JPH04175698A - Heat-resisting radiation shielding material - Google Patents

Heat-resisting radiation shielding material

Info

Publication number
JPH04175698A
JPH04175698A JP30318590A JP30318590A JPH04175698A JP H04175698 A JPH04175698 A JP H04175698A JP 30318590 A JP30318590 A JP 30318590A JP 30318590 A JP30318590 A JP 30318590A JP H04175698 A JPH04175698 A JP H04175698A
Authority
JP
Japan
Prior art keywords
neutron
iron
shielding material
powder
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30318590A
Other languages
Japanese (ja)
Other versions
JPH0827388B2 (en
Inventor
Yoshinori Inoue
賢紀 井上
Shigeo Nomura
茂雄 野村
Nobuo Otani
大谷 暢夫
Kazuaki Tachibe
立辺 和明
Sakae Shikakura
鹿倉 栄
Hisashi Okuda
奥田 久志
Yoshifumi Harada
原田 恵文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
A&A Material Corp
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Ask Corp
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Ask Corp, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP30318590A priority Critical patent/JPH0827388B2/en
Priority to FR9113186A priority patent/FR2669142B1/en
Publication of JPH04175698A publication Critical patent/JPH04175698A/en
Publication of JPH0827388B2 publication Critical patent/JPH0827388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a shielding material whose shielding performance can be easily designed by pressure molding raw powder of graphite, gadolinium oxide, tungsten and/or tungsten oxide at temperatures in excess of the melting point of iron while using iron powder as a binder. CONSTITUTION:Raw powder of fine particles of a neutron decelerating material 1, a neutron absorbing material 2 and a gamma ray shielding material 3 is mixed with binder iron powder 4 and the mixture is heated to temperatures in excess of the melting point of iron and then cooled to form a molding wherein the raw fine particles are bonded together by iron. Oxidation preventing films 5 of ceramics and the like are added as needed to the surface of the powder of graphite serving as the neutron decelerating material and tungsten serving as the gamma ray shielding material. The neutron decelerating material is C (graphite), the neutron absorbing material is Gd2O3, the gamma ray shielding material is W and/or WO3 and the binder is Fe.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、中性子減速能力に優れる黒鉛、中性子吸収能
力に優れる酸化カドリニウム、γ線遮蔽能力に優れるタ
ングステンを、鉄をバインダー材に用いて構造体とした
耐熱放射線遮蔽材に関するものであり、放射線遮蔽か必
要となる広範な分野にその適用か可能である。 特に、原子炉については、原子炉容器内炉心周り中性子
遮蔽体等に適している。また、核燃料及び核原料物質使
用施設の中性子遮蔽体、使用済核燃料輸送容器用遮蔽材
、ホットラボ内遮蔽材、放射線発生装置(加速器、医療
機関等でX線あるいはγ線源を取扱う施設等)の遮蔽材
に好ましく利用できる。
The present invention relates to a heat-resistant radiation shielding material whose structure is made of graphite with excellent neutron moderation ability, cadrinium oxide with excellent neutron absorption ability, and tungsten with excellent gamma ray shielding ability, using iron as a binder material. It is possible to apply it to a wide range of fields where it is necessary. In particular, for nuclear reactors, it is suitable for neutron shielding around the core inside the reactor vessel. We also provide neutron shielding materials for facilities that use nuclear fuel and nuclear raw materials, shielding materials for spent nuclear fuel transportation containers, shielding materials for hot labs, and radiation generating equipment (accelerators, facilities that handle X-ray or γ-ray sources in medical institutions, etc.). It can be preferably used as a shielding material.

【従来技術とその問題】[Prior art and its problems]

中性子減速材としては、H,B、C等の低原子番号の元
素を含有する材料が優れており、従来から一般に使用さ
れてきた。高速炉では、従来のステンレス鋼に代わる中
性子遮蔽材料として、炭化はう素、黒鉛といった炭素系
の材料を用いることが検討されている。ステンレス鋼は
、構造体としての強度および安定性に優れるものの、中
性子遮蔽能力か低く、過大な重量と体積か必要とされる
。また、B4Cは、中性子減速能および吸収能に優れ、
制御棒材料として使用されている他、中性子遮蔽体とし
ても採用されているか、中性子の吸収に伴い発生するH
eカスにより生しるスエリングによる劣化か問題となる
。黒鉛は、熱的安定性に優れ、照射下での安定性にも優
れるが、脆く十分な機械的強度を有する構造体として成
形することは困難である。 酸化ガドリニウム(Gd203)は、中性子吸収能力に
優れ、軽水炉燃料では可燃前として使用されている。し
かし、酸化ガドリニウムは、硬くて脆く成形・加工性に
劣るため、従来は、有機材料中に分散させることにより
遮蔽体として使用されてきた。 γ線に対する遮蔽性能に優れる材料としては、pbがよ
く知られており、使用実績も豊富である。しかし、pb
は融点が低く、300℃を超える高温での使用は不可能
である。一方、W5Mo等の高融点かつ高密度の金属も
γ線遮蔽材としての実績かあるか、一般に硬く、延性に
欠けるため、任意の形状に成形・加工することは困難で
ある。
As neutron moderators, materials containing low atomic number elements such as H, B, and C are excellent and have been commonly used. In fast reactors, the use of carbon-based materials such as boron carbide and graphite is being considered as a neutron shielding material to replace conventional stainless steel. Although stainless steel has excellent strength and stability as a structure, it has low neutron shielding ability and requires excessive weight and volume. In addition, B4C has excellent neutron moderation and absorption ability,
In addition to being used as control rod material, it is also used as a neutron shield, and H
The problem is that the deterioration is due to swelling caused by e-scum. Although graphite has excellent thermal stability and excellent stability under irradiation, it is brittle and difficult to mold into a structure with sufficient mechanical strength. Gadolinium oxide (Gd203) has excellent neutron absorption ability and is used as a pre-combustible material in light water reactor fuel. However, since gadolinium oxide is hard, brittle, and has poor moldability and processability, it has conventionally been used as a shield by dispersing it in an organic material. PB is well known as a material with excellent shielding performance against γ-rays and has a rich track record of use. However, pb
has a low melting point and cannot be used at high temperatures exceeding 300°C. On the other hand, high melting point and high density metals such as W5Mo have a proven track record as gamma ray shielding materials, and are generally hard and lack ductility, making it difficult to mold and process them into arbitrary shapes.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

従来、γ線、中性子線等の各種放射線か入り混った環境
の遮蔽には、上記の各種材料の単体を積層あるいは単純
に混在したものを用いるのが一般的であり、効率的な組
合せによる耐熱性、成形性、加工性、さらには構造体部
材としての適用性、コスト等について課題がある。例え
ば、積層材は組合せによっては使用温度に制限か生じる
ことや、成形・加工性が劣るため、任意の形状の構造体
に成形するには、必要以上に体積や重量が大きくなると
いった短所がある。特に、耐熱性が要求される分野への
適用については、各組合せ材の特性(熱膨張率、化学的
相互作用等)の違いを考慮する必要があり、最適組合せ
を得ることは難しい。 そこで本発明は、中性子減速材、中性子吸収材、γ線遮
蔽材といった各種遮蔽材の微粉末の混合割合を任意に設
定することができ、しかも各遮蔽材の特性の違いや加工
、成形性等の問題を解消して、中性子線やγ線等の各種
放射線が入り混じった環境での効果的な遮蔽を行うこと
かできる放射線遮蔽材を提供することを目的としてなさ
れたものである。
Conventionally, for shielding environments where various types of radiation such as gamma rays and neutrons are mixed, it has been common to use single layers or simple mixtures of the various materials listed above. There are problems with heat resistance, moldability, workability, applicability as a structural member, cost, etc. For example, depending on the combination of laminated materials, there may be restrictions on the temperature at which they can be used, and because they have poor moldability and processability, they have disadvantages such as being larger than necessary in volume and weight when molded into structures of arbitrary shapes. . In particular, for applications in fields where heat resistance is required, it is necessary to consider differences in the characteristics (thermal expansion coefficient, chemical interactions, etc.) of each combination of materials, making it difficult to obtain an optimal combination. Therefore, the present invention makes it possible to arbitrarily set the mixing ratio of fine powder of various shielding materials such as neutron moderator, neutron absorber, and gamma ray shielding material, and also allows for consideration of differences in the characteristics of each shielding material, processing, moldability, etc. The purpose of this invention is to provide a radiation shielding material that can solve the above problems and provide effective shielding in an environment where various types of radiation such as neutron beams and gamma rays are mixed.

【問題点を解決するための手段】[Means to solve the problem]

すなわち本発明による耐熱放射線遮蔽材は、黒鉛からな
る中性子減速材と、酸化ガドリニウムからなる中性子吸
収材と、タングステンおよび/または酸化タングステン
からなるγ線遮蔽材との混合物からなる原料粉末を鉄粉
末と均一に混合して鉄の融点を越える温度において加圧
成形し、溶融状態の鉄をバインダー材として成形・加工
した放射線遮蔽材であって、原料粉末と鉄粉末との混合
割合を体積率で原料粉末90%以下、鉄粉末10%以上
とすることを特徴とするものである。 以下に本発明の遮蔽材の成形体構造、化学組成及び成形
プロセスについて詳述する。 1)、成形体構造 添付図面に模式的に示すような構造を有する。 すなわち、遮蔽を必要とする環境での放射線(中性子、
γ線)の割合に応じて、中性子減速材1、中性子吸収材
2及びγ線遮蔽材3の微粒子粉末(寸法1〜200μm
)の混合割合を決めて混合した原料粉末とバインダー材
となる鉄粉末4を混合し、これを鉄の融点を超える温度
に加熱したのち冷却することによって、鉄により原料微
粉末が結合した状態の成形体としたものである。また、
中性子減速材の黒鉛およびγ線遮蔽材のタングステンの
粉末表面には、酸化を防止するための被覆5を必要に応
して付加する。 鉄バインダーにより機械的強度、熱的安定性を与えると
ともに、任意の形状に成形することを可能にする。 2)、化学組成 ・中性子吸収材二 C(黒鉛) ・中性子吸収能力 Gd2O3 ・γ線遮蔽材: W及び/又はWO3 ・バインダー材:Fe 中性子減速材として含有する黒鉛は、中性子遮蔽能力に
優れるが、大気中での使用にあたっては、酸化による減
量が問題となる。そこで、原料となる黒鉛表面に耐酸化
性に優れるセラミックス等の被覆処理を施すことにより
、酸化性雰囲気中においても使用か可能となる。 中性子吸収材としては、酸化ガドリニウムを使用する。 γ線遮蔽材としては、高原子番号でかつ高密度の金属で
あるタングステン、酸化タングステンあるいはこれらの
混合物を使用する。タングステンを大気中で使用するに
あたっては、酸化による劣化か問題となる。そこで、原
料となるタングステン表面に耐酸化性に優れるセラミッ
クス等の被覆処理を施すことにより、酸化性雰囲気中に
おいても使用が可能となる。 バインダー材としては、鉄を使用する。 バインダー材に対する各種遮蔽材の混合量は、多ければ
多いほど、その遮蔽性能は大となるが、遮蔽材としての
適性は、バインターである鉄粉末10体積%に対して、
各種遮蔽材混合物か90体積%を超えると、遮蔽材の作
製か困難となる。さらに、遮蔽材の強度を上げるために
、必要に応じてガラス繊維、炭素繊維、金属ウィスカー
等の補強材を添加してもよい。 3)、成形プロセス 鉄粉末に各種放射線遮蔽材混合微粉末を添加し、ポット
ミル等により十分均一に混合する。 この混合物を静水圧プレス成形または型枠に充填し、次
いで鉄粉末の融点を超える温度に加熱したのち冷却する
。あるいは、鉄の融点を超える温度において高温静水圧
プレス成形もしくは高温プレス成形したのち冷却するこ
とにより、バインダーである鉄により各種遮蔽材粒子か
くるまれた状態の遮蔽材を得る。
That is, the heat-resistant radiation shielding material according to the present invention uses iron powder and a raw material powder made of a mixture of a neutron moderator made of graphite, a neutron absorption material made of gadolinium oxide, and a gamma ray shielding material made of tungsten and/or tungsten oxide. It is a radiation shielding material that is uniformly mixed and pressure-formed at a temperature exceeding the melting point of iron, then molded and processed using molten iron as a binder material, and the mixing ratio of raw material powder and iron powder is expressed as a volume ratio of raw material It is characterized in that the powder content is 90% or less and the iron powder content is 10% or more. The structure, chemical composition, and molding process of the shielding material of the present invention will be described in detail below. 1) Molded body structure It has a structure as schematically shown in the attached drawings. i.e. radiation (neutrons,
Depending on the ratio of neutron moderator 1, neutron absorber 2, and γ-ray shielding material 3, fine particle powder (size 1 to 200 μm)
) by mixing raw material powder and iron powder 4 which will be the binder material, heating this to a temperature exceeding the melting point of iron and then cooling it, a state in which the raw material fine powder is bound by iron is created. It is made into a molded body. Also,
A coating 5 for preventing oxidation is added to the powder surfaces of graphite as a neutron moderator and tungsten as a gamma ray shielding material, if necessary. The iron binder provides mechanical strength and thermal stability, and allows it to be molded into any shape. 2), Chemical composition - Neutron absorbing material 2 C (graphite) - Neutron absorption ability Gd2O3 - γ-ray shielding material: W and/or WO3 - Binder material: Fe Graphite contained as a neutron moderator has excellent neutron shielding ability, but When used in the atmosphere, weight loss due to oxidation becomes a problem. Therefore, by coating the surface of graphite, which is the raw material, with ceramics or the like having excellent oxidation resistance, it becomes possible to use it even in an oxidizing atmosphere. Gadolinium oxide is used as the neutron absorber. As the gamma ray shielding material, tungsten, which is a metal with a high atomic number and high density, tungsten oxide, or a mixture thereof is used. When using tungsten in the atmosphere, there is a problem of deterioration due to oxidation. Therefore, by coating the surface of tungsten, which is the raw material, with ceramics or the like having excellent oxidation resistance, it becomes possible to use it even in an oxidizing atmosphere. Iron is used as the binder material. The greater the amount of various shielding materials mixed with the binder material, the greater the shielding performance. However, the suitability as a shielding material is as follows:
If the amount of the mixture of various shielding materials exceeds 90% by volume, it becomes difficult to produce the shielding material. Furthermore, in order to increase the strength of the shielding material, reinforcing materials such as glass fibers, carbon fibers, metal whiskers, etc. may be added as necessary. 3) Molding process: Add various radiation shielding material mixed fine powders to the iron powder and mix thoroughly and uniformly using a pot mill or the like. This mixture is isostatically pressed or filled into a mold, heated to a temperature above the melting point of the iron powder, and then cooled. Alternatively, by performing high-temperature isostatic press molding or high-temperature press molding at a temperature exceeding the melting point of iron, and then cooling, a shielding material in which various shielding material particles are surrounded by iron as a binder is obtained.

【実施例】【Example】

l)、製造例 表1の配合表の試料N071.2.3.4を得るために
は、原料を乾式で均一に混合して均一に分散させ、2H
kg/cI!12の圧力でプレス成形した後、1600
℃で1時間加熱し、次いて冷却することによって各試料
を作製した。これらの試料の物性値を測定した結果を表
2に示す。 表1 配合表(体積%) 表2物性値 2)遮蔽性能評価例 中性子線遮蔽評価例を表3に示す。 表3 中性子線遮蔽評価例 減衰に必要な遮蔽厚さの比較 5US316     1.       1B4C(
天然)    0.45      0.55試料No
、  1    0.55      0.82試料N
o、2    0.55      0゜63試料No
、  3    0.55      0.64試料N
o、4    0,55      0.65中性子源
;核分裂スペクトル 表3の遮蔽性能評価例は、核分裂スペクトルの中性子源
を遮蔽材に接して配置し、線量等量率が、1000分の
1(10−3)、及び100万分の1(10−6)まで
減衰するのに必要な遮蔽材の厚さについて、5US31
Bで必要な厚さを1として示したものである。 表4 γ線遮蔽評価例 減衰に必要な遮蔽厚さの比較 Pb         1       1SUS  
31B     L、7      1.7試料No、
  1    2.6      2.5試料No、 
 2    2.4       2.3試料No、 
 3    2.2      2.1試料No、 4
    2.0       1.9γ線、6oCO 表4の遮蔽性能評価例は、60COのγ線源を遮蔽材に
接して配置し、線量当量率が、100万分の1 (10
)、10億分の1(10)まで減衰するのに必要な遮蔽
材の厚さについて、pbで必要な厚さを1として示した
ものである。
l), Production Example In order to obtain sample No. 071.2.3.4 in the recipe table in Table 1, the raw materials were mixed uniformly in a dry method to be uniformly dispersed, and the 2H
kg/cI! After press molding at 12 pressure, 1600
Each sample was prepared by heating at ℃ for 1 hour and then cooling. Table 2 shows the results of measuring the physical properties of these samples. Table 1 Combination table (volume %) Table 2 Physical property values 2) Shielding performance evaluation example Table 3 shows an example of neutron beam shielding evaluation. Table 3 Example of evaluation of neutron beam shielding Comparison of shielding thickness required for attenuation 5US316 1. 1B4C(
Natural) 0.45 0.55 Sample No.
, 1 0.55 0.82 sample N
o, 2 0.55 0゜63 Sample No.
, 3 0.55 0.64 sample N
o, 4 0,55 0.65 neutron source; Nuclear fission spectrum In the shielding performance evaluation example in Table 3, a neutron source with a fission spectrum is placed in contact with the shielding material, and the dose equivalent rate is 1/1000 (10- 3), and the thickness of the shielding material required to attenuate to one part per million (10-6), 5US31.
The required thickness in B is shown as 1. Table 4 Example of γ-ray shielding evaluation Comparison of shielding thickness required for attenuation Pb 1 1SUS
31B L, 7 1.7 Sample No.
1 2.6 2.5 Sample No.
2 2.4 2.3 Sample No.
3 2.2 2.1 Sample No., 4
2.0 1.9 gamma rays, 6oCO In the shielding performance evaluation example in Table 4, a 60CO gamma ray source is placed in contact with the shielding material, and the dose equivalent rate is 1/1,000,000 (10
), the thickness of the shielding material required to attenuate to one part per billion (10) is shown with the required thickness in pb as 1.

【発明の効果】【Effect of the invention】

l)、成分、配合率を変えることで遮蔽性能の設計がで
きる。 中性子減速材、中性子吸収材、γ線遮蔽材、バインダー
材の混合割合を幅広く選択して成形・加工できるので、
遮蔽条件に適した性能の遮蔽材を設計できる。 例えば、中性子照射とγ線照射か同程度となる場所での
使用にあたっては、中性子減速材とγ線遮蔽材の比率を
半々にすること等、用途に応じた設計ができる。 2) コンパクト化。 中性子減速材と中性子吸収材を一体として成形できるの
で、中性子の減速効果と吸収効果か同時に期待できる。 特に、中性子減速材の添加により、中性子吸収材の効果
が増すため、中性子吸収材の量を低減できる。さらに、
中性子遮蔽に伴い発生する2次γ線に対してもγ線遮蔽
材を添加することで効果がある。 3)、任意の形状に成形できる。 中性子減速材、中性子吸収材、γ線遮蔽材微粉末をバイ
ンダーにより効率的にくるんでいるので、成形性や成形
後の加工が極めて容易である。さらに、使用上さしつか
えない機械的強度を与えることが可能である。 4)耐熱性に優れる。 耐熱性に優れる原材料を選択し、鉄を/くインダーとし
て成形しているので、約800℃までの高温での使用が
可能である。
l) The shielding performance can be designed by changing the components and blending ratio. Since it is possible to mold and process by selecting a wide range of mixing ratios of neutron moderator, neutron absorber, gamma ray shielding material, and binder material,
It is possible to design shielding materials with performance suitable for shielding conditions. For example, when used in a place where neutron irradiation and gamma ray irradiation are equivalent, the design can be made according to the application, such as by making the ratio of neutron moderator and gamma ray shielding material half and half. 2) Compactness. Since the neutron moderator and neutron absorber can be molded as a single unit, it is possible to expect both neutron moderation and absorption effects at the same time. In particular, the addition of a neutron moderator increases the effect of the neutron absorber, so the amount of the neutron absorber can be reduced. moreover,
Adding a gamma ray shielding material is also effective against secondary gamma rays generated due to neutron shielding. 3) Can be molded into any shape. Since the fine powder of neutron moderator, neutron absorber, and gamma ray shielding material is efficiently wrapped in a binder, moldability and processing after molding are extremely easy. Furthermore, it is possible to provide mechanical strength that is not a problem in use. 4) Excellent heat resistance. Since raw materials with excellent heat resistance are selected and molded using iron as an inder, it can be used at high temperatures of up to approximately 800°C.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は、本発明の遮蔽材の成形体構造概念図である
。 1・・・中性子減速材、 2・・・中性子吸収材、 3・−・γ線遮蔽材、 4・・・バインダー材、 5・・・酸化防止被覆。 特許出願人  動力炉・核燃料開発事業団間   株式
会社 ア ス り
The accompanying drawings are conceptual diagrams of the structure of the molded body of the shielding material of the present invention. 1... Neutron moderator, 2... Neutron absorbing material, 3... γ-ray shielding material, 4... Binder material, 5... Anti-oxidation coating. Patent applicant: Power Reactor and Nuclear Fuel Development Corporation ASRI Co., Ltd.

Claims (1)

【特許請求の範囲】 1、黒鉛からなる中性子減速材と、酸化ガドリニウムか
らなる中性子吸収材と、タングステンおよび/または酸
化タングステンからなるγ線遮蔽材との混合物からなる
原料粉末を鉄粉末と均一に混合して鉄の融点を越える温
度において加圧成形し、溶融状態の鉄をバインダー材と
して成形・加工した放射線遮蔽材であって、原料粉末と
鉄粉末との混合割合を体積率で原料粉末90%以下、鉄
粉末10%以上とすることを特徴とする耐熱放射線遮蔽
材。 2、前記黒鉛およびタングステンの原料粉末表面には酸
化防止被膜が施されていることを特徴とする請求項1記
載の耐熱放射線遮蔽材。
[Claims] 1. A raw material powder made of a mixture of a neutron moderator made of graphite, a neutron absorption material made of gadolinium oxide, and a gamma ray shielding material made of tungsten and/or tungsten oxide is uniformly mixed with iron powder. A radiation shielding material that is mixed and pressure-molded at a temperature exceeding the melting point of iron, then molded and processed using molten iron as a binder material, and the mixing ratio of raw powder and iron powder is 90% by volume. % or less, and 10% or more of iron powder. 2. The heat-resistant radiation shielding material according to claim 1, wherein the surface of the graphite and tungsten raw material powders is coated with an anti-oxidation coating.
JP30318590A 1990-11-08 1990-11-08 Heat resistant radiation shielding material Expired - Fee Related JPH0827388B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30318590A JPH0827388B2 (en) 1990-11-08 1990-11-08 Heat resistant radiation shielding material
FR9113186A FR2669142B1 (en) 1990-11-08 1991-10-25 RADIOLOGICAL PROTECTION MATERIAL RESISTANT TO HEAT.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30318590A JPH0827388B2 (en) 1990-11-08 1990-11-08 Heat resistant radiation shielding material

Publications (2)

Publication Number Publication Date
JPH04175698A true JPH04175698A (en) 1992-06-23
JPH0827388B2 JPH0827388B2 (en) 1996-03-21

Family

ID=17917906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30318590A Expired - Fee Related JPH0827388B2 (en) 1990-11-08 1990-11-08 Heat resistant radiation shielding material

Country Status (2)

Country Link
JP (1) JPH0827388B2 (en)
FR (1) FR2669142B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171587A (en) * 1998-12-04 2000-06-23 Ishikawajima Harima Heavy Ind Co Ltd Radiation shield
JP2006510919A (en) * 2002-12-17 2006-03-30 ランクセス・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Lead-free mixture used as an additive for radiation protection
WO2014097740A1 (en) * 2012-12-19 2014-06-26 イビデン株式会社 Member for nuclear reactors
CN107767979A (en) * 2017-09-28 2018-03-06 哈尔滨工业大学 A kind of composite shielding material and preparation method thereof
KR20210055121A (en) * 2019-11-06 2021-05-17 한국생산기술연구원 Neutron absorber and the manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT405773B (en) * 1996-05-08 1999-11-25 Hascic Wladimir Dr Radiation-shielding material for gamma-rays and neutrons - contains barium sulphate as gamma-absorber, boron nitride as neutron absorber and optionally active carbon, graphite and boron carbide
JP2001511202A (en) * 1997-01-30 2001-08-07 スペース エレクトロニクス,インコーポレイテッド Cross-reference to methods and compositions for ionizing radiation shielding materials
JP4666310B2 (en) * 2006-06-27 2011-04-06 大学共同利用機関法人 高エネルギー加速器研究機構 Radiation shielding material
JP6113973B2 (en) * 2012-08-03 2017-04-12 トーカロ株式会社 Method for manufacturing gamma-ray radioactive substance containing member
DE102012112643A1 (en) * 2012-12-19 2014-06-26 Ald Vacuum Technologies Gmbh Graphite matrix, useful for the preparation of a molded body to store radioactive waste, comprises graphite and a metallic binder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3219324A1 (en) * 1982-05-22 1983-11-24 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF HIGH-STRENGTH MOLDED PARTS AND HARDNESS OF SI-MN OR SI-MN-C ALLOY STEELS
JPS63137137A (en) * 1986-11-27 1988-06-09 Kawasaki Steel Corp Sintered steel excellent in machinability

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171587A (en) * 1998-12-04 2000-06-23 Ishikawajima Harima Heavy Ind Co Ltd Radiation shield
JP2006510919A (en) * 2002-12-17 2006-03-30 ランクセス・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Lead-free mixture used as an additive for radiation protection
WO2014097740A1 (en) * 2012-12-19 2014-06-26 イビデン株式会社 Member for nuclear reactors
JP2014119398A (en) * 2012-12-19 2014-06-30 Ibiden Co Ltd Nuclear reactor member
CN107767979A (en) * 2017-09-28 2018-03-06 哈尔滨工业大学 A kind of composite shielding material and preparation method thereof
KR20210055121A (en) * 2019-11-06 2021-05-17 한국생산기술연구원 Neutron absorber and the manufacturing method thereof

Also Published As

Publication number Publication date
FR2669142B1 (en) 1994-04-01
FR2669142A1 (en) 1992-05-15
JPH0827388B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
US2727996A (en) Thermal neutron shield and method for making same
JPH04175698A (en) Heat-resisting radiation shielding material
Fenici et al. Advanced low-activation materials. Fibre-reinforced ceramic composites
US2866741A (en) Control rod for a nuclear reactor and method of preparation
JP2520978B2 (en) Radiation shield
US3516948A (en) Neutron-absorbing graphitic product and method of preparation
Somers et al. Fabrication Routes for Yttria‐Stabilized Zirconia Suitable for the Production of Minor Actinide Transmutation Targets
KR20200131333A (en) Preparation of large granular powder with granule coating
US3723581A (en) Method of producing fuel and/or breeder elements for nuclear reactors
Leitten Jr et al. Use of Lanthanide Oxide Neutron Absorbers in Pressurized Water Reactors
US3194745A (en) Uranium monosulfide-monocarbide nuclear fuel element
US3708268A (en) Isotopic thermal power source
US3205174A (en) Nuclear fuel materials including vitreous phase
JPH04175699A (en) Gadolinium thermal neutron shielding material
US7012168B1 (en) Boron-based containment matrix for the storage or transmutation of long-life radioactive elements
JPH04143696A (en) Heat resistive shielding material for fast nutron
GB918044A (en) Production of nuclear fuels, moderators or control members
JPH04175700A (en) Boron compound neutron shielding material
Johnson et al. IRRADIATION BEHAVIOR OF BeO-UO $ sub 2$ FUEL AS A FUNCTION OF FUEL-PARTICLE SIZE
Ploetz Ceramic materials for nuclear reactor controls and poison
Shepherd et al. Improvements in neutron absorbers
Alzahrani et al. Zircon-based glass-ceramic composite reinforced with aluminum oxynitride: microstructural evolution, physical properties, and charged radiation attenuation analysis
Riley et al. Particulate composite materials technology
Fiegel et al. EQUILIBRIUM STUDIES OF REFRACTORY METAL OXIDES. 7 Month Report, June 13, 1961 to January 13, 1962
Aaron et al. Development and characterization of cermet forms for radioactive waste

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees