JPH0827388B2 - Heat resistant radiation shielding material - Google Patents

Heat resistant radiation shielding material

Info

Publication number
JPH0827388B2
JPH0827388B2 JP30318590A JP30318590A JPH0827388B2 JP H0827388 B2 JPH0827388 B2 JP H0827388B2 JP 30318590 A JP30318590 A JP 30318590A JP 30318590 A JP30318590 A JP 30318590A JP H0827388 B2 JPH0827388 B2 JP H0827388B2
Authority
JP
Japan
Prior art keywords
shielding material
neutron
powder
iron
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30318590A
Other languages
Japanese (ja)
Other versions
JPH04175698A (en
Inventor
賢紀 井上
茂雄 野村
暢夫 大谷
和明 立辺
栄 鹿倉
久志 奥田
恵文 原田
Original Assignee
動力炉・核燃料開発事業団
株式会社アスク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 動力炉・核燃料開発事業団, 株式会社アスク filed Critical 動力炉・核燃料開発事業団
Priority to JP30318590A priority Critical patent/JPH0827388B2/en
Priority to FR9113186A priority patent/FR2669142B1/en
Publication of JPH04175698A publication Critical patent/JPH04175698A/en
Publication of JPH0827388B2 publication Critical patent/JPH0827388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】 本発明は、中性子減速能力に優れる黒鉛、中性子吸収
能力に優れる酸化ガドリニウム、γ線遮蔽能力に優れる
タングステンを、鉄をバインダー材に用いて構造体とし
た耐熱放射線遮蔽材に関するものであり、放射線遮蔽が
必要となる広範な分野にその適用が可能である。 特に、原子炉については、原子炉容器内炉心周り中性
子遮蔽体等に適している。また、核燃料及び核原料物質
使用施設の中性子遮蔽体、使用済核燃料輸送容器用遮蔽
材、ホットラボ内遮蔽材、放射線発生装置(加速器、医
療機関等でX線あるいはγ線源を取扱う施設等)の遮蔽
材に好ましく利用できる。
TECHNICAL FIELD The present invention relates to a heat-resistant radiation shielding material in which graphite has excellent neutron moderating ability, gadolinium oxide having excellent neutron absorbing ability, and tungsten having excellent γ-ray shielding ability, which is a structure using iron as a binder material. The present invention can be applied to a wide range of fields where radiation shielding is required. Particularly, for a nuclear reactor, it is suitable for a neutron shield around the core in a reactor vessel. In addition, neutron shields for facilities that use nuclear fuel and nuclear raw materials, shields for spent nuclear fuel transportation containers, shields in hot laboratories, radiation generators (accelerators, medical institutions, etc. that handle X-ray or γ-ray sources) It can be preferably used as a shielding material.

【従来技術とその問題】[Prior art and its problems]

中性子減速材としては、H、B、C等の低原子番号の
元素を含有する材料が優れており、従来から一般に使用
されてきた。高速炉では、従来のステンレス鋼に代わる
中性子遮蔽材料として、炭化ほう素、黒鉛といった炭素
系の材料を用いることが検討されている。ステンレス鋼
は、構造体としての強度および安定性に優れるものの、
中性子遮蔽能力が低く、過大な重量と体積が必要とされ
る。また、B4Cは、中性子減速能および吸収能に優れ、
制御棒材料として使用されている他、中性子遮蔽体とし
ても採用されているが、中性子の吸収に伴い発生するHe
ガスにより生じるスエリングによる劣化が問題となる。
黒鉛は、熱的安定性に優れ、照射下での安定性にも優れ
るが、脆く十分な機械的強度を有する構造体として成形
することは困難である。 酸化ガドリニウム(Gd2O3)は、中性子吸収能力に優
れ、軽水炉燃料では可燃毒として使用されている。しか
し、酸化ガドリニウムは、硬くて脆く成形・加工性に劣
るため、従来は、有機材料中に分散させることにより遮
蔽体として使用されてきた。 γ線に対する遮蔽性能に優れる材料としては、Pdがよ
く知られており、使用実績も豊富である。しかし、Pbは
融点が低く、300℃を超える高温での使用は不可能であ
る。一方、W、Mo等の高融点かつ高密度の金属もγ線遮
蔽材としての実績があるが、一般に硬く、延性に欠ける
ため、任意の形状に成形・加工することは困難である。
Materials containing low atomic number elements such as H, B, and C are excellent as neutron moderators, and have been generally used conventionally. In fast reactors, the use of carbon-based materials such as boron carbide and graphite as neutron shielding materials replacing conventional stainless steel is being considered. Although stainless steel has excellent strength and stability as a structure,
The neutron shielding ability is low, and excessive weight and volume are required. Further, B 4 C has excellent neutron moderating ability and absorbing ability,
Besides being used as a control rod material, it is also used as a neutron shield.
Deterioration due to swelling caused by gas becomes a problem.
Graphite has excellent thermal stability and stability under irradiation, but it is difficult to mold it into a structure that is brittle and has sufficient mechanical strength. Gadolinium oxide (Gd 2 O 3 ) has excellent neutron absorption capacity and is used as a combustible poison in LWR fuel. However, since gadolinium oxide is hard and brittle and is inferior in moldability and workability, it has been conventionally used as a shield by dispersing it in an organic material. Pd is well known as a material that has excellent shielding performance against γ-rays, and has a good track record of use. However, Pb has a low melting point and cannot be used at a high temperature exceeding 300 ° C. On the other hand, metals with high melting points and high densities such as W and Mo also have a track record as γ-ray shielding materials, but are generally hard and lack ductility, so it is difficult to mold and process them into arbitrary shapes.

【発明が解決しようとする問題点】[Problems to be Solved by the Invention]

従来、γ線、中性子線等の各種放射線が入り混った環
境の遮蔽には、上記の各種材料の単体を積層あるいは単
純に混在したものを用いるのが一般的であり、効率的な
組合せによる耐熱性、成形性、加工性、さらには構造体
部材としての適用性、コスト等について課題がある。例
えば、積層材は組合せによっては使用温度に制限が生じ
ることや、成形・加工性が劣るため、任意の形状の構造
体に成形するには、必要以上に体積や重量が大きくなる
といった短所がある。特に、耐熱性が要求される分野へ
の適用については、各組合せの特性(熱膨張率、化学的
相互作用等)の違いを考慮する必要があり、最適組合せ
を得ることは難しい。 そこで本発明は、中性子減速材、中性子吸収材、γ線
遮蔽材といった各種遮蔽材の微粉末の混合割合を任意に
設定することができ、しかも各遮蔽材の特性の違いや加
工、成形性等の問題を解消して、中性子線やγ線等の各
種放射線が入り混じった環境での効果的な遮蔽を行うこ
とができる放射線遮蔽材を提供することを目的としてな
されたものである。
Conventionally, in order to shield the environment where various kinds of radiation such as γ-rays and neutron rays are mixed, it is common to use simple substances that are laminated or simply mixed with the above-mentioned various materials. There are problems in heat resistance, moldability, workability, applicability as a structural member, cost, and the like. For example, a laminated material has a disadvantage in that the use temperature is limited depending on the combination and the molding / workability is inferior, so that the volume and the weight are unnecessarily increased to form a structure of an arbitrary shape. . In particular, when applied to a field where heat resistance is required, it is necessary to consider the difference in the characteristics (coefficient of thermal expansion, chemical interaction, etc.) of each combination, and it is difficult to obtain the optimum combination. Therefore, the present invention, neutron moderator, neutron absorber, it is possible to arbitrarily set the mixing ratio of fine powder of various shielding materials such as γ-ray shielding material, and further, the difference in the characteristics of each shielding material, processing, formability, etc. It is an object of the present invention to solve the above problem and provide a radiation shielding material capable of effectively shielding in an environment in which various kinds of radiation such as neutron rays and γ rays are mixed.

【問題点を解決するための手段】[Means for solving problems]

すなわち本発明による耐熱放射線遮蔽材は、黒鉛から
なる中性子減速材と、酸化ガドリニウムからなる中性子
吸収材と、タングステンおよび/または酸化タングステ
ンからなるγ線遮蔽材との混合物からなる原料粉末を鉄
粉末と均一に混合して鉄の融点を超える温度において加
圧成形し、溶融状態の鉄をバインダー材として成形・加
工した放射線遮蔽材であって、原料粉末と鉄粉末との混
合割合を体積率で原料粉末90%以下、鉄粉末10%以上と
することを特徴とするものである。 以下に本発明の遮蔽材の成形体構造、化学組成及び成
形プロセスについて詳述する。 1).成形体構造 添付図面に模式的に示すような構造を有する。すなわ
ち、遮蔽を必要とする環境での放射線(中性子、γ線)
の割合に応じて、中性子減速材1、中性子吸収材2及び
γ線遮蔽材3の微粒子粉末(寸法1〜200μm)の混合
割合を決めて混合した原料粉末とバインダー材となる鉄
粉末4を混合し、これを鉄の溶融を超える温度に加熱し
たのち冷却することによって、鉄により原料微粉末が結
合した状態の成形体としたものである。また、中性子減
速材の黒鉛およびγ線遮蔽材のタングステンの粉末表面
には、酸化を防止するための被覆5を必要に応じて付加
する。 鉄バインダーにより機械的強度、熱的安定性を与える
とともに、任意の形状に成形することを可能にする。 2).化学組成 ・中性子減速材:C(黒鉛) ・中性子吸収材:Gd2O3 ・γ線遮蔽材:W及び/又はWO3 ・バインダー材:Fe 中性子減速材として含有する黒鉛は、中性子遮蔽能力
に優れるが、大気中での使用にあたっては、酸化による
減量が問題となる。そこで、原料となる黒鉛表面に耐酸
化性に優れるセラミックス等の被覆処理を施すことによ
り、酸化性雰囲気中において使用が可能となる。 中性子吸収材としては、酸化ガドリニウムを使用す
る。 γ線遮蔽材としては、高原子番号でかつ高密度の金属
であるタングステン、酸化タングステンあるいはこれら
の混合物を使用する。タングステンを大気中で使用する
にあたっては、酸化による劣化が問題となる。そこで、
原料となるタングステン表面に耐酸化性に優れるセラミ
ックス等の被覆処理を施すことにより、酸化性雰囲気中
においても使用が可能となる。 バインダー材としては、鉄を使用する。 バインダー材に対する各種遮蔽材の混合量は、多けれ
ば多いほど、その遮蔽性能は大となるが、遮蔽材として
の適性は、バインダーである鉄粉末10体積%に対して、
各種遮蔽材混合物が90体積%を超えると、遮蔽材の作製
が困難となる。さらに、遮蔽材の強度を上げるために、
必要に応じてガラス繊維、炭素繊維、金属ウイスカー等
の補強材を添加してもよい。 3).成形プロセス 鉄粉末に各種放射線遮蔽材混合微粉末を添加し、ポッ
トミル等により十分均一に混合する。この混合物を静水
圧プレス成形または型枠に充填し、次いで鉄粉末の融点
を超える温度に加熱したのち冷却する。あるいは、鉄の
融点を超える温度において高温静水圧プレス成形もしく
は高温プレス成形したのち冷却することにより、バイン
ダーである鉄により各種遮蔽材粒子がくるまれた状態の
遮蔽材を得る。
That is, the heat-resistant radiation shielding material according to the present invention, a neutron moderator made of graphite, a neutron absorbing material made of gadolinium oxide, and a raw material powder made of a mixture of a γ-ray shielding material made of tungsten and / or tungsten oxide is an iron powder. A radiation shielding material that is uniformly mixed and pressure-molded at a temperature above the melting point of iron, and is molded and processed using molten iron as a binder material. The raw material powder and iron powder are mixed at a volume ratio of the raw material. The powder is 90% or less, and the iron powder is 10% or more. The structure, chemical composition and molding process of the shielding material of the present invention will be described in detail below. 1). Molded product structure It has a structure as schematically shown in the accompanying drawings. That is, radiation (neutrons, gamma rays) in an environment that requires shielding
Depending on the ratio of the neutron moderator 1, the neutron absorber 2 and the gamma ray shielding material 3, the mixing ratio of the fine particle powder (size 1 to 200 μm) is determined and mixed, and the iron powder 4 serving as the binder material is mixed. Then, by heating this to a temperature exceeding the melting of iron and then cooling it, a molded body in a state in which the raw material fine powder is bound by iron is formed. In addition, a coating 5 for preventing oxidation is added to the surface of the powder of neutron moderator graphite and the powder of γ-ray shielding material tungsten as needed. The iron binder provides mechanical strength and thermal stability, and enables molding into any shape. 2). Chemical composition ・ Neutron moderator: C (graphite) ・ Neutron absorber: Gd 2 O 3・ γ-ray shielding material: W and / or WO 3・ Binder material: Fe Graphite contained as a neutron moderator has neutron shielding ability It is excellent, but its weight loss due to oxidation becomes a problem when it is used in the atmosphere. Therefore, by coating the surface of graphite, which is a raw material, with ceramics or the like having excellent oxidation resistance, it becomes possible to use the graphite in an oxidizing atmosphere. Gadolinium oxide is used as the neutron absorber. As the γ-ray shielding material, a metal having a high atomic number and a high density, such as tungsten, tungsten oxide or a mixture thereof, is used. When using tungsten in the atmosphere, deterioration due to oxidation becomes a problem. Therefore,
By coating the surface of tungsten, which is a raw material, with ceramics or the like having excellent oxidation resistance, it can be used even in an oxidizing atmosphere. Iron is used as the binder material. The greater the amount of various shielding materials mixed with the binder material, the greater the shielding performance, but the suitability as a shielding material is 10% by volume of iron powder as a binder,
When the content of various shielding material mixtures exceeds 90% by volume, it becomes difficult to produce the shielding material. Furthermore, in order to increase the strength of the shielding material,
If necessary, a reinforcing material such as glass fiber, carbon fiber or metal whiskers may be added. 3). Molding process Fine powders of various radiation shielding materials are added to iron powder, and they are sufficiently mixed by a pot mill or the like. This mixture is isostatically pressed or filled in a mold, then heated to a temperature above the melting point of the iron powder and then cooled. Alternatively, high temperature isostatic press molding or high temperature press molding at a temperature exceeding the melting point of iron is followed by cooling to obtain a shielding material in which various shielding material particles are wrapped with iron as a binder.

【実施例】【Example】

1).製造例 表1の配合表の試料No.1、2、3、4を得るために
は、原料を乾式で均一に混合して均一に分散させ、200k
g/cm2の圧力でプレス成形した後、1600℃で1時間加熱
し、次いで冷却することによって各試料を作製した。こ
れらの試料の物性値を測定した結果を表2に示す。 2).遮蔽性能評価例 中性子線遮蔽評価例を表3に示す。 表3の遮蔽性能評価例は、核分裂スペクトルの中性子
源を遮蔽材に接して配置し、線量等量率が、1000分の1
(10-3)、及び100万分の1(10-6)まで減衰するのに
必要な遮蔽材の厚さについて、SUS316で必要な厚さを1
として示したものである。 表4の遮蔽性能評価例は、60Coのγ線源を遮蔽材に接
して配置し、線量当量率が、100万分の1(10-6)、10
億分の1(10-12)まで減衰するのに必要な遮蔽材の厚
さについて、Pbで必要な厚さを1として示したものであ
る。
1). Production example In order to obtain sample Nos. 1, 2, 3, and 4 in the formulation table of Table 1, the raw materials were uniformly mixed by a dry method and uniformly dispersed at 200 k
Each sample was prepared by press molding at a pressure of g / cm 2 , heating at 1600 ° C. for 1 hour, and then cooling. The results of measuring the physical properties of these samples are shown in Table 2. 2). Example of Shielding Performance Evaluation Table 3 shows an example of neutron beam shielding evaluation. In the shielding performance evaluation example of Table 3, the neutron source of the fission spectrum is placed in contact with the shielding material, and the dose equivalent rate is 1/1000.
For the thickness of the shielding material required to attenuate to (10 -3 ), and 1 / 10,000,000 (10 -6 ), the thickness required for SUS316 is 1
It is shown as. In the shielding performance evaluation example in Table 4, a 60 Co γ-ray source was placed in contact with the shielding material, and the dose equivalent rate was 1 in 1,000,000 (10 -6 ), 10
Regarding the thickness of the shielding material required to attenuate to one hundredth of a million (10 -12 ), the thickness required for Pb is shown as 1.

【発明の効果】【The invention's effect】

1).成分、配合率を変えることで遮蔽性能の設計がで
きる。 中性子減速材、中性子吸収材、γ線遮蔽材、バインダ
ー材の混合割合を幅広く選択して成形・加工できるの
で、遮蔽条件に適した性能の遮蔽材を設計できる。 例えば、中性子照射とγ線照射が同程度となる場所で
の使用にあたっては、中性子減速材とγ線遮蔽材の比率
を半々にすること等、用途に応じた設計ができる。 2).コンパクト化。 中性子減速材と中性子吸収材を一体として成形できる
ので、中性子の減速効果と吸収効果が同時に期待でき
る。特に、中性子減速材の添加により、中性子吸収材の
効果が増すため、中性子吸収材の量を低減できる。さら
に、中性子遮蔽に伴い発生する2次γ線に対してもγ線
遮蔽材を添加することで効果がある。 3).任意の形状に成形できる。 中性子減速材、中性子吸収材、γ線遮蔽材微粉末をバ
インダーにより効率的にくるんでいるので、成形性や成
形後の加工が極めて容易である。さらに、使用上さしつ
かえない機械的強度を与えることが可能である。 4).耐熱性に優れる。 耐熱性に優れる原材料を選択し、鉄をバインダーとし
て成形しているので、約800℃までの高温での使用が可
能である。
1). The shielding performance can be designed by changing the components and blending ratio. Since a wide range of mixing ratios of neutron moderator, neutron absorber, γ-ray shielding material, and binder material can be molded and processed, shielding materials with performance suitable for shielding conditions can be designed. For example, when using in a place where neutron irradiation and γ-ray irradiation are about the same, it is possible to make a design according to the application, such as halving the ratio of the neutron moderator and the γ-ray shielding material. 2). Compact size. Since the neutron moderator and the neutron absorber can be integrally molded, the neutron moderating effect and the neutron absorbing effect can be expected at the same time. In particular, the addition of the neutron moderator increases the effect of the neutron absorber, so that the amount of neutron absorber can be reduced. Furthermore, it is also effective to add a γ-ray shielding material to the secondary γ-rays generated with the neutron shielding. 3). It can be molded into any shape. Since the neutron moderator, neutron absorber, and γ-ray shielding material fine powder are efficiently wrapped by the binder, the moldability and the processing after molding are extremely easy. Further, it is possible to provide mechanical strength that can be used for a long time. 4). Excellent heat resistance. Since raw materials with excellent heat resistance are selected and iron is used as a binder, it can be used at high temperatures up to about 800 ℃.

【図面の簡単な説明】[Brief description of drawings]

添付図面は、本発明の遮蔽材の成形体構造概念図であ
る。 1……中性子減速材、 2……中性子吸収材、 3……γ線遮蔽材、 4……バインダー材、 5……酸化防止被覆。
The attached drawings are conceptual views of the structure of the molded body of the shielding material of the present invention. 1 ... Neutron moderator, 2 ... Neutron absorbing material, 3 ... Gamma ray shielding material, 4 ... Binder material, 5 ... Antioxidant coating.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 茂雄 茨城県東茨城郡大洗町成田町4002番地 動 力炉・核燃料開発事業団大洗工学センター 内 (72)発明者 大谷 暢夫 茨城県東茨城郡大洗町成田町4002番地 動 力炉・核燃料開発事業団大洗工学センター 内 (72)発明者 立辺 和明 茨城県東茨城郡大洗町成田町4002番地 動 力炉・核燃料開発事業団大洗工学センター 内 (72)発明者 鹿倉 栄 茨城県東茨城郡大洗町成田町4002番地 動 力炉・核燃料開発事業団大洗工学センター 内 (72)発明者 奥田 久志 茨城県石岡市大字柏原6―1 株式会社ア スク研究開発本部中央研究所内 (72)発明者 原田 恵文 神奈川県横浜市鶴見区鶴見中央2丁目5番 5号 株式会社アスク内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigeo Nomura 4002 Narita-cho, Oarai-cho, Higashi-Ibaraki-gun, Ibaraki Prefecture Oarai Engineering Center, Reactor and Nuclear Fuel Development Corp. Machi Narita-cho 4002 Power Reactor / Nuclear Fuel Development Corporation Oarai Engineering Center (72) Inventor Kazuaki Tatebe 4002 Narita-cho Oarai-machi, Higashi-Ibaraki-gun, Ibaraki Prefecture Oarai Engineering Development Center ( 72) Inventor Sakakura No. 4002, Narita-cho, Oarai-cho, Higashi-Ibaraki-gun, Ibaraki Prefecture, Oarai Engineering Center, Power Reactor and Nuclear Fuel Development Corporation (72) Inventor, Hisashi Okuda 6-1, Kashiwara, Ishioka, Ibaraki Prefecture (72) Inventor Keifumi Harada 2-5-5 Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa In the school

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】黒鉛からなる中性子減速材と、酸化ガドリ
ニウムからなる中性子吸収材と、タングステンおよび/
または酸化タングステンからなるγ線遮蔽材との混合物
からなる原料粉末を鉄粉末と均一に混合して鉄の融点を
越える温度において加圧成形し、溶融状態の鉄をバイン
ダー材として成形・加工した放射線遮蔽材であって、原
料粉末と鉄粉末との混合割合を体積率で原料粉末90%以
下、鉄粉末10%以上とすることを特徴とする耐熱放射線
遮蔽材。
1. A neutron moderator made of graphite, a neutron absorber made of gadolinium oxide, and tungsten and / or
Alternatively, a raw material powder made of a mixture with a γ-ray shielding material made of tungsten oxide is uniformly mixed with iron powder, pressure-molded at a temperature exceeding the melting point of iron, and the molten iron is molded and processed as a binder material. A heat-resistant radiation shielding material, which is a shielding material, wherein the mixing ratio of the raw material powder and the iron powder is 90% or less of the raw material powder and 10% or more of the iron powder in volume ratio.
【請求項2】前記黒鉛およびタングステンの原料粉末表
面には酸化防止被膜が施されていることを特徴とする請
求項1記載の耐熱放射線遮蔽材。
2. The heat-resistant radiation shielding material according to claim 1, wherein the surface of the raw material powder of graphite and tungsten is provided with an antioxidant coating.
JP30318590A 1990-11-08 1990-11-08 Heat resistant radiation shielding material Expired - Fee Related JPH0827388B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30318590A JPH0827388B2 (en) 1990-11-08 1990-11-08 Heat resistant radiation shielding material
FR9113186A FR2669142B1 (en) 1990-11-08 1991-10-25 RADIOLOGICAL PROTECTION MATERIAL RESISTANT TO HEAT.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30318590A JPH0827388B2 (en) 1990-11-08 1990-11-08 Heat resistant radiation shielding material

Publications (2)

Publication Number Publication Date
JPH04175698A JPH04175698A (en) 1992-06-23
JPH0827388B2 true JPH0827388B2 (en) 1996-03-21

Family

ID=17917906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30318590A Expired - Fee Related JPH0827388B2 (en) 1990-11-08 1990-11-08 Heat resistant radiation shielding material

Country Status (2)

Country Link
JP (1) JPH0827388B2 (en)
FR (1) FR2669142B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008656A (en) * 2006-06-27 2008-01-17 High Energy Accelerator Research Organization Radiation shield
JP2014031554A (en) * 2012-08-03 2014-02-20 Tocalo Co Ltd Radiation shielding coating member

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT405773B (en) * 1996-05-08 1999-11-25 Hascic Wladimir Dr Radiation-shielding material for gamma-rays and neutrons - contains barium sulphate as gamma-absorber, boron nitride as neutron absorber and optionally active carbon, graphite and boron carbide
EP0956749B1 (en) * 1997-01-30 2015-05-27 Maxwell Technologies, Inc. Methods and compositions for ionizing radiation shielding
JP2000171587A (en) * 1998-12-04 2000-06-23 Ishikawajima Harima Heavy Ind Co Ltd Radiation shield
AU2003289956A1 (en) * 2002-12-17 2004-07-09 Lanxess Deutschland Gmbh Lead-free mixture used as an additive for shielding radiation
DE102012112643A1 (en) * 2012-12-19 2014-06-26 Ald Vacuum Technologies Gmbh Graphite matrix, useful for the preparation of a molded body to store radioactive waste, comprises graphite and a metallic binder
JP6081182B2 (en) * 2012-12-19 2017-02-15 イビデン株式会社 Reactor components
CN107767979A (en) * 2017-09-28 2018-03-06 哈尔滨工业大学 A kind of composite shielding material and preparation method thereof
KR102264466B1 (en) * 2019-11-06 2021-06-16 한국생산기술연구원 Neutron absorber and the manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3219324A1 (en) * 1982-05-22 1983-11-24 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF HIGH-STRENGTH MOLDED PARTS AND HARDNESS OF SI-MN OR SI-MN-C ALLOY STEELS
JPS63137137A (en) * 1986-11-27 1988-06-09 Kawasaki Steel Corp Sintered steel excellent in machinability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008656A (en) * 2006-06-27 2008-01-17 High Energy Accelerator Research Organization Radiation shield
JP4666310B2 (en) * 2006-06-27 2011-04-06 大学共同利用機関法人 高エネルギー加速器研究機構 Radiation shielding material
JP2014031554A (en) * 2012-08-03 2014-02-20 Tocalo Co Ltd Radiation shielding coating member

Also Published As

Publication number Publication date
FR2669142B1 (en) 1994-04-01
FR2669142A1 (en) 1992-05-15
JPH04175698A (en) 1992-06-23

Similar Documents

Publication Publication Date Title
Risovany et al. Dysprosium titanate as an absorber material for control rods
Richter et al. Infiltration of highly radioactive materials: a novel approach to the fabrication of targets for the transmutation and incineration of actinides
US3096263A (en) Nuclear reactor fuel elements and method of preparation
JPH0827388B2 (en) Heat resistant radiation shielding material
US2866741A (en) Control rod for a nuclear reactor and method of preparation
JP2520978B2 (en) Radiation shield
US3781189A (en) Spent nuclear fuel shipping casks
US3350274A (en) Matrix-type nuclear fuel element including fission product retentive materials
US2996443A (en) Fissile material and fuel elements for neutronic reactors
Eidson Comparison of physical chemical properties of powders and respirable aerosols of industrial mixed uranium and plutonium oxide fuels. Technical report
Sato et al. Microstructure of high-level radioactive waste glass heavily irradiated in a high-voltage electron microscope
US3194745A (en) Uranium monosulfide-monocarbide nuclear fuel element
Leitten Jr et al. Use of Lanthanide Oxide Neutron Absorbers in Pressurized Water Reactors
Chubb et al. Diffusion Coefficients of Uranium and Carbon in Uranium Monocarbide
Mustacchi et al. Development of Methods for the Determination of the High Temperature Thermal Diffusivity of UC
US7012168B1 (en) Boron-based containment matrix for the storage or transmutation of long-life radioactive elements
Gorbunov et al. The Study of Diffusion in Metal Oxides with the Aid of Radioactive Isotopes
US3291697A (en) Fuel element for nuclear reactor
Johnson et al. IRRADIATION BEHAVIOR OF BeO-UO $ sub 2$ FUEL AS A FUNCTION OF FUEL-PARTICLE SIZE
Fiegel et al. EQUILIBRIUM STUDIES OF REFRACTORY METAL OXIDES. 7 Month Report, June 13, 1961 to January 13, 1962
Snelgrove et al. Progress in developing very-high-density low-enriched-uranium fuels
Lynch Glassy materials investigated for nuclear reactor applications
Lympany et al. PRODUCTION OF A SINTERABLE HIGH-PURITY BERYLLIUM OXIDE. Final Report. Technical Report No. 149
Shepherd et al. Improvements in neutron absorbers
Hollenberg Tritium release from fast neutron irradiated boron carbide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees