JPH04175726A - Liquid crystal optical device - Google Patents

Liquid crystal optical device

Info

Publication number
JPH04175726A
JPH04175726A JP2304441A JP30444190A JPH04175726A JP H04175726 A JPH04175726 A JP H04175726A JP 2304441 A JP2304441 A JP 2304441A JP 30444190 A JP30444190 A JP 30444190A JP H04175726 A JPH04175726 A JP H04175726A
Authority
JP
Japan
Prior art keywords
liquid crystal
optical device
transparent substrate
convex portion
crystal optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2304441A
Other languages
Japanese (ja)
Other versions
JP2837534B2 (en
Inventor
Kenjiro Hamanaka
賢二郎 浜中
Hideki Imanishi
秀樹 今西
Satoshi Taniguchi
敏 谷口
Takashi Kishimoto
隆 岸本
Kenzou Sono
曽野 健三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2304441A priority Critical patent/JP2837534B2/en
Publication of JPH04175726A publication Critical patent/JPH04175726A/en
Application granted granted Critical
Publication of JP2837534B2 publication Critical patent/JP2837534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain the maximum condensing effect and improve the utilization efficiency of the illumination light by forming many spherical projections faced to liquid crystal opening windows on the surface of a transparent substrate, and setting various numerals to satisfy the preset conditional expression. CONSTITUTION:Many spherical projections 6 faced to liquid crystal opening windows 7 are formed on the surface of a transparent substrate 1 as a lens array to satisfy the expression I, where (t) is the thickness of the transparent substrate 1, n0 is the refraction factor of the transparent substrate 1, (r) is the radius of curvature of the projection 6, and n1 is the refraction factor of the projection 6. The illumination light is condensed to the liquid crystal opening windows 7 of a liquid crystal panel by the spherical projections 6, and the utilization efficiency of the illumination light can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、液晶テレビ、液晶ビデオプロジェクタ等に用
いられる液晶パネルに関し、特に照明光を液晶パネルに
照射し投影レンズを介してスクリーンに拡大投影する液
晶プロジェクタに用いられる液晶光学装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a liquid crystal panel used in liquid crystal televisions, liquid crystal video projectors, etc., and in particular, the present invention relates to a liquid crystal panel used in liquid crystal televisions, liquid crystal video projectors, etc. The present invention relates to a liquid crystal optical device used in a liquid crystal projector.

(従来の技術) 一般に液晶パネルの全面積のうち画素配線や画素トラン
ジスタ(非晶質シリコン又は多結晶シリコンの薄膜トラ
ンジスタ)の占める面積が60〜70%であるため、各
画素毎に実際に照明光が透過しうる液晶開口窓の面積は
30〜40%と小さく、照明光のうち60〜70%は利
用できず無駄になってしまう。
(Prior art) Generally, pixel wiring and pixel transistors (amorphous silicon or polycrystalline silicon thin film transistors) occupy 60 to 70% of the total area of a liquid crystal panel. The area of the liquid crystal aperture window through which the light can pass is as small as 30 to 40%, and 60 to 70% of the illumination light cannot be used and is wasted.

そこで、1画素毎に微小レンズを設け、これによって照
明光を液晶開口窓に集光させて照明の利用効率を上げ、
投影画像を明るくしようとする発明が多数出願されてい
る(例えば、特開昭60465623号公報参照)。
Therefore, a microlens is provided for each pixel, which focuses the illumination light onto the liquid crystal aperture window, increasing the efficiency of illumination usage.
Many inventions have been filed to brighten projected images (for example, see Japanese Patent Laid-Open No. 60465623).

(発明が解決しようとする課題) 従来の技術で述べたものにおいては、ごく概念的にしか
記載されておらず、実際大きな効果を得るためにどのよ
うな仕様で微小レンズ等を製作したらよいか具体的に示
されていないという問題点を有していた。
(Problem to be solved by the invention) The conventional techniques described are only conceptually described, and it is difficult to know what kind of specifications should be used to manufacture a microlens etc. in order to actually obtain a great effect. The problem was that it was not specifically shown.

本発明は、従来の技術が有するこのような問題点に鑑み
てなされたものであり、その目的とするところは、実際
に実現可能性の高い液晶パネルとレンズアレイの組合せ
を構成し、かつシュミレーションにより照明の利用効率
を上げるための各構成部品の厚さ、屈折率およびレンズ
面の曲率半径との間に存在する数値関係を見い出し、投
影画像をより明るくすることができる液晶光学装置を提
供しようとするものである。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to construct a combination of a liquid crystal panel and a lens array that is highly likely to be realized in practice, and to provide a simulation method. We aim to provide a liquid crystal optical device that can make projected images brighter by discovering the numerical relationship between the thickness of each component, the refractive index, and the radius of curvature of the lens surface in order to increase the efficiency of illumination use. That is.

(課題を解決するための手段) 上記課題を解決すべく本発明は、一対の透明基板で液晶
を挟持してなる液晶パネルにレンズアレイを配設して構
成する液晶光学装置において、前記透明基板の表面に前
記液晶の液晶開口窓に対向するように球面状の凸部を多
数形成して、前記レンズアレイとするとともに前記透明
基板の厚さtと屈折¥x no、前記凸部の曲〉ネク半
径rと屈折率n1との間に r n 。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a liquid crystal optical device configured by disposing a lens array on a liquid crystal panel in which a liquid crystal is sandwiched between a pair of transparent substrates. A number of spherical convex portions are formed on the surface of the liquid crystal so as to face the liquid crystal aperture windows of the liquid crystal to form the lens array, and the thickness t of the transparent substrate, the refraction x no, the curve of the convex portion> r n between the neck radius r and the refractive index n1.

なる関係を有するものである。They have the following relationship.

また、前記透明基板は、アルカリ成分を実質的に含まな
いいわゆる無アルカリガラス材料で製イ1してもよい。
Further, the transparent substrate may be made of a so-called alkali-free glass material that does not substantially contain an alkali component.

また、前記透明基板の凸部を形成した面とは反対側の面
に、アルカリの析出を防止するコーティングを施すとよ
い。
Further, it is preferable that a coating for preventing alkali precipitation be applied to the surface of the transparent substrate opposite to the surface on which the convex portion is formed.

更に、前記コーティングを透明導電膜で施してもよい。Furthermore, the coating may be a transparent conductive film.

(作用) 球面状の凸部によって照明光か液晶パネルの各液晶開口
窓に集光し照明光の利用効率が向上する。
(Function) The spherical convex portion focuses the illumination light onto each liquid crystal aperture window of the liquid crystal panel, improving the utilization efficiency of the illumination light.

(実施例) 以下に本発明の実施例を添付図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the accompanying drawings.

第1図は本発明に係る液晶光学装置の断面図、第2図は
球面状凸部による光線の屈折状態を示す模式図である。
FIG. 1 is a cross-sectional view of a liquid crystal optical device according to the present invention, and FIG. 2 is a schematic diagram showing a state of refraction of a light beam by a spherical convex portion.

液晶光学装置は、一対の透明基板である液晶セル基板1
,2で液晶3を挟持してなる液晶パネル4の照明光であ
る入射光線5側の液晶セル基板1の表面に液晶3の各画
素と1対1に対向するように球面状の凸部6を形成して
構成されている。なお、液晶セル基板1,2はアルカリ
をほとんど含まないガラス材料で製作され、凸部6を形
成した面とは反対側の面にはアルカリの析出を防止する
ために透明導電膜でコーティングを施しである。
A liquid crystal optical device consists of a pair of transparent substrates, liquid crystal cell substrates 1.
, 2 sandwiching the liquid crystal 3. On the surface of the liquid crystal cell substrate 1 on the side of the incident light beam 5 which is the illumination light of the liquid crystal panel 4, a spherical convex portion 6 is provided so as to face each pixel of the liquid crystal 3 on a one-to-one basis. It is composed of The liquid crystal cell substrates 1 and 2 are made of a glass material containing almost no alkali, and the surface opposite to the surface on which the convex portion 6 is formed is coated with a transparent conductive film to prevent alkali precipitation. It is.

液晶3は各画素毎に光を透過可能な液晶開口窓7を有し
、それ以外の部分8は薄膜トランジスタ(TPT)、画
素配線等で光を利用できない部分である。
The liquid crystal 3 has a liquid crystal aperture window 7 that can transmit light for each pixel, and the other portions 8 are thin film transistors (TPTs), pixel wiring, etc., and cannot utilize light.

球面状の凸部6は、例えばNiスタンパを用いて2P樹
脂材料や熱硬化性樹脂材料を液晶セル基板1上にアレイ
状に付着形成するような方法で形成される。
The spherical convex portions 6 are formed by, for example, depositing a 2P resin material or a thermosetting resin material on the liquid crystal cell substrate 1 in an array using a Ni stamper.

凸部6を成形するためのNiスタンバの形状原型、いわ
ゆる「マザー」は、例えばガラス基板にフォトリソグラ
フィ技術を用いて数μm径から+数μm径程度の円形開
口を持つ金属マスクを形成し、これをフッ酸系のエッチ
ャントを用いて適当な時間エツチングすることにより製
作する。ガラスのエツチングはマスク開口部からほぼ等
力的に進行するため球面状の凹部が得られ、その曲率半
径はエツチング時間等によって制御できる。また、エツ
チング工程を2段階に分ける等の方法により、半球状よ
り浅い四部や隣接する四部同士か完全につながったいわ
ゆる稠密充填構造の球面状四部アレイを製作することが
できる(特願平2−27712号参照)。
The shape prototype of the Ni standby for forming the convex portion 6, the so-called "mother", is obtained by forming a metal mask having a circular opening with a diameter of several μm to + several μm on a glass substrate, for example, using photolithography technology. This is manufactured by etching it for an appropriate time using a hydrofluoric acid etchant. Since the etching of the glass proceeds almost uniformly from the mask opening, a spherical concave portion is obtained, and the radius of curvature of the concave portion can be controlled by the etching time and the like. Furthermore, by dividing the etching process into two steps, it is possible to fabricate a spherical four-part array with a so-called close-packed structure in which four parts shallower than a hemisphere or adjacent four parts are completely connected (Patent Application No. (See No. 27712).

液晶セル基板1,2としては、例えばコーニング社製の
7059基板や一般的なソーダライム基板等か適用でき
る。なお、プラスチック基板でもよい。
As the liquid crystal cell substrates 1 and 2, for example, a 7059 substrate manufactured by Corning Corporation or a general soda lime substrate can be used. Note that a plastic substrate may also be used.

二のよ・うに(7て製作した球面状凹部アレイを用いて
一般的な電鋳方法によりNiマスタ(形状か反転して球
面状四部アレイとなる)をとり、更にこれを用いて電鋳
方法により「マザー」と同形状のNiスタンバか出来る
Using the spherical concave array fabricated in step 7, a Ni master (the shape is reversed to form a spherical four-part array) is obtained using a general electroforming method, and then using this, an electroforming method is performed. By doing this, you can create a Ni standber with the same shape as the "mother".

そして、液晶セル基板1の表面に樹脂材料を塗布し1、
Niスタンバを密着させれば所望な球面状の凸部6のア
レイを製作することが出来る。
Then, a resin material is applied to the surface of the liquid crystal cell substrate 1.
A desired array of spherical convex portions 6 can be manufactured by closely adhering the Ni standbar.

このようにし、て製作された球面状凸部6のアレイイ1
液晶セル基板1を凸部6か液晶3と反射側になるように
してもう一方の液晶セル基板2とで液晶3を挟持する。
Array 1 of spherical convex portions 6 manufactured in this way
The liquid crystal cell substrate 1 is sandwiched between the other liquid crystal cell substrate 2 so that the convex portion 6 or the liquid crystal 3 is on the reflective side.

この時液晶3の各液晶開口窓7と各凸部6は1対1に対
向している。
At this time, each liquid crystal aperture window 7 of the liquid crystal 3 and each convex portion 6 are opposed to each other on a one-to-one basis.

次に、第1図に示すような液晶光学装置を構成し、更に
照明光である入射光線5の利用効率を上げてより明るい
投影画像を得るためには、液晶セル基板1の屈折率と厚
さ、凸部6の曲率半径等に対して以下の様な数値限定条
件に従って光学系を構成する必要かある。
Next, in order to configure a liquid crystal optical device as shown in FIG. 1, and further increase the utilization efficiency of the incident light beam 5, which is the illumination light, and obtain a brighter projected image, the refractive index and thickness of the liquid crystal cell substrate 1 must be adjusted. Now, it is necessary to configure the optical system according to the following numerical limitation conditions regarding the radius of curvature of the convex portion 6, etc.

ここで、液晶セル基板1の屈折率をn。、その厚さをt
、凸部の屈折率をn□、その曲率半径をrとする。
Here, the refractive index of the liquid crystal cell substrate 1 is n. , its thickness is t
, the refractive index of the convex portion is n□, and its radius of curvature is r.

照明光である略平行な入射光線5が球面状凸部6に入射
するとき、その球面で光線が屈折して凸レンズとして作
用する。この凸レンズ効果により入射光線5が液晶開口
窓7に出来るだけ多く入射する時が、照明光の利用効率
の最大時である。
When a substantially parallel incident light ray 5, which is illumination light, enters the spherical convex portion 6, the light ray is refracted by the spherical surface and acts as a convex lens. When as much of the incident light ray 5 as possible enters the liquid crystal aperture window 7 due to this convex lens effect, the utilization efficiency of illumination light is at its maximum.

曲率半径rの凸部6の球面での屈折による凸レンズの焦
点距離fは、近軸条件が満足されていれば次式の関係が
ある。
The focal length f of a convex lens due to refraction on the spherical surface of the convex portion 6 having a radius of curvature r has the following relationship if the paraxial condition is satisfied.

屈折光線を液晶開口窓7に集光させるためにはf = 
t / n 、とすればよい。従って、j+  nor
  r。
In order to focus the refracted light beam on the liquid crystal aperture window 7, f =
t/n. Therefore, j+ nor
r.

nlの関係は基本的に t / n o= r / (nニー1)   (2)
となる必要がある。
The relationship of nl is basically t/no=r/(nnee1) (2)
It is necessary to

しかしなから、球面による屈折効果は正の球面収差か大
きく発生してしまい、第2図に示すように近軸光線より
も周辺光線はもつと凸部6側に集光する。従って、入射
光線5の全エネルギーが最も小さい領域に集光する像点
■は前記近軸J1算による像点■よりも凸部6側に近く
なる。
However, the refraction effect due to the spherical surface causes a large amount of positive spherical aberration, and as shown in FIG. 2, the peripheral rays are converged closer to the convex portion 6 than the paraxial rays. Therefore, the image point (2), which focuses the incident light ray 5 on the area where the total energy is the smallest, is closer to the convex portion 6 side than the image point (2) based on the above-mentioned paraxial J1 calculation.

そこで、実際に第1図に示す光学系により光線追跡を行
い、1画素の寸法を100μm平方、液晶開口窓7の寸
法を20μm平方としたときに球面の屈折によって液晶
開口窓7に入射する光線の本数を討算しその本数の最大
位置から実効的な焦点位置を算出(7た。
Therefore, we actually traced the rays using the optical system shown in Figure 1, and when the size of one pixel was 100 μm square and the size of the liquid crystal aperture window 7 was 20 μm square, the rays that entered the liquid crystal aperture window 7 due to the refraction of the spherical surface. The effective focal position is calculated from the maximum position of the number of lenses (7).

第3図は各構成部品の所定屈折率における凸部の曲率半
径rと液晶セル基板1中の焦点距離との関係を示す計算
結果の一例である。液晶セル基板1としては、コーニン
グ社製7059基板を想定してno=1..53とし、
液晶セル基板1の表面に樹脂材料を塗布し、Niスタン
バを密着して成形した凸部6の屈折率は樹脂材料からn
x=1.52として計算した。
FIG. 3 is an example of calculation results showing the relationship between the radius of curvature r of the convex portion and the focal length in the liquid crystal cell substrate 1 at a predetermined refractive index of each component. Assuming that the liquid crystal cell substrate 1 is a 7059 substrate manufactured by Corning, no=1. .. 53,
The refractive index of the convex portion 6 formed by applying a resin material to the surface of the liquid crystal cell substrate 1 and closely adhering it to a Ni standby is n from the resin material.
Calculated with x=1.52.

第3図中、横軸は球面状凸部6の曲率半径rを、縦軸は
液晶セル基板1(屈折率n。−1,53)中の焦点距離
の値である。実線は、近軸条件を満足する場合の式(1
)、(2)を用いた計算結果である。これに対して点線
は、前記の様な光線追跡により求めた実効的な焦点距離
と曲率半径rとの関係である。従って、本光学系におい
て、球面収差を含めて最も集光効果か大きく得られる位
置が第3図中の点線の値である。この値を近軸計算結果
と比較すると曲率半径rの大きな場合には近軸計算結果
とほぼ一致するが、曲率半径rの小さな場合には近軸計
算結果の約70%弱になっている。
In FIG. 3, the horizontal axis represents the radius of curvature r of the spherical convex portion 6, and the vertical axis represents the value of the focal length in the liquid crystal cell substrate 1 (refractive index n.-1, 53). The solid line represents the equation (1
) and (2). On the other hand, the dotted line represents the relationship between the effective focal length and the radius of curvature r determined by ray tracing as described above. Therefore, in this optical system, the position where the greatest light condensing effect, including spherical aberration, can be obtained is the value indicated by the dotted line in FIG. Comparing this value with the paraxial calculation result, when the radius of curvature r is large, it almost matches the paraxial calculation result, but when the radius of curvature r is small, it is about 70% of the paraxial calculation result.

以上のシミュレーション結果より、最も集光効果か大き
く得られる実効的な焦点距離feは、およそ 0.6r/(nx−1)<fe<r/(nt−1)  
 (3)のように示される。従って、この値feをt 
/ noに等しくすることにより、液晶開口位置で最大
の集光効果が得られる。
From the above simulation results, the effective focal length fe that provides the greatest light focusing effect is approximately 0.6r/(nx-1)<fe<r/(nt-1)
It is shown as (3). Therefore, this value fe is
/no, the maximum light focusing effect can be obtained at the liquid crystal aperture position.

即ち、t、nor  r、  n工の間の数値関係をr
 n 。
That is, the numerical relationship between t, nor r, and n is expressed as r
n.

とする必要がある。It is necessary to do so.

なお、本実施例では球面状凸部6を液晶セル基板1,2
のうちの一方にのみ形成したが、第4図に示すように双
方の液晶セル基板1,2の面に設けてもよい。この場合
式(4)は双方の凸部6付き液晶セル基板1.2におい
て別個に満足されなければならない。
In this embodiment, the spherical convex portion 6 is connected to the liquid crystal cell substrates 1 and 2.
Although it is formed only on one of the liquid crystal cell substrates, it may be formed on both surfaces of the liquid crystal cell substrates 1 and 2 as shown in FIG. In this case, equation (4) must be satisfied separately for both liquid crystal cell substrates 1.2 with convex portions 6.

また、各式において焦点距離は球面の頂点がらの距離で
あり、解析する場合にはレンズの厚み分を考慮するべき
であるが、本用途では焦点距離4゜O〜800μm稈度
に比へ、レンズの厚みは数10μm以下であり事実上考
慮の必要はない。
In addition, in each formula, the focal length is the distance from the apex of the spherical surface, and when analyzing it, the thickness of the lens should be taken into account, but in this application, the focal length is 4°O~800μm compared to the culmability. The thickness of the lens is several tens of micrometers or less, so there is virtually no need to consider it.

また、凸部6の材料は光硬化性又は熱硬化性等の樹脂材
の他に、ゾルゲルガラス、低融点ガラス等のガラス材料
でも良く、凸部6の表面に耐湿性等を向上させるための
コーティングや反射防止コーティングを施すと良い場合
がある。
Further, the material of the convex portion 6 may be a glass material such as sol-gel glass or low melting point glass in addition to a photocurable or thermosetting resin material. It may be beneficial to apply a coating or anti-reflection coating.

なお、本発明においては、液晶セル基板1の厚さtか0
 、5 mm−161闘、液晶3の1画素の大きさが5
0μm平方〜150μm平方、液晶開口窓1oの寸法が
1画素の20%〜50%の範囲であることが前提条件と
なる。
In addition, in the present invention, the thickness t of the liquid crystal cell substrate 1 is 0.
, 5 mm-161 mm, the size of one pixel of LCD 3 is 5
The prerequisite is that the size of the liquid crystal aperture window 1o is in the range of 0 μm square to 150 μm square, and 20% to 50% of one pixel.

例えば、凸部6の1個の大きさ約100μm平方で曲率
半径rが約350μm、  n o= 1.53.  
t = 1..1mm、  n、−1,59の光学系の
場合、約40μm平方内に集光する照明光量が凸部6を
形成しない場合に比べ2倍量ト得られた。
For example, the size of each convex portion 6 is approximately 100 μm square, the radius of curvature r is approximately 350 μm, and no=1.53.
t=1. .. In the case of the 1 mm, n, -1,59 optical system, the amount of illumination light condensed within a square area of about 40 μm was twice as much as when the convex portion 6 was not formed.

(発明の効果) 以上説明したように本発明によれば、所定の条件式を満
足するように各数値を設定することによって最大の集光
効果か得られ、照明光の利用効率の向上が図れる。
(Effects of the Invention) As explained above, according to the present invention, by setting each numerical value so as to satisfy a predetermined conditional expression, the maximum light gathering effect can be obtained, and the efficiency of use of illumination light can be improved. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る液晶光学装置の断面図、第2図は
球面状凸部による構成の屈折状態を示す模式図、第3図
は各構成部品の所定屈折率における凸部の曲率半径rと
液晶セル基板中の焦点距離との関係を示す計算結果の一
例、第4図は別実施例の断面図である。 1.2・・・液晶セル基板、3・・液晶、4・・・液晶
パネル、5・・・入射光線、6・・・凸部1.7・・液
晶開口窓、no・・・液晶セル基板の屈折率、n工・・
・凸部の屈折率、t・・・液晶セル基板の厚さ、r・・
・凸部の曲率半径。 特 許 出 願 人  日本板硝子株式会社代 理 人
 弁理士   下 1) 容一部間   弁理士   
大 橋  邦 産量   弁理士   小 山    
有第1図   第4図 n。 第2図
FIG. 1 is a cross-sectional view of a liquid crystal optical device according to the present invention, FIG. 2 is a schematic diagram showing the refraction state of a configuration with a spherical convex portion, and FIG. 3 is a radius of curvature of the convex portion at a predetermined refractive index of each component. An example of calculation results showing the relationship between r and the focal length in the liquid crystal cell substrate, FIG. 4 is a cross-sectional view of another embodiment. 1.2...Liquid crystal cell substrate, 3...Liquid crystal, 4...Liquid crystal panel, 5...Incoming light beam, 6...Protrusion 1.7...Liquid crystal aperture window, no...Liquid crystal cell Refractive index of substrate, n-type...
・Refractive index of the convex portion, t...Thickness of the liquid crystal cell substrate, r...
- Radius of curvature of the convex part. Patent applicant: Nippon Sheet Glass Co., Ltd. Representative: Patent attorney (2) 1) Participant: Patent attorney
Kuni Ohashi Production Patent Attorney Koyama
Figure 1 Figure 4 n. Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)一対の透明基板で液晶を挟持してなる液晶パネル
にレンズアレイを配設して構成する液晶光学装置におい
て、 前記透明基板の表面に前記液晶の液晶開口窓に対向する
ように球面状の凸部を多数形成して、前記レンズアレイ
とするとともに前記透明基板の厚さtと屈折率n_0、
前記凸部の曲率半径rと屈折率n_1との間に 0.6≦t(n_1−1)/rn_0≦1 なる関係を有することを特徴とする液晶光学装置。
(1) In a liquid crystal optical device configured by disposing a lens array on a liquid crystal panel in which a liquid crystal is sandwiched between a pair of transparent substrates, a spherical surface is provided on the surface of the transparent substrate so as to face the liquid crystal aperture window of the liquid crystal. A large number of convex portions are formed to form the lens array, and the thickness t and refractive index n_0 of the transparent substrate are
A liquid crystal optical device characterized in that the radius of curvature r of the convex portion and the refractive index n_1 have a relationship of 0.6≦t(n_1-1)/rn_0≦1.
(2)前記透明基板は、アルカリを実質的に含まないガ
ラス材料で製作した請求項1記載の液晶光学装置。
(2) The liquid crystal optical device according to claim 1, wherein the transparent substrate is made of a glass material that does not substantially contain alkali.
(3)前記透明基板の凸部を形成した面とは反対側の面
に、アルカリの析出を防止するコーティングを施した請
求項1又は2記載の液晶光学装置。
(3) The liquid crystal optical device according to claim 1 or 2, wherein a coating for preventing alkali precipitation is applied to a surface of the transparent substrate opposite to the surface on which the convex portion is formed.
(4)前記コーティングを透明導電膜で施した、請求項
3記載の液晶光学装置。
(4) The liquid crystal optical device according to claim 3, wherein the coating is a transparent conductive film.
JP2304441A 1990-11-09 1990-11-09 Liquid crystal optical device Expired - Fee Related JP2837534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2304441A JP2837534B2 (en) 1990-11-09 1990-11-09 Liquid crystal optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2304441A JP2837534B2 (en) 1990-11-09 1990-11-09 Liquid crystal optical device

Publications (2)

Publication Number Publication Date
JPH04175726A true JPH04175726A (en) 1992-06-23
JP2837534B2 JP2837534B2 (en) 1998-12-16

Family

ID=17933049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2304441A Expired - Fee Related JP2837534B2 (en) 1990-11-09 1990-11-09 Liquid crystal optical device

Country Status (1)

Country Link
JP (1) JP2837534B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191312A (en) * 1993-11-10 1995-07-28 Minnesota Mining & Mfg Co <3M> Liquid crystal projection panel having microlens arrangement
WO2009128187A1 (en) * 2008-04-16 2009-10-22 シャープ株式会社 Liquid crystal display device
US9986714B2 (en) 2012-12-26 2018-06-05 Nestec Sa Low density coated animal litter compositions
US10477833B2 (en) 2015-10-23 2019-11-19 Société des Produits Nestlé S.A. Low density pet litters and methods of making such pet litters

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191312A (en) * 1993-11-10 1995-07-28 Minnesota Mining & Mfg Co <3M> Liquid crystal projection panel having microlens arrangement
WO2009128187A1 (en) * 2008-04-16 2009-10-22 シャープ株式会社 Liquid crystal display device
US8279377B2 (en) 2008-04-16 2012-10-02 Sharp Kabushiki Kaisha Liquid crystal display device
US9986714B2 (en) 2012-12-26 2018-06-05 Nestec Sa Low density coated animal litter compositions
US10477833B2 (en) 2015-10-23 2019-11-19 Société des Produits Nestlé S.A. Low density pet litters and methods of making such pet litters
US10881077B2 (en) 2015-10-23 2021-01-05 Société des Produits Nestlé S.A. Low density pet litters and methods of making such pet litters
US11457606B2 (en) 2015-10-23 2022-10-04 Société des Produits Nestlé S.A. Low density pet litters and methods of making and using such pet litters

Also Published As

Publication number Publication date
JP2837534B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
KR940006986B1 (en) Liquid crystal display device
US5187599A (en) Display including two microlens arrays with unequal focal lengths and congruent focal points
CN206505215U (en) The big thang-kng small-sized wide-angle lens of 2.8mm
KR0130058B1 (en) A transmissive display device
JPH01189685A (en) Liquid crystal light valve and video projector with liquid crystal light valve
JP4188611B2 (en) Manufacturing method of microlens array
KR0135922B1 (en) Liquid crystal projector and liquid crystal display device using micro lens plate
JPH03136004A (en) Image display device
JPH04175726A (en) Liquid crystal optical device
CN109270667A (en) Optical imaging system and electronic equipment
CN209640594U (en) A kind of inexpensive, high-resolution ultrashort out-of-focus projection&#39;s Optical devices
KR100741772B1 (en) Transmit-reflecting sheet for liquid crystal display and fabrication method for the same
JPH02251902A (en) Lens array and liquid crystal display element formed by using lens array
JP2980830B2 (en) Liquid crystal display
JP2837533B2 (en) Liquid crystal optical device
JPH05346578A (en) Liquid crystal display panel
JPH06208006A (en) Microlens array
JP2000330101A (en) Lcd with double microarray lens
WO2008026862A1 (en) Upper substrate, liquid crystal panel using the same and manufacturing method thereof
JP2000314876A (en) Liquid crystal display element and liquid crystal display device
JPH0450802A (en) Plate lens array and liquid crystal panel element using it
JPH05346577A (en) Microlens incorporated type liquid crystal panel
JPH0229684A (en) Liquid crystal display element and projector provided with liquid crystal display element
CN111458922A (en) Array substrate and manufacturing method thereof
JPH03214121A (en) Liquid crystal display device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees