいて回転させられる。又、第4図におけ
る光学系では第1実施例で述べた偏光状態変換装置1(
100−)を用いたが、第5図に示すように第2実施例
で述べた偏光状態変換装置(輿)を用いてもよい。
When the incident light beam of linearly polarized light is irradiated onto the recording layer (203), the polarization state conversion device q4) described in the first embodiment is used to Rotates the direction of linearly polarized light. The polarization direction of the linearly polarized light is rotated based on a polarization direction changing signal (18) that determines the polarization direction. In addition, the optical system in FIG. 4 includes the polarization state converter 1 (
100-) was used, however, the polarization state converter (palette) described in the second embodiment may also be used, as shown in FIG.

尚、第3実施例においては、第1、第2実施例で述べた
偏光状態変換装置を光記録再生装置の記録用の光学系に
用いたが、再生用の光学系に用いることができることは
明らかである。
In the third embodiment, the polarization state conversion device described in the first and second embodiments was used in the recording optical system of an optical recording and reproducing device, but it is possible to use it in the reproducing optical system. it is obvious.

以上、上述のような第3実施例の光記録装置は直線偏光
の偏光方向を90度回転させるのに、電気的手段を利用
した偏光状態変換装置により行うため、記録の高速化及
び高精度化を達成できる。
As mentioned above, the optical recording device of the third embodiment as described above rotates the polarization direction of linearly polarized light by 90 degrees using a polarization state conversion device that uses electrical means, so that the speed and precision of recording can be increased. can be achieved.

更に第4の実施例を第9図及び第10図に示す。本実施
例では、例えばオプトロニクス社発行「ニューセラミッ
クスJ  (1990)階31.P79に開示されたよ
うなE O(Electro−Optical)素子(
60)を用いて偏光面の90°回転を行う。第9図に斯
かるEO素子(60)の構成及び動作を示す。図におい
て、(61)はX軸方向またはy軸方向に複屈折の中性
軸方位を有する結晶体、(62)(62)はこの結晶体
にX軸方向の電圧を印加するための電極板である。結晶
体(61)に、Z軸方向を進行方向とする直線偏光の光
を、その偏光面が中性軸方位(X軸方向、y軸方向)に
対して45°の角度を有する様に入射せしめる。
Further, a fourth embodiment is shown in FIGS. 9 and 10. In this embodiment, an EO (Electro-Optical) element (such as that disclosed in "New Ceramics J (1990), page 31, page 79" published by Optronics Co., Ltd.) is used.
60) to rotate the plane of polarization by 90°. FIG. 9 shows the configuration and operation of such an EO element (60). In the figure, (61) is a crystal body with a neutral axis orientation of birefringence in the X-axis direction or y-axis direction, and (62) (62) is an electrode plate for applying a voltage in the X-axis direction to this crystal body. It is. Linearly polarized light whose traveling direction is in the Z-axis direction is incident on the crystal (61) so that its polarization plane has an angle of 45° with respect to the neutral axis direction (X-axis direction, y-axis direction). urge

斯かる光は、X軸方向の電磁成分Exとy軸方向の電磁
成分Eyに分けられるが、結晶体(61)の複屈折によ
り、光が結晶体(61)を透過するに従って、電磁成分
ExとEyの間に位相差が生じる。
Such light is divided into an electromagnetic component Ex in the X-axis direction and an electromagnetic component Ey in the y-axis direction, but due to the birefringence of the crystal (61), as the light passes through the crystal (61), the electromagnetic component Ex A phase difference occurs between and Ey.

このため、光が結晶体(61)を透過した後の光の偏光
状態を、結晶体(61)に入射する前の偏光状態に比べ
て変化せしめることができる。ここで、ExとEyの間
の位相差は、結晶体(61)の2軸方向の厚みによって
調節できる。本実施例では結晶体(61)を透過した光
が直線偏光となる様に結晶体(61)の厚みを設定する
Therefore, the polarization state of the light after it passes through the crystal body (61) can be changed compared to the polarization state before it enters the crystal body (61). Here, the phase difference between Ex and Ey can be adjusted by the biaxial thickness of the crystal (61). In this embodiment, the thickness of the crystal (61) is set so that the light transmitted through the crystal (61) becomes linearly polarized light.

斯かる状態において、電極板(62)(62)間に電圧
を印加すると、結晶体(61)は、電磁成分Exに対す
る屈折率が変化する。斯かる屈折率の変化量は、印加電
圧に応じて変化する。斯様に屈折率が変化すると、これ
に応じてExとEVの間の位相差が変化し、これにより
結晶体(61)を透過した後の光の偏光状態を変化させ
ることができる。本実施例では、電圧印加前と印加後に
おいて、結晶体(61)透過光の偏光面が直交する様に
印加電圧を設定する。
In such a state, when a voltage is applied between the electrode plates (62) (62), the refractive index of the crystal (61) with respect to the electromagnetic component Ex changes. The amount of change in the refractive index changes depending on the applied voltage. When the refractive index changes in this way, the phase difference between Ex and EV changes accordingly, thereby making it possible to change the polarization state of the light after passing through the crystal (61). In this embodiment, the applied voltage is set so that the polarization planes of the light transmitted through the crystal body (61) are orthogonal before and after the voltage is applied.

第1O図に斯かるEO素子を利用した実施例を示す。図
において、(70)は2/1波長板で、光源(21)か
らの直線偏光を、その偏光面がEO素子(60)の結晶
体(61)の中性軸に対して45°の角度を有する様に
入射せしめるべく配されている。EO素子(60)には
前述した電圧であるところの偏光方向変換信号(18)
が選択的に印加される。斯かる印加電圧の有無により、
EOX子(60)を透過した光の偏光面を、前述した如
くして、直交せしめることができる。
FIG. 1O shows an embodiment using such an EO element. In the figure, (70) is a 2/1 wavelength plate that converts the linearly polarized light from the light source (21) so that its polarization plane is at an angle of 45° with respect to the neutral axis of the crystal (61) of the EO element (60). It is arranged so that it can be made incident so as to have a . The EO element (60) receives the polarization direction conversion signal (18) which is the voltage mentioned above.
is selectively applied. Depending on the presence or absence of such applied voltage,
The polarization planes of the light transmitted through the EOX element (60) can be made orthogonal as described above.

本実施例に依れば、先の実施例の如く光路を分割、再合
成しなくても光の偏光面を容易に90゜変更せしめるこ
とができる。このため、先の実施例では、光学部品の正
確な位置調整(光軸合わせなど)が必要であったが、本
実施例ではこの様な必要はなく、又、部品点数も少なく
て済むので装置の小型化を図ることもできる。
According to this embodiment, the polarization plane of light can be easily changed by 90° without splitting and recombining the optical paths as in the previous embodiment. For this reason, in the previous embodiment, accurate position adjustment of the optical components (optical axis alignment, etc.) was required, but in this embodiment, this is not necessary, and the number of parts can be reduced, so the equipment can be easily adjusted. It is also possible to reduce the size of the device.

尚、斯かる実施例では、印加電圧の有無によりEO素子
の複屈折の大きさを制御する様にしたが、これに限らず
、印加電圧の大きさにより(印加電圧を2値制御するこ
とにより)EO素子の複屈折の大きさを制御する様にし
ても良い。又、この様に電気的に複屈折の大きさを制御
できる他の素子としては、結晶体として液晶を用いた素
子を用いることもできる。斯かる場合には、電圧印加に
より、液晶分子が一方向に配列され、以ってこの方向に
複屈折が生じる。
In this embodiment, the magnitude of birefringence of the EO element is controlled by the presence or absence of the applied voltage; however, the magnitude of the birefringence of the EO element is not limited to this. ) The magnitude of birefringence of the EO element may be controlled. Further, as another element in which the magnitude of birefringence can be electrically controlled in this way, an element using liquid crystal as a crystal can also be used. In such a case, the liquid crystal molecules are aligned in one direction by applying a voltage, and thus birefringence occurs in this direction.

尚、本発明の偏光状態変換装置は上述の光記録装置に限
るものでなく、偏光した光の偏光状態を変化させる方法
を利用する光記録装置、光磁気記録装置等に用いること
ができることは明らかである。又、本発明は上記例に限
定されるものではなく、電気的に偏光状態を変換できる
素子及び装置であれば他のどの様なものでも利用できる
It should be noted that the polarization state changing device of the present invention is not limited to the above-mentioned optical recording device, but it is clear that it can be used in optical recording devices, magneto-optical recording devices, etc. that utilize a method of changing the polarization state of polarized light. It is. Further, the present invention is not limited to the above example, and any other elements and devices that can electrically convert the polarization state can be used.

(ト)発明の効果 従って、本発明によれば、光の偏光状態を変化させるの
が、電気的手段であるため、又は位相差を生じせしめる
手段において2つの成分の光路差に微小な変化を発生さ
せるだけであるため、高速及び高精度に偏光状態を変換
できる。従って、上記手段を備えた光学装置は動作の高
速化、高精度化及び小型化が図ることができる。
(G) Effects of the Invention Therefore, according to the present invention, since the polarization state of light is changed by electrical means or by the means for creating a phase difference, the optical path difference between the two components is changed by a minute amount. Since the polarization state is simply generated, the polarization state can be converted at high speed and with high precision. Therefore, an optical device equipped with the above means can operate at higher speeds, have higher precision, and be smaller in size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係り、偏光状態の変化を示す概念図、
第2図は本発明の第1実施例に係る偏光状態変換装置、
第3図は本発明の第2実施例に係る偏光状態変換装置、
第4図乃至第5図は本発明の第3実施例に係り、第4図
は光記録再生装置における記録用光学系を示す図、第5
図は光記録再生装置における別の記録用光学系を示す図
である。第6図乃至第8図は従来例に係り、第6図は光
記録再生装置における光学系を示す図、第7図は記録ト
ラックの概念図、第8図は吸光度を示す図である。第9
図及び第1O図は本発明の第4の実施例を示す図である
。 (1)・・・第1偏光ビームスプリツタ、(2)・・・
第2偏光ビームスプリツタ、(4)・・・電気光学素子
、(50)・・・圧電素子、(60)・・・EO業子、
(履)(遅す、)・・・偏光状態変換装置。
FIG. 1 is a conceptual diagram showing changes in polarization state according to the present invention,
FIG. 2 shows a polarization state conversion device according to a first embodiment of the present invention,
FIG. 3 shows a polarization state conversion device according to a second embodiment of the present invention,
4 and 5 relate to a third embodiment of the present invention, in which FIG. 4 is a diagram showing a recording optical system in an optical recording/reproducing apparatus, and FIG.
The figure is a diagram showing another recording optical system in the optical recording/reproducing apparatus. 6 to 8 relate to a conventional example; FIG. 6 is a diagram showing an optical system in an optical recording/reproducing apparatus, FIG. 7 is a conceptual diagram of a recording track, and FIG. 8 is a diagram showing absorbance. 9th
10 and 10 are diagrams showing a fourth embodiment of the present invention. (1)...first polarizing beam splitter, (2)...
Second polarizing beam splitter, (4)... Electro-optical element, (50)... Piezoelectric element, (60)... EO element,
(wear) (slow,)...Polarization state conversion device.

Claims (3)

【特許請求の範囲】[Claims] (1)光記録材料からなる記録層に偏光した光を照射し
て情報の記録及び若しくは情報の再生を行う際、上記偏
光の状態を切り換える光記録媒体の記録及び若しくは再
生装置において、上記偏光の状態を電気的な手段により
変化させることを特徴とする光記録媒体の記録及び若し
くは再生装置。
(1) When recording and/or reproducing information by irradiating a recording layer made of an optical recording material with polarized light, an optical recording medium recording and/or reproducing apparatus that switches the state of polarization, A recording and/or reproducing device for an optical recording medium, characterized in that the state is changed by electrical means.
(2)電気的な手段が、電圧印加により複屈折の大きさ
が変化する素子と、この素子に電圧を印加する手段を有
することを特徴とする請求項(1)に記載の光記録及び
若しくは再生装置。
(2) The optical recording and/or recording device according to claim 1, wherein the electrical means includes an element whose birefringence changes in magnitude by applying a voltage, and means for applying a voltage to this element. playback device.
(3)光記録材料からなる記録層に偏光した光を照射し
て情報の記録及び若しくは情報の再生を行う際、上記偏
光の状態を切り換える光記録媒体の記録及び若しくは再
生装置において、上記偏光した光を2つの成分に分岐さ
せる手段と一方の該成分と他方の該成分に位相差を生じ
せしめる手段と前記位相差を有する2つの成分を再度合
成する手段により上記偏光状態を変化させることを特徴
とする光記録媒体の記録及び若しくは再生装置。
(3) When recording information and/or reproducing information by irradiating a recording layer made of an optical recording material with polarized light, in an optical recording medium recording and/or reproducing device that switches the state of polarized light, the polarized light is The polarization state is changed by means for branching the light into two components, means for creating a phase difference between one of the components and the other component, and means for recombining the two components having the phase difference. A recording and/or reproducing device for optical recording media.
JP2289234A 1989-12-28 1990-10-26 Optical recording and/or reproducing device Pending JPH04176031A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019900023010A KR100196015B1 (en) 1989-12-28 1990-12-28 Recording and reproducing method and apparatus for an optical recording medium
EP90125700A EP0436228B1 (en) 1989-12-28 1990-12-28 Recording and reproducing methods
DE69028908T DE69028908T2 (en) 1989-12-28 1990-12-28 Recording and playback processes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-206163 1990-08-02
JP20616390 1990-08-02

Publications (1)

Publication Number Publication Date
JPH04176031A true JPH04176031A (en) 1992-06-23

Family

ID=16518849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2289234A Pending JPH04176031A (en) 1989-12-28 1990-10-26 Optical recording and/or reproducing device

Country Status (1)

Country Link
JP (1) JPH04176031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010020883A (en) * 2008-06-08 2010-01-28 Utsunomiya Univ Optical information recording/reproducing method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460903A (en) * 1977-10-24 1979-05-16 Teac Corp Optical recorder*reproducer
JPS631939A (en) * 1986-06-20 1988-01-06 Advantest Corp Envelope detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460903A (en) * 1977-10-24 1979-05-16 Teac Corp Optical recorder*reproducer
JPS631939A (en) * 1986-06-20 1988-01-06 Advantest Corp Envelope detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010020883A (en) * 2008-06-08 2010-01-28 Utsunomiya Univ Optical information recording/reproducing method and device
US9734858B2 (en) 2008-06-08 2017-08-15 Utsunomiya University Optical information recording/reproduction method and device

Similar Documents

Publication Publication Date Title
JPH034975B2 (en)
JPH01165042A (en) Optical recording or reading apparatus
EP0606136B1 (en) Micro-mechanical light modulator and printing system with optically interlaced output
JPH04176031A (en) Optical recording and/or reproducing device
JP3171413B2 (en) Optical recording / reproducing device and spatial light modulator
EP0436228A2 (en) Recording and reproducing methods
KR100196015B1 (en) Recording and reproducing method and apparatus for an optical recording medium
JPS63100640A (en) Magneto-optical reproducing device
US5249171A (en) Opto-magnetic pick-up device including phase difference correcting means
JP2576545B2 (en) Optical head
JPS62248151A (en) Magneto optical reproducing device
JP2797618B2 (en) Recording signal reproducing apparatus for magneto-optical recording medium
JPS5812143A (en) Input and output device of optical information
JP2002269797A (en) Optical pickup and wavelength plate
JPH0445134Y2 (en)
JP3083894B2 (en) Optical playback device
JPH0411328A (en) Optical head device
JPS63279448A (en) Magneto-optical recording and reproducing device
JPH01294236A (en) Optical head
JPH03200142A (en) Recording and reproducing method for optical recording medium
JPH08221838A (en) Magneto-optical recording and reproducing device
JPH04271040A (en) Optical head for over-write
JPH0492211A (en) Recording, reproducing and recording and reproducing method of optical recording medium
KR20050053756A (en) Optical scanning device
JPH03219208A (en) Method and device for light output control