JPH05346578A - Liquid crystal display panel - Google Patents
Liquid crystal display panelInfo
- Publication number
- JPH05346578A JPH05346578A JP4155359A JP15535992A JPH05346578A JP H05346578 A JPH05346578 A JP H05346578A JP 4155359 A JP4155359 A JP 4155359A JP 15535992 A JP15535992 A JP 15535992A JP H05346578 A JPH05346578 A JP H05346578A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- display panel
- crystal display
- substrate
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、テレビ画面、コンピュ
ータ出力画面等を拡大表示するための液晶投影装置、い
わゆる液晶プロジェクタあるいは液晶プロジェクション
テレビに有用な液晶表示パネルに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display panel which is useful for a liquid crystal projection device for enlarging and displaying a television screen, a computer output screen, etc., a so-called liquid crystal projector or a liquid crystal projection television.
【0002】[0002]
【従来の技術】液晶プロジェクタ光学系の代表例を図4
に示す。メタルハライドランプ1から射出した光束を凹
面鏡2で反射させた後又は直接にコンデンサレンズ3で
コリメートし、リレーレンズ4を介して液晶表示パネル
5(以下LCDと略記する)を照明する。LCD5に
は、テレビ映像やパソコン画面等が表示されており、こ
の表示画面が投影レンズ6によってスクリーン7上に拡
大投影される。2. Description of the Related Art A typical example of a liquid crystal projector optical system is shown in FIG.
Shown in. The light flux emitted from the metal halide lamp 1 is reflected by the concave mirror 2 or collimated by the condenser lens 3 or directly, and the liquid crystal display panel 5 (hereinafter abbreviated as LCD) is illuminated via the relay lens 4. A television image, a personal computer screen, etc. are displayed on the LCD 5, and this display screen is enlarged and projected on the screen 7 by the projection lens 6.
【0003】リレーレンズ4は、LCD5を照明した光
を投影レンズ6の位置に絞り込むようにすることによ
り、投影レンズ6の口径が大きくなくても、光のケラレ
がそれほど大きくならないようになっている。実際のラ
ンプ1は点光源ではなく有限の大きさを持っているた
め、図中点線で示されるような光線は投影レンズ6上で
光軸から離れた位置に到達する。従って、投影レンズ6
の口径をこの分だけ大きくする必要がある。The relay lens 4 narrows the light illuminating the LCD 5 to the position of the projection lens 6 so that the vignetting of the light does not become so large even if the diameter of the projection lens 6 is not large. .. Since the actual lamp 1 is not a point light source but has a finite size, the light rays shown by the dotted line in the figure reach the position on the projection lens 6 which is away from the optical axis. Therefore, the projection lens 6
It is necessary to increase the caliber of this.
【0004】例えば、照明光の平行度を±θ=±6°程
度とし、リレーレンズ4と投影レンズ6との間隔をL=
200mmとすると、 投影レンズ6上での光束の広が
りはおよそ、For example, the parallelism of the illumination light is about ± θ = ± 6 °, and the distance between the relay lens 4 and the projection lens 6 is L =.
If the distance is 200 mm, the spread of the light flux on the projection lens 6 is approximately
【数1】 2Ltanθ=42mm (1) 程度となり、従って投影レンズ6の口径は42mm以上
必要となる。## EQU00001 ## 2Ltan .theta. = 42 mm (1) Therefore, the diameter of the projection lens 6 needs to be 42 mm or more.
【0005】一方、LCD5は、配線領域、画素毎のT
FT(薄膜トランジスタ)領域など、光を透過できない
部分いわゆるブラックマトリクスを持ち、一般に開口率
は全液晶パネル面積の30%ないし40%程度と低く、
これ以外の部分に入射する光は上記ブラックマトリクス
によりカットされて利用できないといった問題がある。On the other hand, the LCD 5 has a wiring area and a T for each pixel.
It has a so-called black matrix that cannot transmit light, such as an FT (thin film transistor) region, and generally has a low aperture ratio of about 30% to 40% of the total liquid crystal panel area.
There is a problem that the light incident on the other portions is cut off by the black matrix and cannot be used.
【0006】これを解決する一方法として、図5に示す
ように、LCDを構成する2枚のガラス基板11、12
のうち光の入射する側のガラス基板11に、各画素に対
向して微小レンズ13を設け、入射光を微小レンズ13
により画素開口部16に集光させることにより、LCD
を透過する光量を増加させる方法が従来から提案されて
いる。As a method of solving this, as shown in FIG. 5, two glass substrates 11 and 12 constituting an LCD are used.
A microlens 13 is provided on the glass substrate 11 on the light incident side of the microlens 13 so as to face each pixel and
The light is focused on the pixel opening 16 by
Conventionally, a method of increasing the amount of light passing through the light source has been proposed.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記の
素子構造ではLCD透過後の光束は、照明光の広がり角
±θに加え、微小レンズ13のNA(開口数)に相当す
る角度±αが足されて±(θ+α)だけ広がることにな
る。αは微小レンズ13の各レンズ径をd、ガラス基板
11の厚みをt、屈折率をnとすれば、However, in the above element structure, the luminous flux after passing through the LCD has an angle ± α corresponding to the NA (numerical aperture) of the minute lens 13 in addition to the spread angle ± θ of the illumination light. It will be expanded by ± (θ + α). α is the lens diameter of the minute lens 13, d is the thickness of the glass substrate 11, and n is the refractive index.
【数2】 α=tan-1[dn/2t] (2) と表され、例えば、d=140μm、n=1.53、t
=1.1mmとすれば、α=5.6°と、θとほぼ同程
度の大きさになる。従って、明るさを向上させるために
微小レンズ13を挿入する場合、投影レンズ6の口径を[Mathematical formula-see original document] α = tan -1 [dn / 2t] (2), for example, d = 140 μm, n = 1.53, t
= 1.1 mm, α = 5.6 °, which is about the same as θ. Therefore, when the microlens 13 is inserted to improve the brightness, the aperture of the projection lens 6 should be set to
【数3】 2ltan(θ+α)=82mm (3) と大きくする必要があり、装置の小型化が難しい、投影
レンズのコスト高になる等の問題が生じる。## EQU00003 ## It is necessary to increase the value to 2 ltan (.theta. +. Alpha.) = 82 mm (3), which causes problems such as difficulty in downsizing the apparatus and increasing the cost of the projection lens.
【0008】[0008]
【課題を解決するための手段】上述のような従来技術の
問題点を解決するため、本発明ではLCDを構成する2
枚のガラス基板の三面(第1面、第2面、第4面)にそ
れぞれ微小レンズのアレイを設け、かつ第1面と第4面
のレンズアレイをアフォーカル構成に配置した。In order to solve the problems of the prior art as described above, the present invention comprises an LCD.
An array of minute lenses was provided on each of the three surfaces (first surface, second surface, and fourth surface) of the glass substrate, and the lens arrays of the first surface and the fourth surface were arranged in an afocal configuration.
【0009】[0009]
【作用】本発明によれば、LCDガラス基板の片面のみ
に微小レンズのアレイを設ける場合に比べて、LCD透
過後の光束の広がりを小さく抑えることができ、投影レ
ンズの口径を従来より大幅に小さくすることができる。According to the present invention, the spread of the light flux after passing through the LCD can be suppressed to be smaller than that in the case where an array of minute lenses is provided on only one side of the LCD glass substrate, and the aperture of the projection lens can be made larger than before. Can be made smaller.
【0010】[0010]
【実施例】以下本発明を図面に示した実施例に基づき詳
細に説明する。図1は本発明の一実施例を示すLCDの
拡大断面図であり、液晶プロジェクタにおけるLCD5
の配置は前述の図4と同様でよい。図1においてLCD
5は、2枚の透明ガラス基板11、12間に液晶層15
を挟み周辺を封止して構成され、両ガラス基板11、1
2のうち照明光入射側の基板11の両面(第1面S1、
第2面S2)に微小レンズ13、14が、各画素開口部
16に対応させて配列形成されているとともに、他方の
基板12の液晶層とは反対側の面(第4面S4)にも同
様の配列で微小レンズ15が形成されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. FIG. 1 is an enlarged sectional view of an LCD showing an embodiment of the present invention.
The arrangement may be the same as that shown in FIG. LCD in FIG.
5 is a liquid crystal layer 15 between the two transparent glass substrates 11 and 12.
Both glass substrates 11 and 1 are formed by sealing the periphery with sandwiching
Of the two, both surfaces of the substrate 11 on the illumination light incident side (first surface S 1 ,
Microlenses 13 and 14 are formed in an array on the second surface S 2 ) so as to correspond to the respective pixel openings 16, and the surface of the other substrate 12 opposite to the liquid crystal layer (the fourth surface S 4 ). Also, the minute lenses 15 are formed in the same arrangement.
【0011】上記の微小レンズ13、14、15は、例
えばソーダライムガラスからなる基板11の表面に、公
知のイオン交換法を用いて屈折率分布型レンズとして作
製できる。すなわち、基板ガラスの両面ないしは片面を
イオン透過防止の機能を有する金属膜等のマスク膜で被
覆し、このマスク膜にフォトリソグラフィにより所定の
レンズ配列パターンで開口を設け、この開口を通してガ
ラスの屈折率を高めるイオンをガラス中のアルカリイオ
ンとの交換で拡散させる方法で作製することができる。
この方法で得られるレンズは、屈折率が基板表面で最大
で、基板肉厚内に向け放射方向に次第に減少する屈折率
分布を有する。The minute lenses 13, 14 and 15 can be manufactured as a gradient index lens on the surface of the substrate 11 made of, for example, soda lime glass by using a known ion exchange method. That is, both sides or one side of the substrate glass is covered with a mask film such as a metal film having a function of preventing ion permeation, and openings are formed in this mask film with a predetermined lens array pattern by photolithography. It can be prepared by a method of diffusing ions that enhance the diffusion by exchanging with alkali ions in the glass.
The lens obtained in this way has a refractive index profile in which the refractive index is greatest at the substrate surface and gradually decreases in the radial direction towards the substrate thickness.
【0012】ここで、両基板11、12の厚みをt1、
t2、屈折率をn1、n2、レンズ13、14、15の焦
点距離をf1、f2、f3とするとき、f1〜f3をHere, the thicknesses of both substrates 11 and 12 are t 1 ,
When t 2 is the refractive index of n 1 and n 2 , and the focal lengths of the lenses 13, 14 and 15 are f 1 , f 2 and f 3 , f 1 to f 3 are
【数4】f1=t1/n1 (4)## EQU4 ## f 1 = t 1 / n 1 (4)
【数5】f2=t1/(2n1) (5)F 2 = t 1 / (2n 1 ) (5)
【数6】f3=t2/n2 (6) となるように作製する。例えばt1=t2=1.1mm、
n1=n2=1.53のときf1=f3=719μm、f2
=359μmとする。## EQU6 ## Fabrication is performed so that f 3 = t 2 / n 2 (6). For example, t 1 = t 2 = 1.1 mm,
When n 1 = n 2 = 1.53, f 1 = f 3 = 719 μm, f 2
= 359 μm.
【0013】このような形で基板の三面S1、S2、S4
にそれぞれ微小レンズのアレイを形成すると、第1面S
1のレンズ13に入射する平行光線は、第1面S1と第4
面S4の微小レンズとがアフォーカル配置となっている
ので、第4面S4のレンズ15を射出したあと平行に伝
搬する(図1中実線の光線)。また角度θだけ傾いた光
線も第2面S2のレンズ14で屈折し、主光線の方向が
曲げられて第4面レンズ15の瞳面全面に入射し、この
レンズ15を通過後主光線が角度θだけ傾いた平行光線
として射出する(図中点線の光線)。In this manner, the three surfaces S 1 , S 2 , S 4 of the substrate are formed.
When an array of minute lenses is formed on each of the
The parallel rays incident on the first lens 13 are the first surface S 1 and the fourth surface
Since the minute lenses on the surface S 4 are arranged afocal, they propagate in parallel after being emitted from the lens 15 on the fourth surface S 4 (the solid line in FIG. 1). A ray inclined by an angle θ is also refracted by the lens 14 having the second surface S 2 , the direction of the principal ray is bent and is incident on the entire pupil surface of the fourth surface lens 15, and after passing through this lens 15, the principal ray is changed. Emit as parallel rays inclined by an angle θ (rays in dotted line in the figure).
【0014】従って、LCD5から射出する光束の広が
り角は、従来図4の構成において±(θ+α)であった
ものが±θと大幅に小さくでき、従って投影レンズ6の
口径は、L、θと(1)式と同じにすると、Therefore, the divergence angle of the light beam emitted from the LCD 5 can be greatly reduced to ± θ, which is ± (θ + α) in the conventional configuration of FIG. 4, and therefore the aperture of the projection lens 6 is L and θ. If it is the same as equation (1),
【数7】 2Ltanθ=42mm (7) と大幅に小口径化できる。(7) 2L tan θ = 42 mm (7) The diameter can be significantly reduced.
【0015】また図1では省略したが、各面S1、S2、
S4にレンズ13、14、15のアレイを備えたガラス
基板11、12を用いてLCD5を実際に構成する場
合、図2に示すような具体的構造がその代表例として挙
げられる。図2で、ガラス基板11の液晶層と対向する
面にアルカリ溶出防止膜20がコーティングされ、その
上にブラックマトリクス21、カラーフィルタ22、レ
ベルコート材23、透明導電膜24が設けられる。Although not shown in FIG. 1, the surfaces S 1 , S 2 ,
When the LCD 5 is actually constructed by using the glass substrates 11 and 12 provided with the arrays of the lenses 13, 14 and 15 in S 4 , a concrete structure as shown in FIG. 2 is given as a representative example. In FIG. 2, an alkali elution preventing film 20 is coated on the surface of the glass substrate 11 facing the liquid crystal layer, and a black matrix 21, a color filter 22, a level coating material 23, and a transparent conductive film 24 are provided thereon.
【0016】また他方のガラス基板12の液晶層と対向
する側の面にもアルカリ溶出防止膜20がコーティング
されたあと、配線部28、TFT部26、画素電極27
が設けられ、これと前記ガラス基板11との間に液晶を
封入してLCDとする。微小レンズ13、14、15の
各アレイが図のように三層構成のアフォーカル配置とな
る。After the alkali elution preventing film 20 is coated on the surface of the other glass substrate 12 facing the liquid crystal layer, the wiring portion 28, the TFT portion 26, and the pixel electrode 27 are formed.
Is provided, and liquid crystal is sealed between this and the glass substrate 11 to form an LCD. Each array of the minute lenses 13, 14, and 15 has a three-layer afocal arrangement as shown in the figure.
【0017】アルカリ溶出防止膜20は、例えばSiO
2を液相でディッピングしたあと焼成して膜とすること
によって得られ、透明導電膜24、画素電極27は例え
ばITO膜等が用いられる。The alkali elution preventing film 20 is made of, for example, SiO.
It is obtained by dipping 2 in a liquid phase and then baking it to form a film. For the transparent conductive film 24 and the pixel electrode 27, for example, an ITO film or the like is used.
【0018】図3に本発明の他の実施例を示す。本例で
は、ガラス基板11、12に無アルカリガラス(例えば
コーニング社製#7059ガラス、石英ガラス等)を用
い、このガラス基板の表面に、透明樹脂材料からなる微
小な凸レンズ13、14、15の各アレイを、Niスタ
ンパを用いて型成形すると同時にガラス表面に接着させ
ることにより形成している。そして、第2面レンズ14
の樹脂材料中に赤、緑、青といった色に対応する色素顔
料を含有させることにより、レンズ機能と共に色フィル
タとしての機能を持たせている。凸レンズ効果は、上記
レンズ14の樹脂材料の屈折率をレベルコート材23の
屈折率より高くすることによって得られる。FIG. 3 shows another embodiment of the present invention. In this example, non-alkali glass (eg, Corning # 7059 glass, quartz glass, etc.) is used for the glass substrates 11 and 12, and minute convex lenses 13, 14 and 15 made of a transparent resin material are formed on the surface of the glass substrate. Each array is formed by molding using a Ni stamper and adhering it to the glass surface at the same time. Then, the second surface lens 14
By incorporating pigments corresponding to colors such as red, green, and blue into the resin material, the lens function and the color filter function are provided. The convex lens effect is obtained by making the refractive index of the resin material of the lens 14 higher than that of the level coat material 23.
【0019】以上に述べた実施例では、両ガラス基板1
1、12として単板ガラスを用いたが、一方あるいは両
方の基板を複数枚のガラス板の貼り合わせて構成しても
よい。すなわち、片面側に微小レンズアレイを形成した
2枚のガラス板を、レンズ面を外側にして貼り合わせる
ことにより第1の基板11を構成することができる。ま
た第2の基板12は、上記の片面レンズアレイ形成ガラ
ス板とレンズを形成していないガラス板とを貼り合わせ
て構成することができる。In the embodiment described above, both glass substrates 1
Although single glass plates are used as the glass plates 1 and 12, one or both substrates may be formed by laminating a plurality of glass plates. That is, the first substrate 11 can be formed by bonding two glass plates, each having a minute lens array formed on one surface side, with the lens surfaces facing outward. In addition, the second substrate 12 can be configured by bonding the above-mentioned single-sided lens array forming glass plate and a glass plate on which no lens is formed.
【0020】[0020]
【発明の効果】従来は、LCDの光利用効率を上げるた
めに微小レンズのアレイをLCD直前に配置すると、投
影レンズ上での光束の広がりが大きくなり、従って投影
レンズの口径を大きくする必要があり、また図6で述べ
たような改良構造によっても、光軸と傾いた光線が第2
面レンズ14に正しく入射しないため明るさが低下する
という問題があったが、本発明によれば、LCDの光利
用効率を大きく保ちつつ、投影レンズの口径を小さくで
き、装置の小型化と低コスト化に極めて有効である。In the prior art, when an array of minute lenses is arranged immediately in front of the LCD in order to improve the light utilization efficiency of the LCD, the spread of the light flux on the projection lens becomes large, so that it is necessary to increase the aperture of the projection lens. Also, even with the improved structure as described in FIG. 6, the light beam inclined with respect to the optical axis becomes the second
Although there is a problem that the brightness is lowered because the light does not enter the surface lens 14 correctly, according to the present invention, the aperture of the projection lens can be made small while keeping the light utilization efficiency of the LCD large, thereby making the device compact and low. It is extremely effective for cost reduction.
【0021】また本発明のように微小レンズアレイを三
層構造にすると、TFTを成膜する面にレンズアレイを
設ける必要がないため、ガラス基板の高い平坦性が確保
でき、TFTの安定動作が可能となる。Further, when the microlens array has a three-layer structure as in the present invention, it is not necessary to provide the lens array on the surface on which the TFT is formed, so that high flatness of the glass substrate can be secured and stable operation of the TFT can be ensured. It will be possible.
【図1】本発明の一実施例を示す断面図FIG. 1 is a sectional view showing an embodiment of the present invention.
【図2】本発明の他の実施例を示す断面図FIG. 2 is a sectional view showing another embodiment of the present invention.
【図3】本発明の別の実施例を示す断面図FIG. 3 is a sectional view showing another embodiment of the present invention.
【図4】液晶プロジェクタの概略断面図FIG. 4 is a schematic sectional view of a liquid crystal projector.
【図5】従来のレンズ付き液晶表示パネルの第1例を示
す断面図FIG. 5 is a sectional view showing a first example of a conventional liquid crystal display panel with a lens.
【図6】従来のレンズ付き液晶表示パネルの第2例を示
す断面図FIG. 6 is a sectional view showing a second example of a conventional liquid crystal display panel with a lens.
1 光源ランプ 2 凹面鏡 3 コンデンサレンズ 4 リレーレンズ 5 液晶表示パネル(LCD) 6 投影レンズ 11 ガラス基板 12 ガラス基板 13 第1面微小レンズ 14 第2面微小レンズ 15 第4面微小レンズ 16 液晶開口部 20 アルカリ溶出防止膜 21 ブラックマトリクス 22 カラーフィルタ 23 レベルコート層 24 透明導電膜 25 液晶層 26 TFT(画素トランジスタ) 27 画素透明電極 28 配線部 100 利用できる光線 101 利用できない光線 S1 第1面 S2 第2面 S3 第3面 S4 第4面1 Light Source Lamp 2 Concave Mirror 3 Condenser Lens 4 Relay Lens 5 Liquid Crystal Display Panel (LCD) 6 Projection Lens 11 Glass Substrate 12 Glass Substrate 13 First Surface Micro Lens 14 Second Surface Micro Lens 15 Fourth Surface Micro Lens 16 Liquid Crystal Aperture 20 Alkali elution prevention film 21 Black matrix 22 Color filter 23 Level coat layer 24 Transparent conductive film 25 Liquid crystal layer 26 TFT (pixel transistor) 27 Pixel transparent electrode 28 Wiring part 100 Available light ray 101 Unavailable light ray S 1 First surface S 2 No. 2nd surface S 3 3rd surface S 4 4th surface
Claims (9)
けられた液晶層とを有する液晶表示パネルにおいて、前
記基板の各面を照明光の照射側からそれぞれ第1、2、
3、4面と表すとき、第1面、第2面及び第4面の計三
面に、正のパワーを持つ微小レンズがその軸線を共通と
して多数二次元的に配列形成されており、かつ第1面の
微小レンズと第3面の微小レンズとは略アフォーカルに
構成、配置されていることを特徴とする液晶表示パネ
ル。1. In a liquid crystal display panel having a pair of glass substrates and a liquid crystal layer provided between the substrates, each surface of the substrate is provided with first, second, and
When expressed as three or four surfaces, a large number of microlenses having a positive power are two-dimensionally arrayed and formed on a total of three surfaces of the first surface, the second surface, and the fourth surface, with their axes being common. A liquid crystal display panel, characterized in that the microlenses on the first surface and the microlenses on the third surface are configured and arranged substantially afocal.
個の光透過開口部を備えた遮光コーティング層、及び各
画素に対応した複数色のカラーフィルタ、のうち1種以
上を備えるとともに、前記第3面にTFTを備えた請求
項1に記載の液晶表示パネル。2. The second surface of the substrate is provided with at least one of a transparent conductive film, a light-shielding coating layer having a large number of light transmission openings, and a plurality of color filters corresponding to each pixel. The liquid crystal display panel according to claim 1, further comprising a TFT on the third surface.
記第3面と第4面との距離をt2、第1の基板の屈折率
をn1、第2の基板の屈折率をn2、基板の第1面、第2
面、及び第3面の前記微小レンズの焦点距離をそれぞれ
f1、f2、f3とするとき、概略f1=t1/n1、f2=
t1/(2n1)、f3=t2/n2なる関係が満たされて
いる請求項1又は2に記載の液晶表示パネル。3. The distance between the first surface and the third surface is t 1 , the distance between the third surface and the fourth surface is t 2 , the refractive index of the first substrate is n 1 , and the second substrate is Has a refractive index of n 2 , the first surface of the substrate, the second surface of
When the focal lengths of the minute lenses on the first surface and the third surface are f 1 , f 2 , and f 3 , respectively, roughly f 1 = t 1 / n 1 , f 2 =
The liquid crystal display panel according to claim 1, wherein the relationship of t 1 / (2n 1 ), f 3 = t 2 / n 2 is satisfied.
一方は、微小レンズのアレイを形成したガラス板と、同
様にレンズアレイを形成したまたは無形成のガラス板と
を貼り合わせて構成されている請求項1、2、3のいず
れかに記載の液晶表示パネル。4. At least one of the pair of glass substrates is configured by laminating a glass plate on which an array of microlenses is formed and a glass plate on which a lens array is similarly formed or not formed. The liquid crystal display panel according to claim 1.
くとも1つの面のレンズアレイは、ガラス板表面に接着
された透明樹脂材料からなる微小凸レンズのアレイで構
成されている請求項1、2、3、4のいずれかに記載の
液晶表示パネル。5. The lens array of at least one surface of the minute lens array of each surface is composed of an array of minute convex lenses made of a transparent resin material adhered to the surface of the glass plate. The liquid crystal display panel according to any one of 3 and 4.
に、ガラス中のアルカリ分の溶出を防止する保護被膜を
設けた請求項1、2、3、4、5のいずれかに記載の液
晶表示パネル。6. The liquid crystal display panel according to claim 1, wherein at least one surface of the glass substrate is provided with a protective coating for preventing elution of alkali in the glass. ..
に、透明導電膜をコーティングした請求項1、2、3、
4、5、6のいずれかに記載の液晶表示パネル。7. The transparent conductive film is coated on at least one surface of the glass substrate.
7. The liquid crystal display panel according to any one of 4, 5, and 6.
に、ブラックマトリクスを設けた請求項1、2、3、
4、5、6、7のいずれかに記載の液晶表示パネル。8. The black matrix is provided on at least one surface of the glass substrate.
4. The liquid crystal display panel according to any one of 4, 5, 6, and 7.
に、各画素に対応した複数色のカラーフィルタを設けた
請求項1、2、3、4、5、6、7、8のいずれかに記
載の液晶表示パネル。9. The glass substrate according to claim 1, wherein at least one surface of the glass substrate is provided with color filters of a plurality of colors corresponding to respective pixels. LCD display panel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4155359A JPH05346578A (en) | 1992-06-15 | 1992-06-15 | Liquid crystal display panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4155359A JPH05346578A (en) | 1992-06-15 | 1992-06-15 | Liquid crystal display panel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05346578A true JPH05346578A (en) | 1993-12-27 |
Family
ID=15604188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4155359A Pending JPH05346578A (en) | 1992-06-15 | 1992-06-15 | Liquid crystal display panel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05346578A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5500692A (en) * | 1992-12-28 | 1996-03-19 | Sony Corporation | Image projecting apparatus for producing an image for display on a projection screen |
US5555476A (en) * | 1993-08-30 | 1996-09-10 | Toray Industries, Inc. | Microlens array sheet for a liquid crystal display, method for attaching the same and liquid crystal display equipped with the same |
US5731857A (en) * | 1995-11-02 | 1998-03-24 | U.S. Philips Corporation | Picture display device with microlens array and beam refracting element array on each side or opposite reflector |
US5900982A (en) * | 1987-12-31 | 1999-05-04 | Projectavision, Inc. | High efficiency light valve projection system |
US5990992A (en) * | 1997-03-18 | 1999-11-23 | Nippon Sheet Glass Co., Ltd. | Image display device with plural planar microlens arrays |
JP2008003466A (en) * | 2006-06-26 | 2008-01-10 | Mitsutoyo Corp | Lens optical system and photoelectric encoder |
JP2011022311A (en) * | 2009-07-15 | 2011-02-03 | Panasonic Corp | Liquid crystal panel and projection type display device using the same |
JP2014157282A (en) * | 2013-02-15 | 2014-08-28 | Seiko Epson Corp | Illumination apparatus and projector |
JP2014164175A (en) * | 2013-02-26 | 2014-09-08 | Seiko Epson Corp | Illumination device and projector |
JP2016075797A (en) * | 2014-10-07 | 2016-05-12 | セイコーエプソン株式会社 | Liquid crystal device and projection type display device |
-
1992
- 1992-06-15 JP JP4155359A patent/JPH05346578A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5900982A (en) * | 1987-12-31 | 1999-05-04 | Projectavision, Inc. | High efficiency light valve projection system |
US5500692A (en) * | 1992-12-28 | 1996-03-19 | Sony Corporation | Image projecting apparatus for producing an image for display on a projection screen |
US5555476A (en) * | 1993-08-30 | 1996-09-10 | Toray Industries, Inc. | Microlens array sheet for a liquid crystal display, method for attaching the same and liquid crystal display equipped with the same |
US5731857A (en) * | 1995-11-02 | 1998-03-24 | U.S. Philips Corporation | Picture display device with microlens array and beam refracting element array on each side or opposite reflector |
US5990992A (en) * | 1997-03-18 | 1999-11-23 | Nippon Sheet Glass Co., Ltd. | Image display device with plural planar microlens arrays |
JP2008003466A (en) * | 2006-06-26 | 2008-01-10 | Mitsutoyo Corp | Lens optical system and photoelectric encoder |
JP2011022311A (en) * | 2009-07-15 | 2011-02-03 | Panasonic Corp | Liquid crystal panel and projection type display device using the same |
JP2014157282A (en) * | 2013-02-15 | 2014-08-28 | Seiko Epson Corp | Illumination apparatus and projector |
JP2014164175A (en) * | 2013-02-26 | 2014-09-08 | Seiko Epson Corp | Illumination device and projector |
JP2016075797A (en) * | 2014-10-07 | 2016-05-12 | セイコーエプソン株式会社 | Liquid crystal device and projection type display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5455694A (en) | Liquid crystal display with pixel shape same as image of light source through microlens | |
US11508945B2 (en) | 3-D display panel including heat dissipation structure between light emitting units, and manufacturing method thereof | |
US5764323A (en) | Transmission type display device with aspheric microlenses | |
EP0609055B1 (en) | Light valve apparatus and display system using same | |
JPH05346578A (en) | Liquid crystal display panel | |
KR0130058B1 (en) | A transmissive display device | |
JP3032084B2 (en) | Liquid crystal display device | |
JP3071947B2 (en) | Projection type color image display device | |
JPH09258207A (en) | Color liquid crystal display device | |
JPH0430140A (en) | Projection type color liquid crystal display device | |
JPH0634963A (en) | Light valve device and display device using the same | |
JPH04251221A (en) | Liquid crystal display device and projection type display device using this device | |
JPH06208112A (en) | Direct-view display device | |
JPH07199188A (en) | Liquid crystal display element and liquid crystal display device using the element | |
KR940000591B1 (en) | Color image display device of projection type | |
JPH06222355A (en) | Light valve device and display device using it | |
JPH0588161A (en) | Liquid crystal display element | |
JPH06242411A (en) | Light valve device and display device using it | |
JPH06118370A (en) | Light valve device and display device using device concerned | |
JPS6337316A (en) | Projection type color display device | |
JP2000131507A (en) | Lens array plate, light valve device, projection type display device, and viewfinder device | |
JPH0363626A (en) | Projection type color liquid crystal display device | |
JP3452020B2 (en) | projector | |
JPH02209093A (en) | Liquid crystal display device | |
JPH0815687A (en) | Liquid crystal display element and liquid crystal display device using element |