JPH01189685A - Liquid crystal light valve and video projector with liquid crystal light valve - Google Patents

Liquid crystal light valve and video projector with liquid crystal light valve

Info

Publication number
JPH01189685A
JPH01189685A JP63014830A JP1483088A JPH01189685A JP H01189685 A JPH01189685 A JP H01189685A JP 63014830 A JP63014830 A JP 63014830A JP 1483088 A JP1483088 A JP 1483088A JP H01189685 A JPH01189685 A JP H01189685A
Authority
JP
Japan
Prior art keywords
liquid crystal
light valve
crystal light
lens
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63014830A
Other languages
Japanese (ja)
Inventor
Masatake Matsuo
誠剛 松尾
Yoshitaka Ito
嘉高 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63014830A priority Critical patent/JPH01189685A/en
Publication of JPH01189685A publication Critical patent/JPH01189685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain a liquid crystal light valve whose transmission factor is apparently large and which is normally operated even when incoming light quantity is increased by providing plural lens whose optical axes are almost matched to respective liquid crystal aperture parts on the front of this liquid crystal aperture part. CONSTITUTION:On the surface of a glass substrate 9 whose surface is optically ground, a rugged micro-lens 10 is formed by using a pressure-contacting press molding method with thermo-deforming resin as a material. For this micro-lens array, a parallel light is made incident from a lens side on the conventional liquid crystal light valve using a TFT, so that the respective lens can correspond to the respective liquid crystal aperture parts. Then, an image pattern is adhered while aligning a position to the respective liquid crystal aperture parts. In the liquid crystal light valve to be obtained in such a way, a light surrounding the respective liquid crystal aperture parts is also introduced to the respective liquid crystal aperture parts by the respective lens and effectively utilized. Then, the apparent transmission factor goes to be large and even when the incoming light quantity is increased, the liquid crystal light valve is normally operated. Accordingly, by using this liquid crystal light valve, a video projector having a bright screen can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液晶デイスプレィ、プロジェクタ、コピア及
び光プリンタなどの光学機器に使用される液晶ライトバ
ルブ及びそれを備えたビデオプロジェクタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal light valve used in optical equipment such as a liquid crystal display, a projector, a copier, and an optical printer, and a video projector equipped with the same.

[従来の技術] 従来の液晶ライトバルブは、第3図に示すように、液晶
ライトバルブの前にレンズアレイは無かった。又そうい
う液晶ライトバルブを備えたビデオプロジェクタ−も無
かった。(SID  87DIGEST・75p1画像
電子学会予稿87−01−03 13p) [発明が解決しようとする課題] しかし、前述の従来技術では、液晶ライトバルブの各液
晶の開口部周辺の光は、配線部材や遮光体等により吸収
され、有効化使用されないので、みかけの透過率が小さ
いという課題を有していた。
[Prior Art] As shown in FIG. 3, a conventional liquid crystal light valve does not have a lens array in front of the liquid crystal light valve. There were also no video projectors equipped with such liquid crystal light bulbs. (SID 87DIGEST・75p1 IEICE Proceedings 87-01-03 13p) [Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, the light around the opening of each liquid crystal of the liquid crystal light valve is transmitted through wiring members and Since the light is absorbed by a light shielding member and the like and is not used effectively, the problem is that the apparent transmittance is low.

また上記熱吸収により液晶付近の温度」−昇が生じ、入
射光量を増やすとライトバルブが正常に動作しなくなる
という課題を有していた。またそのような液晶ライトバ
ルブを備えたビデオプし1ジエクターでは上記理由によ
りもともと液晶ライトバルブ部分の透過率が低いうえに
、明るい光源を使えず、そのため画面が暗いという課題
を有していた。
Furthermore, the temperature near the liquid crystal increases due to the heat absorption, and when the amount of incident light is increased, the light valve does not operate properly. In addition, video projectors equipped with such liquid crystal light valves had the problem that, for the reasons mentioned above, the transmittance of the liquid crystal light valve was originally low, and a bright light source could not be used, resulting in a dark screen.

そこで本発明はこのような課題を解決するため液晶ライ
トバルブの各液晶開口部周辺の光を各液晶開口部に導き
、有効に利用することで、みかけの透過率が大きく、入
射光量を増やしても正常に動作する液晶ライトバルブを
提供することにある。
Therefore, in order to solve this problem, the present invention guides the light around each liquid crystal opening of the liquid crystal light valve to each liquid crystal opening and uses it effectively, thereby increasing the apparent transmittance and increasing the amount of incident light. We also aim to provide a properly working LCD light valve.

また本発明の他の目的は、そのような液晶ライトバルブ
を使うことにより、液晶ライトバルブ部分の透過率が大
きく、しかもより明るい光源を使えるため、明るい画面
をもったビデオプロジェクタ−を提供する点にある。
Another object of the present invention is to provide a video projector with a bright screen because the transmittance of the liquid crystal light valve is high and a brighter light source can be used by using such a liquid crystal light valve. It is in.

[課題を解決するための手段] 本発明の液晶ライトバルブは、各液晶開口部に略光軸が
合わされた複数のレンズを該液晶開口部の前に設置した
ことを特徴とする。また、かかる液晶ライトバルブを光
源で照らし、その像をレンズ系で投映できるようにする
と、ビデオプロジェクタ−が構成される。(第9図) [作用] 上記のように構成された液晶ライトバルブでは、各液晶
開口部周辺の光も個々のマイクロレンズによって各液晶
開口部に導かれ、有効に利用できる。
[Means for Solving the Problems] The liquid crystal light valve of the present invention is characterized in that a plurality of lenses whose optical axes are substantially aligned with each liquid crystal opening are installed in front of the liquid crystal opening. Furthermore, a video projector is constructed by illuminating such a liquid crystal light valve with a light source and projecting the image using a lens system. (FIG. 9) [Function] In the liquid crystal light valve configured as described above, light around each liquid crystal opening is also guided to each liquid crystal opening by individual microlenses and can be used effectively.

従ってみかけの透過率が増加するとともに、各液晶開口
部周辺での熱吸収も少ないため液晶付近の温度上昇も小
さく、入射光量を増やしても正常に動作する。
Therefore, the apparent transmittance increases, and since there is little heat absorption around each liquid crystal opening, the temperature rise near the liquid crystal is also small, and normal operation is possible even when the amount of incident light is increased.

また、そのような液晶ライトバルブを使うことにより、
液晶ライトバルブ部分の透過率が大きく、しかもより明
るい光源を使えるため、明るい画面をもったビデオプロ
ジェクタ−が実現できる。
Also, by using such a liquid crystal light valve,
The transmittance of the liquid crystal light valve is high, and a brighter light source can be used, making it possible to create a video projector with a bright screen.

「実施例] 以下、実施例にもとすき本発明の詳細な説明する。ただ
し本発明は以下の実施例に限定されるものではない。
[Examples] The present invention will be described in detail below using Examples. However, the present invention is not limited to the following Examples.

[実施例1] 表面を光学研磨したガラス基板(40mmX3QmmX
1mm)の表面に熱変形樹脂を材料として、圧着押圧成
型法を用いて直径65μmの凹凸状のマイクロレンズを
格子状に形成した。(特開昭60−60756号)格子
のピッチはたてよこおのおの、65μm、80μmであ
る。(第5図)このマイクロレンズアレイを、TPTを
用いた従来の液晶ライトバルブに、おのおののレンズが
、各液晶開口部に対応するよう、平行光をレンズ側から
入射し、その映像パターンを各液晶開口部と位置合わせ
しながら接着した。そうして得られた液晶ライトバルブ
(第1図)に平行光を入射したところ、従来のレンズを
用いない液晶ライトバルブ(第2図)に比べてみかけの
透過率が5割以上アップした。(従来の透過率40%に
対して60%)また、従来のレンズを使わない液晶ライ
トバルブに比べて、液晶ライトバルブが正常に動作する
最大入射光量が平均で2倍以上になった。
[Example 1] Glass substrate with optically polished surface (40 mm x 3 Q mm
Microlenses having a concavo-convex shape with a diameter of 65 μm were formed in a lattice shape on the surface of the microlens (1 mm) using a heat-deformable resin material using a pressure bonding and press molding method. (Japanese Unexamined Patent Publication No. 60-60756) The pitch of the grating is 65 μm and 80 μm in both the vertical and horizontal directions. (Fig. 5) This microlens array is applied to a conventional liquid crystal light valve using TPT. Parallel light is incident from the lens side so that each lens corresponds to each liquid crystal opening, and the image pattern is I glued it while aligning it with the liquid crystal opening. When parallel light was incident on the liquid crystal light valve thus obtained (Figure 1), the apparent transmittance increased by more than 50% compared to a conventional liquid crystal light valve that did not use a lens (Figure 2). (60% transmittance compared to 40% for conventional models) Also, compared to conventional liquid crystal light valves that do not use lenses, the maximum amount of incident light required for normal operation of the liquid crystal light valve is more than double on average.

本実施例で作製した樹脂製の凹凸状のマイクロレンズは
製法が極めて簡便であるため、上記効果を低コストで実
現できる。
Since the resin-made concave-convex microlens produced in this example is extremely simple to manufacture, the above effects can be achieved at low cost.

またレンズの成型法としては圧着押圧成型法に限定され
るものではなく、例えば特開昭60−60756号に示
されたような熱変形による成型法でもよいし、ガラスの
結晶化を利用する成型法でもよいし、その他の方法でも
よい。
Furthermore, the lens molding method is not limited to the pressure bonding molding method, but may also be a molding method using thermal deformation as shown in JP-A No. 60-60756, or a molding method that utilizes glass crystallization. This may be done by law or by other methods.

[実施例2] 表面を光学研磨したガラス基板(40mmX30mmX
2mm)の表面にイオン交換法を用いて、直径65μm
の分布屈折率平板マイクロレンズを格子状に形成した。
[Example 2] Glass substrate (40 mm x 30 mm x
2mm) using the ion exchange method, the diameter of 65μm
The distributed refractive index flat plate microlenses were formed in a lattice shape.

格子のピッチはたてよこにおのおの65μm、80μm
である。(第5図)この平板マイクロレンズを、TPT
を用いた液晶ライトバルブに、おのおののレンズが、各
液晶開口部に対応するよう位置合わせしながら接着した
。そうして得られた液晶ライトバルブ(第3図)に平行
光を入射したところ、従来のレンズを用いない液晶ライ
トバルブ(第2図)に比べてみかけの透過率が5割以上
アップした。(従来の透過率40%に対して60%)ま
た、従来のレンズを使わない液晶ライトバルブに比べて
、液晶ライトバルブが正常に動作する最大入射光量が平
均で2倍以上になった。
The pitch of the grating is 65μm and 80μm in both vertical and horizontal directions.
It is. (Fig. 5) This flat plate microlens is
Each lens was glued to a liquid crystal light valve using a liquid crystal light valve, with each lens aligned to correspond to each liquid crystal opening. When parallel light was incident on the resulting liquid crystal light valve (Figure 3), the apparent transmittance increased by more than 50% compared to a conventional liquid crystal light valve that did not use a lens (Figure 2). (60% transmittance compared to 40% for conventional models) Also, compared to conventional liquid crystal light valves that do not use lenses, the maximum amount of incident light required for normal operation of the liquid crystal light valve is more than double on average.

本実施例で得られた液晶ライトバルブは、レンズ部分が
ガラスなので実施例1に比べて化学的安定性、熱安定性
が良く、信願性が高い。
The liquid crystal light valve obtained in this example has better chemical stability and thermal stability than Example 1 because the lens portion is made of glass, and has higher reliability.

[実施例3] レンズアレイとして分布屈折率平板マイクロレンズアレ
イ化わりに、分布屈折率ロッドレンズを格子状に集積し
たマイクロレンズアレイを用いた以外は実施例2と同様
にして液晶ライトバルブを作製した。そうして得られた
液晶ライトバルブに平行光を入射したところ、実施例2
と同様な効果が得られた。
[Example 3] A liquid crystal light valve was produced in the same manner as in Example 2, except that instead of using a distributed index flat plate microlens array as a lens array, a microlens array in which distributed index rod lenses were integrated in a lattice shape was used. . When parallel light was incident on the liquid crystal light valve thus obtained, Example 2
A similar effect was obtained.

[実施例4] 表面を光学研磨したガラス基板(40mmX30mmX
1.1mm)の表面にイオン交換法を用いて、直径65
μmの分布屈折率平板マイクロレンズを格子状に形成し
た。格子のピッチはたてよこにおのおの65μm、80
μmである。(第5図)この平板マイクロレンズが集積
された基板を更に光学研磨した後、レンズ面と逆の表面
にパッシベーション膜、遮光体、透明電極を設けた。こ
こで得られた基板を対向基板とし、常法によりセル化す
ることにより、液晶を封止している透明基板にレンズが
集積されている液晶ライトバルブが得られた。そうして
得られた液晶ライトバルブ(第4図)に平行光を入射し
たところ、従来のレンズを用いない液晶ライトバルブ(
第2図)に比べみがけの透過率が5割以上アップした。
[Example 4] Glass substrate (40 mm x 30 mm x
1.1 mm) using the ion exchange method, the diameter 65
A plate microlens with a distributed refractive index of μm was formed in a lattice shape. The pitch of the grating is 65 μm and 80 μm in both vertical and horizontal directions.
It is μm. (FIG. 5) After further optically polishing the substrate on which the flat microlenses were integrated, a passivation film, a light shield, and a transparent electrode were provided on the surface opposite to the lens surface. The substrate obtained here was used as a counter substrate and formed into cells by a conventional method, thereby obtaining a liquid crystal light valve in which lenses were integrated on a transparent substrate sealing liquid crystal. When parallel light was incident on the liquid crystal light valve obtained in this way (Figure 4), it was found that the liquid crystal light valve that does not use a conventional lens (
Compared to Figure 2), the transmittance of the brushing was increased by more than 50%.

また、従来のレンズを使わない液晶ライトバルブに比べ
て、液晶ライトバルブが正常に動作する最大入射光量が
平均で2倍以上になった。
Additionally, compared to conventional liquid crystal light valves that do not use lenses, the maximum amount of incident light required for normal operation of the liquid crystal light valve is more than double on average.

本実施例で得られた液晶ライトバルブは、接着部分がな
く、実施例2、実施例3に比べて更に信頼性が高い。
The liquid crystal light valve obtained in this example has no adhesive portion and is more reliable than Examples 2 and 3.

[実施例5] 表面を光学研磨したガラス基板(40mmX30mmX
1mm)の表面にイオン交換法を用いて、短径65μm
、長径80μmの長円状の分布屈折率平板マイクロレン
ズを格子状に形成した。格子のピッチはたてよこにおの
おの65μm、80μmである。(第6図)このマイク
ロレンズアレイを、TPTを用いた従来の液晶ライトバ
ルブに、おのおののレンズが各液晶開口部に対応するよ
うに位置合わせをしながら接着した。そうして得られた
液晶ライトバルブに平行光を入射したところ、従来のレ
ンズを用いない液晶ライトバルブ(第2図)に比べてみ
かけの透過率が75%以上アップした。
[Example 5] Glass substrate (40 mm x 30 mm x
1 mm) surface using the ion exchange method, the short diameter is 65 μm.
, elliptical distributed index flat microlenses with a major diameter of 80 μm were formed in a lattice shape. The pitch of the grating is 65 μm and 80 μm in the vertical and horizontal directions, respectively. (FIG. 6) This microlens array was bonded to a conventional liquid crystal light valve using TPT while being aligned so that each lens corresponded to each liquid crystal opening. When parallel light was incident on the liquid crystal light valve thus obtained, the apparent transmittance increased by more than 75% compared to a conventional liquid crystal light valve that does not use a lens (Figure 2).

(従来の透過率40%が70%)また、従来のレンズを
使わない液晶ライトバルブに比べて、液晶ライトバルブ
が正常に動作する最大入射光量が平均で3倍以上になっ
た。
(70% transmittance compared to 40% in the past) Also, compared to conventional liquid crystal light valves that do not use lenses, the maximum amount of incident light required for normal operation of the liquid crystal light valve is more than three times higher on average.

本実施例で得られた液晶ライトバルブは、レンズの形状
が長円形であり画素の形状に近いため、実施例1〜4の
液晶ライトバルブに比べて、より入射光を有効に利用す
ることができた。
The liquid crystal light valve obtained in this example has an oval lens shape that is close to the shape of a pixel, so it can utilize incident light more effectively than the liquid crystal light valves of Examples 1 to 4. did it.

[実施例6] 表面を光学研磨したガラス基板(40mmX30mmX
1mm)の表面にイオン交換法を用いて、直径65μm
の分布屈折率平板マイクロレンズをハチの巣状に形成し
た。個々のハチの巣の形状は正六角形で、大きさは対角
線の長さ130μmである。
[Example 6] Glass substrate (40 mm x 30 mm x
65 μm in diameter using the ion exchange method on the surface of
The distributed refractive index flat microlenses were formed into a honeycomb shape. The shape of each honeycomb is a regular hexagon, and the size is 130 μm in diagonal length.

このマイクロレンズアレイを、TPTを用いた画素をハ
チの巣状に形成しである液晶ライトバルブに、おのおの
のレンズが各液晶開口部に対応するように位置合わせし
ながら接着した。そうして得られた液晶ライトバルブに
平行光を入射したところ、従来のレンズを用いない画素
をハチの巣状形成しである液晶ライトバルブに比べて、
みかけの透過率が80%以上アップした。(従来の透過
率40%が75%)また、従来のレンズを使わない液晶
ライ1〜バルブに比べて、液晶ライトバルブが正常に動
作する最大入射光量が平均で3倍以上になった。
This microlens array was bonded to a liquid crystal light valve having TPT pixels formed in a honeycomb shape while aligning each lens so that each lens corresponded to each liquid crystal opening. When parallel light was incident on the liquid crystal light valve obtained in this way, compared to the conventional liquid crystal light valve in which pixels are formed in a honeycomb shape without using lenses,
The apparent transmittance increased by more than 80%. (Conventional transmittance of 40% to 75%) Also, compared to the conventional liquid crystal light valve that does not use a lens, the maximum amount of incident light for the liquid crystal light valve to operate normally is more than three times as large on average.

本実施例で得られた液晶ライトバルブは、レンズアレイ
がハチの巣状に形成しであるため、実施例1〜3の液晶
ライトパルプに比べて、より入射光を有効に利用するこ
とができた。
Since the liquid crystal light valve obtained in this example has a lens array formed in a honeycomb shape, it is possible to use incident light more effectively than the liquid crystal light pulp of Examples 1 to 3. Ta.

[実施例7] 表面を光学研磨したガラス基板(40mmX30mmX
1mm)の表面に熱硬化樹脂を材料として、圧着押圧成
型法によって、たて65μm、よこ80μmの凹凸状の
マイクロレンズを格子状に形成した。この表面形状は球
面レンズを光軸方向からみて長方形にみえるように切っ
た形状である。格子のピッチはたてよこにおのおの65
μm180μmである。(第7図)このマイクロレンズ
アレイを、TPTを用いた従来の液晶ライトバルブに、
おのおののレンズが各液晶開口部に対応するように位置
合わせをしながら接着した。そうして得られた液晶ライ
トバルブに平行光を入射したところ、従来のレンズを用
いない液晶ライトバルブ(第2図)に比べて、みかけの
透過率が120%以上アップした。(従来の透過率40
%が90%)また、従来のレンズを使わない液晶ライト
バルブに比べて、液晶ライトバルブが正常に動作する最
大入射光量が平均で10倍以上になった。
[Example 7] Glass substrate (40 mm x 30 mm x
Microlenses having a concave and convex shape of 65 μm in length and 80 μm in width were formed in a lattice shape on a surface of 1 mm) using a thermosetting resin as a material by pressure molding. This surface shape is a shape obtained by cutting a spherical lens so that it appears rectangular when viewed from the optical axis direction. The pitch of the grid is 65 in each direction.
μm is 180 μm. (Figure 7) This microlens array can be used in a conventional liquid crystal light valve using TPT.
Each lens was glued while being aligned so that it corresponded to each liquid crystal aperture. When parallel light was incident on the liquid crystal light valve thus obtained, the apparent transmittance increased by more than 120% compared to a conventional liquid crystal light valve that does not use a lens (Figure 2). (Conventional transmittance 40
(% is 90%) Furthermore, compared to conventional liquid crystal light valves that do not use lenses, the maximum amount of incident light required for normal operation of liquid crystal light valves is more than 10 times higher on average.

本実施例で得られた液晶ライトバルブは、レンズが、画
素ピッチをほとんどカバーしており、実施例1〜6の液
晶ライトバルブに比べて、より入射光を有効に利用する
ことができる。
In the liquid crystal light valve obtained in this example, the lens covers most of the pixel pitch, and can utilize incident light more effectively than the liquid crystal light valves of Examples 1 to 6.

[実施例8] 表面を光学研磨したガラス基板(40mmX30mmX
1mm)の表面に熱硬化樹脂を材料として、圧着押圧成
型法によって、たて65μm、よこ80μmの凹凸状の
マイクロフレネルレンズを格子状に形成した。格子のピ
ッチはたてよこにおのおの65μm、80μmである。
[Example 8] Glass substrate (40 mm x 30 mm x
A micro Fresnel lens with concave and convex surfaces of 65 μm in length and 80 μm in width was formed in a lattice shape using thermosetting resin as a material on the surface of the lens. The pitch of the grating is 65 μm and 80 μm in the vertical and horizontal directions, respectively.

(第8図)このマイクロレンズアレイを、TPTを用い
た従来の液晶ライ1−パルプに、おのおののレンズが各
液晶開口部に対応するように位置合わせをしながら接着
した。そうして得られた液晶ライトバルブに平行光を入
射したところ、従来のレンズを用いない液晶ライトバル
ブ(第2図)に比べて、みかけの透過率が120%以上
アップした。(従来の透過率40%が90%)また、従
来のレンズを使わない液晶ライトバルブに比べて、液晶
ライトバルブが正常に動作する最大入射光量が平均で1
0倍以上になった。
(FIG. 8) This microlens array was adhered to a conventional liquid crystal lye-1-pulp using TPT while aligning each lens so that it corresponded to each liquid crystal opening. When parallel light was incident on the liquid crystal light valve thus obtained, the apparent transmittance increased by more than 120% compared to a conventional liquid crystal light valve that does not use a lens (Figure 2). (Conventional transmittance of 40% is 90%) Also, compared to conventional liquid crystal light valves that do not use lenses, the maximum amount of incident light for which liquid crystal light valves operate normally is 1 on average.
It became more than 0 times.

本実施例で得られた液晶ライトバルブは、レンズが、画
素ピッチをほとんどカバーしており、実施例1〜6の液
晶ライトバルブに比べて、より入射光を有効に利用する
ことができる。
In the liquid crystal light valve obtained in this example, the lens covers most of the pixel pitch, and can utilize incident light more effectively than the liquid crystal light valves of Examples 1 to 6.

[実施例9] レンズとしてマイクロフレネルレンズの代わりに電子ビ
ーム描画のグレーティングレンズを用いた以外は実施例
8と同様にして液晶ライトバルブを作製した。そうして
得られた液晶ライトバルブに平行光を入射したところ、
実施例8と同様な効果が得られた。
[Example 9] A liquid crystal light valve was produced in the same manner as in Example 8 except that a grating lens drawn by an electron beam was used as a lens instead of a micro Fresnel lens. When parallel light was incident on the liquid crystal light valve obtained in this way,
The same effects as in Example 8 were obtained.

[実施例10] 実施例1〜8で得られた液晶ライトバルブを用いて第9
図に示した構成でビデオプロジェクタ−画素数440X
480を作製した。本実施例のビデオプロジェクタ−は
液晶ライトバルブに入射する光の平行度が高いため、前
述の効果がストレートに出て当初の期待通り明るい画面
を得ることができた。下表に、得られた画面の明るさを
、全光束の光量で示した。(用いた光源は同一のもの)
しかも、本実施例のビデオプロジェクタ−はより明るい
光源を使えるため、更に明るい画面も可能である。
[Example 10] Using the liquid crystal light valves obtained in Examples 1 to 8, the ninth
Video projector with the configuration shown in the figure - number of pixels 440X
480 was produced. In the video projector of this example, since the light incident on the liquid crystal light valve had a high degree of parallelism, the above-mentioned effect was directly produced and a bright screen could be obtained as originally expected. The table below shows the brightness of the screen obtained in terms of the amount of total luminous flux. (The light source used was the same)
Moreover, since the video projector of this embodiment can use a brighter light source, an even brighter screen is possible.

[発明の効果] 本発明の液晶ライトバルブは、各液晶開口部に略光軸が
合わされた複数のレンズを該液晶開口部の前に設置した
という簡単な構造によって、みかけの透過率が増加する
とともに、入射光量を増やしても正常に動作するという
効果を有する。
[Effects of the Invention] The liquid crystal light valve of the present invention has a simple structure in which a plurality of lenses whose optical axes are substantially aligned with each liquid crystal opening are installed in front of the liquid crystal opening, and the apparent transmittance is increased. In addition, it has the effect of operating normally even if the amount of incident light is increased.

また、かかる液晶ライトバルブを使うことにより、明る
い画面をもったビデオプロジェクタ−を実現できるとい
う効果がある。
Furthermore, by using such a liquid crystal light valve, it is possible to realize a video projector with a bright screen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の液晶ライトバルブの断面図。 第2図は、従来の液晶ライトバルブの断面図。 第3図及び第4図は、本発明の液晶ライトバルブの断面
図。 第5図〜第8図は、本発明の液晶ライトバルブに用いら
れるレンズ部分の表面図。 第9図は、本発明のビデオプロジェクタ−の構成図。 ■・・・従来の液晶ライトバルブ 2・・・凹凸状のマイクロレンズ部分をもつガラス基板 3・・・接着材 4・・・対向基板 5・・・T P T基板 6・・・液晶 7・・・TPT配線 8・・・遮光体 9・・・ガラス基板 10・・・樹脂性のマイクロレンズ 11・・・入射光 12・・・出射光 13・・・出射光の無い領域 14・・・分布屈折率マイクロレンズ部分をもつガラス
基板 15・・・分布屈折率マイクロレンズ 16・・・液晶を封止している透明基板にレンズアレイ
が集積されている液晶ライトバルブ17・・・レンズア
レイが集積されている対向基板18・・・マイクロレン
ズ部分 19・・・長円形の表面形状をもつレンズ部分20・・
・マイクロフレネルレンズ部分21・・・長円形の表面
形状をもつマイクロレンズ部分 22・・・ランプ 23・・・リフレクタ− 24・・・干渉フィルター 25・・・ダイクロイックミラー 26・・・ライトガイド 27・・・ミラー 28・・・本発明の液晶ライトバルブ 29・・・ダイクロインクプリズム 30・・・プロジェクションレンズ 31・・・スクリーン 以上 出願人 セイコーエプソン株式会社 −)告 1iii ニ 狛 第8図
FIG. 1 is a sectional view of the liquid crystal light valve of the present invention. FIG. 2 is a cross-sectional view of a conventional liquid crystal light valve. 3 and 4 are cross-sectional views of the liquid crystal light valve of the present invention. 5 to 8 are surface views of the lens portion used in the liquid crystal light valve of the present invention. FIG. 9 is a configuration diagram of a video projector of the present invention. ■...Conventional liquid crystal light valve 2...Glass substrate with uneven microlens portion 3...Adhesive material 4...Counter substrate 5...T P T substrate 6...Liquid crystal 7... ... TPT wiring 8 ... Light shielding body 9 ... Glass substrate 10 ... Resin microlens 11 ... Incident light 12 ... Outgoing light 13 ... Area 14 with no outgoing light... Glass substrate 15 having a distributed refractive index microlens portion...Distributed refractive index microlens 16...Liquid crystal light valve 17 in which a lens array is integrated on a transparent substrate that seals liquid crystal...A lens array is Integrated counter substrate 18...microlens portion 19...lens portion 20 having an oval surface shape...
・Micro Fresnel lens portion 21...Micro lens portion 22 with an oval surface shape...Lamp 23...Reflector 24...Interference filter 25...Dichroic mirror 26...Light guide 27. ...Mirror 28...Liquid crystal light valve of the present invention 29...Dichroic ink prism 30...Projection lens 31...Screen and above Applicant Seiko Epson Corporation -) Announcement 1iii Nikoma Figure 8

Claims (5)

【特許請求の範囲】[Claims] (1)液晶ライトバルブにおいて、各液晶開口部に略光
軸が合わされた複数のレンズを該液晶開口部の前に設置
したことを特徴とする液晶ライトバルブ。
(1) A liquid crystal light valve characterized in that a plurality of lenses whose optical axes are substantially aligned with each liquid crystal opening are installed in front of the liquid crystal opening.
(2)レンズを凹凸状のマイクロレンズとすることを特
徴とする第1項記載の液晶ライトバルブ。
(2) The liquid crystal light valve according to item 1, wherein the lens is a concave-convex microlens.
(3)レンズを分布屈折率平板マイクロレンズとするこ
とを特徴とする第1項記載の液晶ライトバルブ。
(3) The liquid crystal light valve according to item 1, wherein the lens is a distributed index flat plate microlens.
(4)液晶を封止している透明基板にレンズが集積され
ていることを特徴とする第1項、第2項、又は第3項記
載の液晶ライトバルブ。
(4) The liquid crystal light valve according to item 1, item 2, or item 3, wherein a lens is integrated on a transparent substrate that seals the liquid crystal.
(5)被投写体に投射する投射光量制御手段が、第1項
、第2項、第3項又は第4項記載の液晶ライトバルブに
より構成されたものであることを特徴とするビデオプロ
ジェクター。
(5) A video projector characterized in that the projection light amount control means for projecting onto a projection object is constituted by the liquid crystal light valve described in item 1, item 2, item 3, or item 4.
JP63014830A 1988-01-26 1988-01-26 Liquid crystal light valve and video projector with liquid crystal light valve Pending JPH01189685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63014830A JPH01189685A (en) 1988-01-26 1988-01-26 Liquid crystal light valve and video projector with liquid crystal light valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63014830A JPH01189685A (en) 1988-01-26 1988-01-26 Liquid crystal light valve and video projector with liquid crystal light valve

Publications (1)

Publication Number Publication Date
JPH01189685A true JPH01189685A (en) 1989-07-28

Family

ID=11871955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63014830A Pending JPH01189685A (en) 1988-01-26 1988-01-26 Liquid crystal light valve and video projector with liquid crystal light valve

Country Status (1)

Country Link
JP (1) JPH01189685A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0425266A2 (en) * 1989-10-26 1991-05-02 Matsushita Electric Industrial Co., Ltd. Liquid crystal projection display apparatus
EP0431886A2 (en) * 1989-12-05 1991-06-12 Matsushita Electric Industrial Co., Ltd. Liquid crystal projection color display apparatus
JPH03182719A (en) * 1989-12-13 1991-08-08 Nippon Sheet Glass Co Ltd Liquid crystal display element
EP0450780A2 (en) * 1990-04-05 1991-10-09 Matsushita Electric Industrial Co., Ltd. Optical microelement array and its production method
US5151801A (en) * 1989-11-30 1992-09-29 Pioneer Electronic Corporation Liquid crystal display apparatus providing improved illumination via trucated prisms
JPH04353824A (en) * 1991-05-31 1992-12-08 Sharp Corp Projection type liquid crystal display device
WO1994003843A1 (en) * 1992-08-05 1994-02-17 Technische Universität Dresden Holographic display
EP0609055A1 (en) * 1993-01-25 1994-08-03 Matsushita Electric Industrial Co., Ltd. Light valve apparatus and display system using same
US5583669A (en) * 1992-07-15 1996-12-10 Matsushita Electric Industrial Co., Ltd. Light valve apparatus, and projection display system and view-finder system employing said light valve apparatus
US5777804A (en) * 1994-10-28 1998-07-07 Kabushiki Kaisha Toshiba Projection-type display apparatus
JPH11295722A (en) * 1998-04-15 1999-10-29 Seiko Epson Corp Liquid crystal panel for projection type liquid crystal device and projection type liquid crystal device
KR19990080391A (en) * 1998-04-16 1999-11-05 김영환 Liquid crystal display device and manufacturing method thereof
JP2002236282A (en) * 1990-03-23 2002-08-23 Matsushita Electric Ind Co Ltd Liquid crystal display element
US6882389B2 (en) 1990-03-23 2005-04-19 Matsushita Electric Industrial Co., Ltd. Transflective LCD device with different transmission parts each having a particular transmittance
US7079238B2 (en) 1997-09-19 2006-07-18 Kla-Tencor Technologies Corporation Sample inspection system
US8025822B2 (en) 2005-04-26 2011-09-27 Seiko Epson Corporation Method of manufacturing a microlens substrate, an opposed substrate for a liquid crystal panel, a liquid crystal panel and a projection type display apparatus
US20180267362A1 (en) * 2014-10-07 2018-09-20 Kevin Thomas Gahagan Direct view display device and light unit for direct view display device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140920A (en) * 1989-10-26 1991-06-14 Matsushita Electric Ind Co Ltd Projection type display device and liquid crystal display device used for this projection type display device
EP0425266A2 (en) * 1989-10-26 1991-05-02 Matsushita Electric Industrial Co., Ltd. Liquid crystal projection display apparatus
EP0425266A3 (en) * 1989-10-26 1991-12-27 Matsushita Electric Industrial Co., Ltd Liquid crystal projection display apparatus
US5126863A (en) * 1989-10-26 1992-06-30 Matsushita Electric Industrial Co., Ltd. Liquid crystal projection display apparatus having two microlens arrays
US5151801A (en) * 1989-11-30 1992-09-29 Pioneer Electronic Corporation Liquid crystal display apparatus providing improved illumination via trucated prisms
EP0431886A2 (en) * 1989-12-05 1991-06-12 Matsushita Electric Industrial Co., Ltd. Liquid crystal projection color display apparatus
EP0431886A3 (en) * 1989-12-05 1991-10-16 Matsushita Electric Industrial Co., Ltd. Liquid crystal projection color display apparatus
US5144462A (en) * 1989-12-05 1992-09-01 Matsushita Electric Industrial Co., Ltd. Liquid crystal projection color display apparatus having microlens arrays with controllable refractive power
JPH03182719A (en) * 1989-12-13 1991-08-08 Nippon Sheet Glass Co Ltd Liquid crystal display element
US6990595B2 (en) 1990-03-23 2006-01-24 Matsushita Electric Industrial Co., Ltd. Data processing apparatus
US7006181B2 (en) 1990-03-23 2006-02-28 Matsushita Electric Industrial Co., Ltd. Data processing apparatus
US7821489B2 (en) 1990-03-23 2010-10-26 Panasonic Corporation Data processing apparatus
US7120809B2 (en) 1990-03-23 2006-10-10 Matsushita Electric Industrial Co., Ltd. Data processing apparatus
US7024572B2 (en) 1990-03-23 2006-04-04 Matsushita Electric Industrial Co., Ltd. Data processing apparatus
US6952248B2 (en) 1990-03-23 2005-10-04 Matsushita Electric Industrial Co., Ltd. Data processing apparatus
US6909483B2 (en) 1990-03-23 2005-06-21 Matsushita Electric Industrial Co., Ltd. Transflective LCD device with different transmission parts each having a particular transmittance
US6882389B2 (en) 1990-03-23 2005-04-19 Matsushita Electric Industrial Co., Ltd. Transflective LCD device with different transmission parts each having a particular transmittance
JP2002236282A (en) * 1990-03-23 2002-08-23 Matsushita Electric Ind Co Ltd Liquid crystal display element
EP0450780A2 (en) * 1990-04-05 1991-10-09 Matsushita Electric Industrial Co., Ltd. Optical microelement array and its production method
JPH04353824A (en) * 1991-05-31 1992-12-08 Sharp Corp Projection type liquid crystal display device
US5689315A (en) * 1992-07-15 1997-11-18 Matsushita Electric Industrial Co., Ltd. Light valve apparatus which is employed in a projection display system and in a view-finder system
US5583669A (en) * 1992-07-15 1996-12-10 Matsushita Electric Industrial Co., Ltd. Light valve apparatus, and projection display system and view-finder system employing said light valve apparatus
WO1994003843A1 (en) * 1992-08-05 1994-02-17 Technische Universität Dresden Holographic display
EP0609055A1 (en) * 1993-01-25 1994-08-03 Matsushita Electric Industrial Co., Ltd. Light valve apparatus and display system using same
US5430562A (en) * 1993-01-25 1995-07-04 Matsushita Electric Industrial Co., Ltd. Liquid crystal light valve including between light and light valve microlenses and two reflecting layers with a matrix of openings
US5777804A (en) * 1994-10-28 1998-07-07 Kabushiki Kaisha Toshiba Projection-type display apparatus
US5982563A (en) * 1994-10-28 1999-11-09 Kabushiki Kaisha Toshiba Projection-type display apparatus
US7079238B2 (en) 1997-09-19 2006-07-18 Kla-Tencor Technologies Corporation Sample inspection system
JPH11295722A (en) * 1998-04-15 1999-10-29 Seiko Epson Corp Liquid crystal panel for projection type liquid crystal device and projection type liquid crystal device
KR19990080391A (en) * 1998-04-16 1999-11-05 김영환 Liquid crystal display device and manufacturing method thereof
US8025822B2 (en) 2005-04-26 2011-09-27 Seiko Epson Corporation Method of manufacturing a microlens substrate, an opposed substrate for a liquid crystal panel, a liquid crystal panel and a projection type display apparatus
US20180267362A1 (en) * 2014-10-07 2018-09-20 Kevin Thomas Gahagan Direct view display device and light unit for direct view display device
US10838255B2 (en) * 2014-10-07 2020-11-17 Corning Incorporated Direct view display device and light unit for direct view display device

Similar Documents

Publication Publication Date Title
JPH01189685A (en) Liquid crystal light valve and video projector with liquid crystal light valve
US5990992A (en) Image display device with plural planar microlens arrays
US6680762B2 (en) Projection liquid crystal display apparatus wherein overall focal point of the lens is shifted to increase effective aperture ratio
JPH03140920A (en) Projection type display device and liquid crystal display device used for this projection type display device
JPH0950081A (en) Transmission type display device
US5764323A (en) Transmission type display device with aspheric microlenses
US5554251A (en) Optical device assemble apparatus
KR100811575B1 (en) Liquid crystal display element and projection type liquid crystal display device
US5430562A (en) Liquid crystal light valve including between light and light valve microlenses and two reflecting layers with a matrix of openings
KR0135922B1 (en) Liquid crystal projector and liquid crystal display device using micro lens plate
JPH01281426A (en) Liquid crystal light valve and projector having liquid crystal light valve
JP2000075259A (en) Liquid crystal device and projection type display device using the same
JP3746905B2 (en) Image projector
CN1652015A (en) Spatial light modulator and projector
JPH02251902A (en) Lens array and liquid crystal display element formed by using lens array
JP2008097032A (en) Micro-lens array, liquid crystal display element, and liquid crystal display device of projection-type
JPS6111788A (en) Image display
JP4907859B2 (en) Microlens array element design method
JP2000330101A (en) Lcd with double microarray lens
JP2003098595A (en) Image display device, pixel image reducing method and pixel image reducing optical structure
JPH0255384A (en) Projection type display device
JPH02302726A (en) Liquid crystal display element
JPH10253801A (en) Optical element, liquid crystal display unit and liquid crystal projector
JPH063670A (en) Liquid crystal display device
JPH04168423A (en) Liquid crystal display element