JPH04175453A - Exhaust gas recirculation device for engine - Google Patents

Exhaust gas recirculation device for engine

Info

Publication number
JPH04175453A
JPH04175453A JP2298920A JP29892090A JPH04175453A JP H04175453 A JPH04175453 A JP H04175453A JP 2298920 A JP2298920 A JP 2298920A JP 29892090 A JP29892090 A JP 29892090A JP H04175453 A JPH04175453 A JP H04175453A
Authority
JP
Japan
Prior art keywords
passage
egr
engine
exhaust gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2298920A
Other languages
Japanese (ja)
Inventor
Mitsuo Hitomi
光夫 人見
Junzo Sasaki
潤三 佐々木
Kazuaki Umezono
和明 梅園
Toshihiko Hattori
服部 敏彦
Kenji Kashiyama
謙二 樫山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2298920A priority Critical patent/JPH04175453A/en
Priority to EP98103158A priority patent/EP0849453B1/en
Priority to DE69133098T priority patent/DE69133098T2/en
Priority to EP91118856A priority patent/EP0489263B1/en
Priority to US07/788,128 priority patent/US5203311A/en
Priority to DE69130976T priority patent/DE69130976T2/en
Priority to KR1019910019627A priority patent/KR920010146A/en
Publication of JPH04175453A publication Critical patent/JPH04175453A/en
Priority to KR1019950032021A priority patent/KR960003688B1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/03EGR systems specially adapted for supercharged engines with a single mechanically or electrically driven intake charge compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/44Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which a main EGR passage is branched into multiple passages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To prevent the knocking by providing a cooling means to cool the EGR gas at least in a high load operation of an engine to an exhaust recirculation passage, to reduce the temperature of the EGR gas so as to reduce the combustion temperature while preventing the reduction of the volume efficiency. CONSTITUTION:An EGR passage 15 to communicate the downstream side of a catalyst converter 14 in a common exhaust gas passage 13 to independent inlet gas passages 9 respectively is branched to the first and the second branch passages 15A and 15B on the way of the passage 15, and EGR valves 16A and 16B are provided to the branch passages 15A and 15B respectively. And a water cooling type cooler 17 is provided to only the second branch passage 15B. The cooler 17 is provided on the way of a cooling water passage 18 through which the cooling water of the engine main body 1 flows, for example. And in a low load area, the EGR valve 16A of the first branch passage 15A which does not have the cooler 17 is opened to recirculate the EGR gas to an inlet system 2, but as the load increases, the EGR valve 16B is opened while the EGR valve 16A is closed, and the EGR gas whose temperature is lowered by the cooler 17 is to be recirculated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジンの排ガスの一部を吸気系に還流する排
ガス還流装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an exhaust gas recirculation device that recirculates a portion of engine exhaust gas to an intake system.

(従来技術) 自動車用エンジンでは、排ガスの浄化のため、排ガスの
一部を吸気系に還流して燃焼ガスの温度を低下させるこ
とにより(EGR)、排ガス中のNOx (窒素酸化物
)を低減することが行なわれている(特公昭59−16
0052号公報参照)。
(Conventional technology) In order to purify exhaust gas, automobile engines reduce NOx (nitrogen oxides) in exhaust gas by circulating a portion of the exhaust gas back into the intake system to lower the temperature of combustion gas (EGR). (Special Public Interest Publication 1986-16)
(See Publication No. 0052).

ところで、エンジンの高負荷域ではEGRガスの温度が
低い程体積効率が向上し、またEGRガス量の多い程、
燃焼温度が低下するから、NOxの低減およびノッキン
グ発生の防止の点から有利である。ところが軽負荷域で
は、EGRガスの温度が低いと燃焼速度が遅くなって燃
焼が不安定になり、かつ同じEGR率でも高温EGRと
比較してポンピングロスが増大するので、EGRガスは
高温の方がよいことが判明した。
By the way, in the high load range of the engine, the lower the temperature of EGR gas, the better the volumetric efficiency, and the larger the amount of EGR gas,
Since the combustion temperature is lowered, this is advantageous in terms of reducing NOx and preventing knocking. However, in light load ranges, if the temperature of EGR gas is low, the combustion speed will slow and combustion will become unstable, and even at the same EGR rate, pumping loss will increase compared to high temperature EGR, so EGR gas is It turned out to be good.

またターボチャージャ付きエンジンでは、排気系におけ
るEGRガスの取入口の位置および吸気系におけるEG
Rガスの供給口の位置を適切に設定しないと、タービン
効率が低下するという問題があった。
In addition, in a turbocharged engine, the position of the EGR gas intake in the exhaust system and the position of the EGR gas intake in the intake system
There is a problem in that turbine efficiency decreases unless the position of the R gas supply port is set appropriately.

(発明の目的) そこで本発明は、自然吸気エンジンおよび過給機付きエ
ンジンの双方において、かつ広い運転領域叫おいて、常
に最適のEGRを行ないうる排ガス還流装置を提供する
ことを目的とする。
(Objective of the Invention) Therefore, an object of the present invention is to provide an exhaust gas recirculation device that can always perform optimal EGR in both a naturally aspirated engine and a supercharged engine and in a wide operating range.

(発明の構成) 請求項1の発明は、排ガス還流通路に少なくともエンジ
ンの高負荷時においてEGRガスを冷却する冷却手段を
設けたことを特徴とする請求項2の発明は、請求項1の
発明における冷却手段を設けた第1の排ガス還流通路と
、冷却手段を設けない第2の排ガス還流通路とを備え、
上記第2の排ガス還流通路を通る冷却された還流ガスの
量を負荷の増大に応じて増大させる制御手段を設けたこ
とを特徴とする 請求項3の発明は、請求項1の冷却手段と吸気冷却用イ
ンタークーラとを備えた過給機付きエンジンにおいて、
EGRガスの吸気系への導入口を吸気通路の上記インタ
ークーラの上流側に設けたことを特徴とする 請求項4の発明においては、請求項1の冷却手段を備え
たターボチャージャ付きエンジンにおいて、低速高負荷
時にEGRガスをタービンの下流から吸気系に還流する
ようにしたことを特徴とする。
(Structure of the Invention) The invention of claim 1 is characterized in that the exhaust gas recirculation passage is provided with a cooling means for cooling EGR gas at least during high load of the engine. A first exhaust gas recirculation passage provided with a cooling means, and a second exhaust gas recirculation passage not provided with a cooling means,
The invention according to claim 3 is characterized in that a control means is provided for increasing the amount of the cooled reflux gas passing through the second exhaust gas recirculation passage in accordance with an increase in load. In a supercharged engine equipped with a cooling intercooler,
In the invention according to claim 4, characterized in that an inlet for EGR gas into the intake system is provided on the upstream side of the intercooler in the intake passage, in the turbocharged engine equipped with the cooling means according to claim 1, The engine is characterized in that EGR gas is recirculated from downstream of the turbine to the intake system during low speed and high load conditions.

(発明の効果) 、 請求項1の発明によれば、EGRガスの温度を下げ
て体積効率低下を防止しつつ燃焼温度を下げノッキング
防止を図ることができる。
(Effects of the Invention) According to the invention of claim 1, it is possible to lower the combustion temperature and prevent knocking while lowering the temperature of EGR gas and preventing a decrease in volumetric efficiency.

請求項2の発明によれば、低負荷時のEGRガス温度を
高め、高負荷時に低めることにより、負荷の高低にかか
わらず燃焼速度を適正に保ち、かつ軽負荷域でのポンピ
ングロスの低減を図ることができる。
According to the invention of claim 2, by increasing the EGR gas temperature during low loads and lowering it during high loads, the combustion rate can be maintained at an appropriate level regardless of the load, and pumping loss can be reduced in the light load range. can be achieved.

請求項3の発明によれば、EGRによる燃焼温度の低下
効果をさらに向上させることができる。
According to the third aspect of the invention, the effect of lowering the combustion temperature due to EGR can be further improved.

請求項4の発明によれば、EGRによるタービン効率の
低下を防止することができる。
According to the invention of claim 4, it is possible to prevent a decrease in turbine efficiency due to EGR.

(実 施 例) 以下、図面を参照して本発明の実施例について説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の第1実施例を示す概略的構成図で、1
は4気筒エンジンのエンジン本体、2はエンジンの吸気
系、8はエンジンの排気系を示す。
FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.
2 indicates the engine body of the 4-cylinder engine, 2 indicates the engine intake system, and 8 indicates the engine exhaust system.

4は共通吸気通路で、この吸気通路4には、その上流側
から下流側に向って、エアクリーナ5、吸入空気量を検
出するエアフローメータ6およびスロットルバルブ7が
順に配置されている。共通吸気通路4の下流端にはサー
ジタンク8が接続され、このサージタンク8から分岐し
た4本の独立吸気通路9がそれぞれ各気筒の吸気ボート
lOに接続されている。本実施例のエンジンは各気筒に
ついてそれぞれ2個の吸気弁と排気弁を備えているため
、吸気ボート10および排気ポート11が各気筒につい
て2個ずつ設けられている。排気ポート11にはそれぞ
れ独立排気通路12が接続され、これら独立排気通路1
2の下流端は共通排気通路13に集合され、この共通排
気通路13に触媒コンバータ14が設けられている。
4 is a common intake passage, and in this intake passage 4, an air cleaner 5, an air flow meter 6 for detecting the amount of intake air, and a throttle valve 7 are arranged in order from the upstream side to the downstream side. A surge tank 8 is connected to the downstream end of the common intake passage 4, and four independent intake passages 9 branched from the surge tank 8 are connected to the intake boat IO of each cylinder, respectively. Since the engine of this embodiment has two intake valves and two exhaust valves for each cylinder, two intake boats 10 and two exhaust ports 11 are provided for each cylinder. Independent exhaust passages 12 are connected to each exhaust port 11, and these independent exhaust passages 1
The downstream ends of the exhaust gases 2 are gathered together in a common exhaust passage 13, and a catalytic converter 14 is provided in this common exhaust passage 13.

15は共通排気通路13における触媒コンバータ14の
下流側を各独立吸気通路9に連通ずる排ガス還流通路(
以下rEGR通路」と呼ぶ)で、このEGR通路15は
、その途中で第1分岐通路15Aと第2分岐通路15B
と分岐され、各分岐通路15A、15Bに、ダイアフラ
ム式アクチュエータ19A、19Bによってそれぞれ駆
動されて通路15A、15Bを通るEGRガスの流量を
制御するEGR弁16A、16Bがそれぞれ配設されて
いる。そして第2分岐通路15Bのみに、この分岐通路
15Bを通るEGRガスを冷却するための水冷式冷却器
17が設けられている。本実施例では、この冷却器17
がエンジン本体1の冷却水が流れる冷却水通路18の途
中に設けられている。第1および第2分岐通路15A、
15Bは下流側で合流され、各独立吸気通路9に接続さ
れている。
Reference numeral 15 denotes an exhaust gas recirculation passage (
(hereinafter referred to as "rEGR passage"), this EGR passage 15 has a first branch passage 15A and a second branch passage 15B on the way.
EGR valves 16A and 16B are provided in each of the branch passages 15A and 15B, respectively, and are driven by diaphragm actuators 19A and 19B to control the flow rate of EGR gas passing through the passages 15A and 15B. A water-cooled cooler 17 for cooling the EGR gas passing through the second branch passage 15B is provided only in the second branch passage 15B. In this embodiment, this cooler 17
is provided in the middle of the cooling water passage 18 through which the cooling water of the engine body 1 flows. first and second branch passages 15A;
15B are merged on the downstream side and connected to each independent intake passage 9.

各EGR弁16A、16Bのアクチュエータ19A、1
9Bの負圧室は、それぞれ負圧導管2OA、20Bを通
じてサージタンク8に連通しており、負圧導管2OA、
20Bにはそれぞれ電磁ソレノイド弁21A、21Bが
設けられている。
Actuators 19A and 1 for each EGR valve 16A and 16B
The negative pressure chamber 9B communicates with the surge tank 8 through negative pressure conduits 2OA and 20B, respectively.
20B is provided with electromagnetic solenoid valves 21A and 21B, respectively.

なお、電磁ソレノイド弁21Bは通常時開放状態にある
。22はコントロールユニットで、このコントロールユ
ニット22は、エアフローメータ6およびスロットル開
度センサ23の出力および図示しないエンジン回転数セ
ンサの出力にもとづいて、電磁ソレノイド弁21A、2
1Bをデユーティ制御し、これによってEGR弁16A
、16Bの開度(リフト量)を第2図のグラフに示す態
様で制御するようになっている。
Note that the electromagnetic solenoid valve 21B is normally open. 22 is a control unit, and this control unit 22 controls the electromagnetic solenoid valves 21A and 2 based on the outputs of the air flow meter 6 and the throttle opening sensor 23, and the output of an engine speed sensor (not shown).
1B is duty-controlled, thereby controlling the EGR valve 16A.
, 16B (lift amount) are controlled in the manner shown in the graph of FIG.

第2図はエンジン負荷とEGR弁16A、16Bの開度
との関係を示すグラフである。第2図がら明らかなよう
に、コントロールユニット22は、低負荷域においては
EGR通路15の冷却器17を備えていない第1分岐通
路15AのEGR弁16Aを開いてEGRガスを第1分
岐通路15Aのみから吸気系2に還流するが、負荷が上
昇するのに従い、EGR弁16Aを閉じるとともにEG
R弁16Bを開き、冷却器17によって温度を低くされ
たEGRガスの比率が増大するように電磁ソレノイド弁
21A、21Bをデユーティ制御している。なお、第2
図においては、高負荷域におけるEGR総量がほぼ一定
となっているが、高圧縮比を有するエンジンにおいては
、ノッキングの発生を防止するために、負荷の増大に伴
ってEGR総量を増大させればよい。また、極軽負荷域
では燃焼安定性を確保するため、双方のEGR弁16A
、16Bを閉じて外部EGRを停止させている。さらに
本実施例においては、排気系3におけるEGR通路15
のEGRガス導入口を触媒コンバータ15の下流側に設
けて、より低温のEGRガスが吸気系2に還流されるよ
うに図っている。
FIG. 2 is a graph showing the relationship between the engine load and the opening degrees of the EGR valves 16A and 16B. As is clear from FIG. 2, in the low load range, the control unit 22 opens the EGR valve 16A of the first branch passage 15A, which is not equipped with the cooler 17 of the EGR passage 15, and supplies EGR gas to the first branch passage 15A. However, as the load increases, the EGR valve 16A is closed and the EGR
The R valve 16B is opened and the electromagnetic solenoid valves 21A and 21B are duty-controlled so that the ratio of EGR gas whose temperature has been lowered by the cooler 17 is increased. In addition, the second
In the figure, the total amount of EGR is almost constant in the high load range, but in an engine with a high compression ratio, it is necessary to increase the total amount of EGR as the load increases to prevent knocking. good. In addition, in order to ensure combustion stability in the extremely light load range, both EGR valves 16A
, 16B are closed to stop external EGR. Furthermore, in this embodiment, the EGR passage 15 in the exhaust system 3
An EGR gas inlet is provided on the downstream side of the catalytic converter 15 so that lower temperature EGR gas is recirculated to the intake system 2.

以上が本発明の第1実施例の構成および動作の説明であ
るが、EGR通路15の第2分岐通路15Bに設けられ
ている水冷式冷却器17の代りに空冷式冷却器を設けて
もよい。あるいは第2分岐通路15Bに上記のような冷
却器を設けずに、第2分岐通路15B自体を長くするこ
とにより、あるいは多数の並列通路を設けることにより
、EGRガスを冷却してもよい。
The above is a description of the configuration and operation of the first embodiment of the present invention, but an air-cooled cooler may be provided in place of the water-cooled cooler 17 provided in the second branch passage 15B of the EGR passage 15. . Alternatively, the EGR gas may be cooled by lengthening the second branch passage 15B itself or by providing a large number of parallel passages without providing the above-mentioned cooler in the second branch passage 15B.

上述のように軽負荷域では高温のEGRガスを還流し、
高負荷域では低温のEGRガスを還流する理由を下記に
示す。
As mentioned above, in the light load range, high temperature EGR gas is recirculated,
The reason why low-temperature EGR gas is recirculated in the high load range is shown below.

第3図はEGR率をパラメータとしたEGRガス温度と
ポンピングロス低減度との関係を示すグラフである。軽
負荷域ではスロットルバルブ7による吸気の絞り度が大
きいため、ポンピングロスが大きくなるが、第3図がら
明らがなように、軽負荷域ではEGRガスを高温にすれ
ばする程、僅かのEGR量で大きなポンピングロス低減
効率が得られるから、軽負荷域ではEGRガスの温度が
高い方が望ましい。
FIG. 3 is a graph showing the relationship between EGR gas temperature and pumping loss reduction degree using EGR rate as a parameter. In a light load range, the degree of restriction of the intake air by the throttle valve 7 is large, resulting in a large pumping loss, but as is clear from Figure 3, in a light load range, the higher the temperature of the EGR gas, the smaller the pumping loss. Since a large pumping loss reduction efficiency can be obtained with the amount of EGR, it is desirable that the temperature of the EGR gas is high in the light load range.

一方、高負荷域では、EGRガスの温度が低い程、また
EGRガス量が多い程燃焼温度が低下する。第4図は等
容サイクルにおける圧力と燃焼温度との関係を示すグラ
フで、第4図におけるTA。
On the other hand, in a high load range, the lower the temperature of EGR gas and the greater the amount of EGR gas, the lower the combustion temperature. FIG. 4 is a graph showing the relationship between pressure and combustion temperature in an equal volume cycle, and TA in FIG.

Ttoc+ ΔTおよびTbは下記の0〜0式によって
あられされる。
Ttoc+ ΔT and Tb are expressed by the following 0-0 formula.

TT、)C= TA・εに−1、、、、、、■Tb  
=  Ttnc+ΔT           、旧、、
■ここでTA : 圧縮開始時温度 TTl)c:  圧縮上死点温度 Tb : 燃焼後の温度 ε  : 有効圧縮圧 Cp : 等圧比熱 Cv : 等容比熱 A/F :  空燃比 サフィックス a: 新気 サフィックス e: 排気(EGR) Q  : 総発熱量 QocGa(A/F一定時) G  : ガスの重量 0〜0式から明らかなように、高負荷域ではEGRガス
温度が低い程、またEGRガス量が多い程燃焼温度が低
下する。燃焼温度が低下すると、燃焼室壁温も低下し、
エンジンの熱負荷が低減されたことになる。また燃焼途
中においても、既燃ガスの温度が低いので未燃ガスへの
輻射熱が減少し、未燃ガス温度も抑えられるので耐ノツ
キング性が向上することになる。さらに燃焼温度の低下
は排ガス温の低下をもたらすので排気系部品も耐熱的に
楽になる利点がある。以上の理由がら、高負荷域ではE
GRガスを冷却するのである。
TT, )C= TA・ε−1, , , , ■Tb
= Ttnc+ΔT, old,,
■Here, TA: Temperature at the start of compression TTl) c: Compression top dead center temperature Tb: Temperature after combustion ε: Effective compression pressure Cp: Isobaric specific heat Cv: Isovolume specific heat A/F: Air-fuel ratio suffix a: Fresh air Suffix e: Exhaust (EGR) Q: Total calorific value QocGa (when A/F is constant) G: Gas weight As is clear from the 0 to 0 formula, the lower the EGR gas temperature in the high load range, the lower the EGR gas amount. The larger the amount, the lower the combustion temperature. When the combustion temperature decreases, the combustion chamber wall temperature also decreases,
This means that the heat load on the engine is reduced. Further, even during combustion, since the temperature of the burnt gas is low, the radiant heat to the unburned gas is reduced, and the temperature of the unburned gas is also suppressed, resulting in improved knocking resistance. Furthermore, lowering the combustion temperature brings about a lowering of the exhaust gas temperature, which has the advantage of making the exhaust system parts more heat resistant. For the above reasons, E
It cools the GR gas.

次に第5図は本発明の第2実施例を示す概略的構成図で
、本実施例は過給機付きエンジンに本発明を適用した場
合の例である。すなわち、エンジンによって駆動される
過給機(スーパーチャージャ)25と、この過給機25
で圧縮された吸気を冷却するインタークーラ26をその
共通吸気通路4に備えており、また、過給機25および
インタークーラ26をバイパスするバイパス通路27に
、ダイアフラム式アクチュエータ29によって駆動され
るリリーフ弁28が設けられている。そして上記アクチ
ュエータ29の圧力室はサージタンク8に連通しており
、過給圧が所定値以上になるとリリーフ弁28がバイパ
ス通路27を開いてリリーフするようになっている。
Next, FIG. 5 is a schematic configuration diagram showing a second embodiment of the present invention, and this embodiment is an example in which the present invention is applied to a supercharged engine. That is, a supercharger 25 driven by an engine, and a supercharger 25
The common intake passage 4 is equipped with an intercooler 26 that cools the intake air compressed by the engine, and a relief valve driven by a diaphragm actuator 29 is provided in the bypass passage 27 that bypasses the supercharger 25 and the intercooler 26. 28 are provided. The pressure chamber of the actuator 29 communicates with the surge tank 8, and when the boost pressure exceeds a predetermined value, the relief valve 28 opens the bypass passage 27 for relief.

本実施例では、EGR通路15の冷却器17を備えてい
ない第1分岐通路15Aの吸気系へのEGRガス導入口
は第1図の第1実施例と同様に各独立吸気通路9に開口
しているが、冷却器17を備えている第2分岐通路15
Bの吸気系へのEGRガス導入口は共通吸気通路4の過
給機25の上流側に開口している。なおこの冷却された
EGRガスの導入口は過給機25とインタークーラ26
の間に設けてもよく、要はインタークーラ26の上流側
であればよい。第5図から明らかなように、以上の点を
除けば本発明の第2実施例は第1図に示す第1実施例と
同様の構成を有するから、対応する要素に同一符号を付
して重複する説明は省略する。
In this embodiment, the EGR gas inlet to the intake system of the first branch passage 15A, which is not provided with the cooler 17 of the EGR passage 15, opens into each independent intake passage 9, as in the first embodiment shown in FIG. The second branch passage 15 is equipped with a cooler 17.
The EGR gas introduction port to the intake system B opens on the upstream side of the supercharger 25 in the common intake passage 4. Note that this cooled EGR gas inlet is connected to the supercharger 25 and intercooler 26.
It may be provided between the intercooler 26 and the intercooler 26 . As is clear from FIG. 5, except for the above points, the second embodiment of the present invention has the same configuration as the first embodiment shown in FIG. Duplicate explanations will be omitted.

本実施例においても、軽負荷域においては冷却器17を
備えていない第1分岐通路15Aを通った高温のEGR
ガスが吸気系に還流され、高負荷域においては冷却器1
7を備えている第2分岐通路15Bを通った冷却された
EGRガスが吸気系に還流されるように、フントロール
ユニット22が電磁ソレノイド弁21A、21Bをデユ
ーティ制御しているが、冷却器17で冷却されたEGR
ガスを吸気系2のインタークーラ26の上流側に還流し
ていることにより、さらに温度の低下したEGRガスが
エンジンに供給されるようになっている。そしてこのよ
うな過給機付きエンジンにおいては、高負荷域では過給
圧の上昇に伴ってEGR総量を増大させることにより、
ノッキングの発生を防止することができる。なおリリー
フ28の開度を検出するセンサを設け、リリーフ弁28
の開度と関連させてEGR弁16A、16Bの開度を設
定してもよい。
Also in this embodiment, in the light load range, high-temperature EGR passes through the first branch passage 15A that is not equipped with the cooler 17.
The gas is returned to the intake system, and in high load areas, the cooler 1
The mount roll unit 22 duty-controls the electromagnetic solenoid valves 21A and 21B so that the cooled EGR gas that has passed through the second branch passage 15B equipped with the cooler 17 is recirculated to the intake system. EGR cooled by
By circulating the gas to the upstream side of the intercooler 26 of the intake system 2, EGR gas whose temperature has further decreased is supplied to the engine. In such a supercharged engine, by increasing the total amount of EGR as the supercharging pressure increases in the high load range,
The occurrence of knocking can be prevented. Note that a sensor is provided to detect the opening degree of the relief valve 28.
The opening degrees of the EGR valves 16A and 16B may be set in relation to the opening degrees of the EGR valves 16A and 16B.

第6図は本発明の第3実施例を示す概略的構成図で、本
実施例はターボチャージャ付きエンジンに本発明を適用
した場合の例である。すなわち、こ、のエンジンは、共
通排気通路13に設けられた排気タービン31と、共通
吸気通路4に設けられて上記排気タービン31によって
駆動される過給機32とからなるターボチャージャ30
を備えており、また過給機32とスロットルバルブ7と
の間の共通吸気通路4にインタークーラ26を備えてい
る。また、排気タービン31をバイパスするバイパス通
路33に、ダイアフラム式アクチュエータ34によって
駆動されるゲートバルブ35が設けられている。そして
上記アクチュエータ34の圧力室は共通吸気通路4の過
給機32の下流側に連通しており、過給圧が所定値以上
になるとゲートバルブ35がバイパス通路27を開いて
排気をリリーフするようになっている。
FIG. 6 is a schematic configuration diagram showing a third embodiment of the present invention, and this embodiment is an example in which the present invention is applied to a turbocharged engine. That is, this engine has a turbocharger 30 consisting of an exhaust turbine 31 provided in the common exhaust passage 13 and a supercharger 32 provided in the common intake passage 4 and driven by the exhaust turbine 31.
Furthermore, an intercooler 26 is provided in the common intake passage 4 between the supercharger 32 and the throttle valve 7. Further, a gate valve 35 driven by a diaphragm actuator 34 is provided in a bypass passage 33 that bypasses the exhaust turbine 31 . The pressure chamber of the actuator 34 communicates with the downstream side of the supercharger 32 in the common intake passage 4, and when the supercharging pressure exceeds a predetermined value, the gate valve 35 opens the bypass passage 27 to relieve exhaust gas. It has become.

本実施例の特徴は、互いに独立した第1および第2のE
GR通路36A、36Bを備えていることである。すな
わち、第1EGR通路36Aは、エンジンの独立排気通
路12の1つと各独立吸気通路9との間を連通しており
、この第1EGR通路36Aに前述の実施例と同様にE
GR弁16Aが設けられている。また第2EGR弁16
Bは、共通排気通路13の排気タービン31の下流側と
共通吸気通路4の過給機32の上流側との間を連通して
おり、この第2EGR通路36Bに前述の実施例と同様
に冷却器17およびEGR弁16Bが設けられている。
The feature of this embodiment is that the first and second E
It is provided with GR passages 36A and 36B. That is, the first EGR passage 36A communicates between one of the independent exhaust passages 12 of the engine and each independent intake passage 9, and the first EGR passage 36A has an E
A GR valve 16A is provided. Also, the second EGR valve 16
B communicates between the downstream side of the exhaust turbine 31 in the common exhaust passage 13 and the upstream side of the supercharger 32 in the common intake passage 4, and the second EGR passage 36B is provided with cooling as in the previous embodiment. 17 and an EGR valve 16B.

その他の構成は前述した実施例と同様であるから、重複
する説明は省略するが、本実施例では、軽負荷域におい
てEGRガスを還流する第1EGR通路36Aがエンジ
ンの独立排気通路12と独立吸気通路9との間に設けた
ことにより、軽負荷域では高温のEGRガスをエンジン
に供給するようにしている。これによって軽負荷域では
EGRによる過給機32の仕事の増加が阻止されるので
、過給機32の回転速度が高められ、タービン効率が上
昇する。一方、冷却器17を備えた第2EGR通路36
BにおけるEGRガスの取入口を共通排気通路13の排
気タービン31の下流側に設け、高負荷域、特に低速高
負荷域では、比較的低温の排ガスを第2EGR通路36
Bに取入れ、これを冷却器17でさらに冷却した後、過
給機32の上流側の共通吸気通路4に還流している。し
たがって、特にノッキングを発生し易い低速高負荷域に
おいて低温のEGRガスがエンジンに供給され、これに
よってノッキングの発生を防止するとともに、タービン
効率の低下を防止している。
The rest of the configuration is the same as that of the previous embodiment, so redundant explanation will be omitted, but in this embodiment, the first EGR passage 36A that recirculates EGR gas in the light load range is connected to the independent exhaust passage 12 of the engine and the independent intake By providing it between the passage 9 and the passage 9, high temperature EGR gas is supplied to the engine in a light load range. This prevents an increase in the work of the supercharger 32 due to EGR in the light load range, thereby increasing the rotational speed of the supercharger 32 and increasing turbine efficiency. On the other hand, a second EGR passage 36 equipped with a cooler 17
The EGR gas intake port B is provided downstream of the exhaust turbine 31 in the common exhaust passage 13, and in high load areas, especially low speed and high load areas, relatively low temperature exhaust gas is transferred to the second EGR passage 36.
After being further cooled by the cooler 17, it is returned to the common intake passage 4 on the upstream side of the supercharger 32. Therefore, low-temperature EGR gas is supplied to the engine in the low-speed, high-load range where knocking is particularly likely to occur, thereby preventing knocking and reducing turbine efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す概略的構成図、第2
図〜第4図はその動作の説明に供するグラフ、第5図お
よび第6図は本発明の第2、第3実施例を示す概略的構
成図である。 1・・・エンジン本体   4・・・共通吸気通路7・
・・反ロットル弁   9・・・独立吸気通路12・・
・独立排気通路  18・・・共通排気通路14・・・
触媒コンバータ 15・・・EGR通路15A・・・第
1分岐通路 15B・・・第2分岐通路16A、16B
・・・EGR弁 17・・・冷却器 19AS19B、29.34・・・ ・・・ダイアフラム式アクチュエータ 21A、21B・・・電磁ソレノイド弁22・・・コン
トロールユニット 23・・・スロットル開度センサ 25・・・過給機(スーパーチャージャ)26・・・イ
ンタークーラ 30・・・ターボチャージャ 31・・・排気タービン  32・・・過給機36A・
・・第1EGR通路 36B・・・第2EGR通路
FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention, and FIG.
4 to 4 are graphs for explaining the operation, and FIGS. 5 and 6 are schematic configuration diagrams showing second and third embodiments of the present invention. 1... Engine body 4... Common intake passage 7.
...Anti-throttle valve 9...Independent intake passage 12...
・Independent exhaust passage 18...Common exhaust passage 14...
Catalytic converter 15... EGR passage 15A... First branch passage 15B... Second branch passage 16A, 16B
...EGR valve 17...Cooler 19AS19B, 29.34...Diaphragm actuator 21A, 21B...Electromagnetic solenoid valve 22...Control unit 23...Throttle opening sensor 25... ...Supercharger 26...Intercooler 30...Turbocharger 31...Exhaust turbine 32...Supercharger 36A...
...First EGR passage 36B...Second EGR passage

Claims (1)

【特許請求の範囲】 1、排ガスの一部を排ガス還流通路を通じて吸気系に還
流するエンジンの排ガス還流装置において、上記排ガス
還流通路に少なくともエンジンの高負荷時において還流
ガスを冷却する冷却手段を設けたことを特徴とするエン
ジンの排ガス還流装置。 2、上記冷却手段を設けた第1の排ガス還流通路と、冷
却手段を設けない第2の排ガス還流通路とを備え、上記
第2の排ガス還流通路を通る冷却された還流ガスの量を
負荷の増大に応じて増大させる制御手段を設けた請求項
1記載の排ガス還流装置。 3、吸気冷却用インタークーラを吸気通路に備えた過給
機付きエンジンにおいて、上記還流ガスの吸気系への導
入口を吸気通路の上記インタークーラの上流側に開口さ
せた請求項1記載の排ガス還流装置。 4、ターボチャージャ付きエンジンにおいて、低速高負
荷時に上記還流ガスを排気タービンの下流から吸気系に
還流するようにした請求項1記載の排ガス還流装置。
[Claims] 1. In an exhaust gas recirculation device for an engine that recirculates part of the exhaust gas to the intake system through an exhaust gas recirculation passage, the exhaust gas recirculation passage is provided with a cooling means for cooling the recirculation gas at least when the engine is under high load. An engine exhaust gas recirculation device characterized by: 2. A first exhaust gas recirculation passage provided with the cooling means and a second exhaust gas recirculation passage not provided with the cooling means are provided, and the amount of the cooled recirculation gas passing through the second exhaust gas recirculation passage is controlled by the load. 2. The exhaust gas recirculation device according to claim 1, further comprising a control means for increasing the amount in accordance with the increase. 3. The exhaust gas according to claim 1, wherein in a supercharged engine having an intercooler for cooling intake air in an intake passage, an inlet for introducing the recirculated gas into the intake system is opened on the upstream side of the intercooler in the intake passage. Reflux device. 4. The exhaust gas recirculation system according to claim 1, wherein in a turbocharged engine, the recirculated gas is recirculated from downstream of the exhaust turbine to the intake system at low speed and high load.
JP2298920A 1990-11-06 1990-11-06 Exhaust gas recirculation device for engine Pending JPH04175453A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2298920A JPH04175453A (en) 1990-11-06 1990-11-06 Exhaust gas recirculation device for engine
EP98103158A EP0849453B1 (en) 1990-11-06 1991-11-05 Exhaust gas recirculation system for an internal combusion engine
DE69133098T DE69133098T2 (en) 1990-11-06 1991-11-05 Exhaust gas recirculation system for an internal combustion engine
EP91118856A EP0489263B1 (en) 1990-11-06 1991-11-05 Exhaust gas recirculation system for an internal combustion engine
US07/788,128 US5203311A (en) 1990-11-06 1991-11-05 Exhaust gas recirculation system for an internal combustion engine
DE69130976T DE69130976T2 (en) 1990-11-06 1991-11-05 Exhaust gas recirculation system for an internal combustion engine
KR1019910019627A KR920010146A (en) 1990-11-06 1991-11-06 Engine Exhaust Reflux Device
KR1019950032021A KR960003688B1 (en) 1990-11-06 1995-09-27 Exhaust gas recirculation system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2298920A JPH04175453A (en) 1990-11-06 1990-11-06 Exhaust gas recirculation device for engine

Publications (1)

Publication Number Publication Date
JPH04175453A true JPH04175453A (en) 1992-06-23

Family

ID=17865892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2298920A Pending JPH04175453A (en) 1990-11-06 1990-11-06 Exhaust gas recirculation device for engine

Country Status (1)

Country Link
JP (1) JPH04175453A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682854A (en) * 1994-03-07 1997-11-04 Komatsu Ltd. Variable compression ratio engine
EP1065365A3 (en) * 1999-06-29 2001-07-11 DaimlerChrysler AG Exhaust gas recirculation valve
FR2859503A1 (en) * 2003-09-09 2005-03-11 Volkswagen Ag Diesel exhaust gas treatment comprises use of recirculation device and particle filter, where cooler in recirculation line is controlled as function of operating state of engine
JP2008069689A (en) * 2006-09-13 2008-03-27 Mitsubishi Motors Corp Egr device for internal combustion engine
WO2008050900A1 (en) * 2006-10-25 2008-05-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus for an internal combustion engine
JP2008223710A (en) * 2007-03-15 2008-09-25 Toyota Motor Corp Exhaust recirculation device of internal combustion engine
FR2972494A1 (en) * 2011-03-09 2012-09-14 Peugeot Citroen Automobiles Sa Powertrain for car, has pneumatic circuit activating short-circuit valve and including nozzle arranged in inlet manifold of internal combustion engine, where nozzle is adapted to maintain pressure of circuit during shut-down of engine
JP2013204614A (en) * 2012-03-27 2013-10-07 Denso Corp Diaphragm device
JP2014224474A (en) * 2013-05-15 2014-12-04 マツダ株式会社 Exhaust gas recirculation device for engine
JP2014224475A (en) * 2013-05-15 2014-12-04 マツダ株式会社 Exhaust gas recirculation device for engine
CN109915287A (en) * 2019-03-27 2019-06-21 潍柴动力股份有限公司 EGR gas temperature control method and relevant apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19581571B4 (en) * 1994-03-07 2008-04-10 Kabushiki Kaisha Komatsu Seisakusho Motor with variable compression ratio
US5682854A (en) * 1994-03-07 1997-11-04 Komatsu Ltd. Variable compression ratio engine
EP1065365A3 (en) * 1999-06-29 2001-07-11 DaimlerChrysler AG Exhaust gas recirculation valve
US6386188B1 (en) 1999-06-29 2002-05-14 Daimlerchrysler Ag Exhaust gas recirculation valve
FR2859503A1 (en) * 2003-09-09 2005-03-11 Volkswagen Ag Diesel exhaust gas treatment comprises use of recirculation device and particle filter, where cooler in recirculation line is controlled as function of operating state of engine
JP4671044B2 (en) * 2006-09-13 2011-04-13 三菱自動車工業株式会社 EGR device for internal combustion engine
JP2008069689A (en) * 2006-09-13 2008-03-27 Mitsubishi Motors Corp Egr device for internal combustion engine
WO2008050900A1 (en) * 2006-10-25 2008-05-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus for an internal combustion engine
JP2008223710A (en) * 2007-03-15 2008-09-25 Toyota Motor Corp Exhaust recirculation device of internal combustion engine
FR2972494A1 (en) * 2011-03-09 2012-09-14 Peugeot Citroen Automobiles Sa Powertrain for car, has pneumatic circuit activating short-circuit valve and including nozzle arranged in inlet manifold of internal combustion engine, where nozzle is adapted to maintain pressure of circuit during shut-down of engine
JP2013204614A (en) * 2012-03-27 2013-10-07 Denso Corp Diaphragm device
JP2014224474A (en) * 2013-05-15 2014-12-04 マツダ株式会社 Exhaust gas recirculation device for engine
JP2014224475A (en) * 2013-05-15 2014-12-04 マツダ株式会社 Exhaust gas recirculation device for engine
CN109915287A (en) * 2019-03-27 2019-06-21 潍柴动力股份有限公司 EGR gas temperature control method and relevant apparatus

Similar Documents

Publication Publication Date Title
EP0489263B1 (en) Exhaust gas recirculation system for an internal combustion engine
US5617726A (en) Cooled exhaust gas recirculation system with load and ambient bypasses
JP4323680B2 (en) Exhaust gas recirculation control device for internal combustion engine
US7080635B2 (en) Intake and exhaust device for multi-cylinder engine
US20110162360A1 (en) Egr mixer for high-boost engine systems
US20100050999A1 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP3040153B2 (en) Engine exhaust gas recirculation system
JP2007315230A (en) Apparatus for recirculating exhaust gas of internal combustion engine
KR20150074276A (en) Engine Cooling System
JP5459106B2 (en) Automotive diesel engine
JPH04175453A (en) Exhaust gas recirculation device for engine
JP3203445B2 (en) Exhaust gas recirculation system for turbocharged engine
RU2704592C1 (en) Control method and control device for internal combustion engine
CN116838505A (en) EGR (exhaust gas recirculation) system of hybrid supercharged engine and control method
JP3652808B2 (en) Exhaust gas recirculation system for multi-cylinder engine with supercharger
US20210310446A1 (en) Boosted engine
JP2010223077A (en) Internal combustion engine
JP2969287B2 (en) Engine exhaust gas recirculation system
JP3991432B2 (en) EGR device
JP2004124745A (en) Turbocharged engine
JP3531201B2 (en) Exhaust recirculation system for turbocharged engines
JP3371324B2 (en) Exhaust gas recirculation device
JPH11303687A (en) Egr system for supercharged engine
JP2006022808A (en) Intake and exhaust device of multi-cylinder engine
JP2007016682A (en) Control device for compression self-ignition internal combustion engine