JPH04173947A - Method for hot-dip galvanizing high strength steel - Google Patents

Method for hot-dip galvanizing high strength steel

Info

Publication number
JPH04173947A
JPH04173947A JP30181690A JP30181690A JPH04173947A JP H04173947 A JPH04173947 A JP H04173947A JP 30181690 A JP30181690 A JP 30181690A JP 30181690 A JP30181690 A JP 30181690A JP H04173947 A JPH04173947 A JP H04173947A
Authority
JP
Japan
Prior art keywords
plating
hot
steel
cracking
galvanizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30181690A
Other languages
Japanese (ja)
Inventor
Takahiro Kushida
隆弘 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30181690A priority Critical patent/JPH04173947A/en
Publication of JPH04173947A publication Critical patent/JPH04173947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To manufacture a corrosion resistant and high strength hot-dip galvanized steel free from the generation of galvanizing cracks and excellent in the adhesion to galvanizing, at the time of applying hot-dip galvanizing for rust proofing to a steel for large sized welding structures, by incorporating specified small amounts of Cd, Sn and Al into a hot-dip galvanizing bath. CONSTITUTION:At the time of applying hot-dip galvanizing for rust proofing to a steel for high strength large sized welding structures having >=65kg/mm<2> strength, a hot-dip galvanizing bath having a compsn. contg., by weight, <0.10% Cd, <0.10% Sn and <0.05% Al and in which their total content is regulated to 0.05%<=Cd+Sn+Al<=0.15% is used. A steel for large sized welding structures free from the generation of gavanizing cracks even in a large sized steel of a 65kg/mm<2> class having high galvanizing sensitivity as well as having high adnesion to galvanizing and excellent corrosion resistance can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、送電鉄塔あるいは橋梁などの大型溶接構造物
の防錆に主として用いられる高強度鋼材−の溶融Znメ
ッキ方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for hot-dip Zn plating of high-strength steel materials mainly used for rust prevention of large welded structures such as power transmission towers or bridges.

〔従来の技術〕[Conventional technology]

鋼材の防錆という観点から、例えばZnをメッキする手
段が広(用いられている。Znをメッキする方法には、
電気メッキによるものと溶融メッキによるものの2種類
がある。複雑な形状の大型溶接構造物は、もっばら後者
の溶融メッキ方法による。この方法は、約450 ’C
の溶融Zn中に鋼材を浸漬してメッキを行うものである
From the viewpoint of rust prevention of steel materials, for example, methods of plating Zn are widely used.
There are two types: one by electroplating and one by hot-dip plating. Large welded structures with complex shapes are mostly produced by the latter hot-dip plating method. This method works at approximately 450'C
Plating is performed by immersing the steel material in molten Zn.

溶接構造物の溶融Znメッキにおいては、主として溶接
熱影響部(以下HAZと称す)に粒界割れが発生するこ
とがある。これは、粗粒化したHAZの粒界への液体Z
nの侵入に、溶接部の残留応力や浴浸漬時に発生する熱
応力が重畳して生じる。このZnメッキ割れは、一般に
高強度材はど多く発生する傾向を示し、HAZ硬さが2
60〜270Hvを超えると極めて感受性が高くなる。
In hot-dip Zn plating of welded structures, intergranular cracking may occur mainly in the weld heat affected zone (hereinafter referred to as HAZ). This is due to the liquid Z flowing to the grain boundaries of the coarse-grained HAZ.
Residual stress in the welded portion and thermal stress generated during bath immersion are superimposed on the invasion of n. This Zn plating cracking generally tends to occur more often in high-strength materials, and HAZ hardness is 2.
If it exceeds 60-270 Hv, sensitivity becomes extremely high.

溶接構造物の溶融ZnメッキにおけるZnメッキ割れに
ついては、その因子である応力と材料の研究は広く行わ
れている。それらの成果に基づき、Znメッキ割れ防止
法として、溶接部の残留応力除去や、熱応力の少ない浴
浸漬法、構造物の形状などが種々工夫されている。また
、材質面からも、耐Znメッキ割れ性に優れる鋼材など
が開発されている(例えば特公平2−5814号公報)
With regard to Zn plating cracking in hot-dip Zn plating of welded structures, studies on stress and materials, which are the factors thereof, have been widely conducted. Based on these results, various methods have been devised to prevent Zn plating from cracking, such as removing residual stress from welds, bath immersion with less thermal stress, and the shape of structures. In addition, from the material standpoint, steel materials with excellent Zn plating cracking resistance have been developed (for example, Japanese Patent Publication No. 2-5814).
.

しかし、Znメッキ割れには、上記因子だけでなくメッ
キに用いられる熔融Znの性質も大きく影響していると
考えられる。それにもかかわらず、熔融Znに注目した
Znメッキ割れの研究は少ない。僅かに文献「高温学会
誌、4 VoC13,に4 (1987)PL43〜1
52に、溶融ZnとZnメッキ割れとの関係に触れた報
告が見られる程度であり、溶融Znの観点からの積極的
なZnメッキ割れ防止法は皆無といえる。
However, cracks in Zn plating are thought to be greatly influenced not only by the above factors but also by the properties of molten Zn used for plating. Despite this, there are few studies on Zn plating cracking that have focused on molten Zn. There are only a few references: Journal of the Society of High Temperature Science, 4 VoC13, 4 (1987) PL43-1
No. 52, there is only a report that mentions the relationship between molten Zn and Zn plating cracking, and it can be said that there is no active method for preventing Zn plating cracking from the perspective of molten Zn.

上記文献によると、溶融Zn中に含まれるCdやSnが
、粒界へのZnの侵入を加速するとされており、Znメ
ンキ割れ感受性がCdやSnによって高くなり、Cdや
Snを含まない純Zn中でZnメッキ割れ感受性が最も
低いことが示されている。また、CdやSnのこのよう
な効果は、溶融Znメッキ時に形成されるFe−Zn金
属間化合物の生成と関係があると考察されている。簡単
に言えば、溶融Zn中のCdやSnが綱とZn浴の界面
に形成されるFe−Zn金属間化合物の成長を抑制する
ので、溶融ZnO綱粒界への侵入が加速され、結果とし
てZnメッキ割れ感受性が高くなるというものである。
According to the above literature, it is said that Cd and Sn contained in molten Zn accelerate the penetration of Zn into grain boundaries, and that Cd and Sn increase Zn cracking susceptibility, and that pure Zn containing no Cd and Sn increases Zn cracking susceptibility. It has been shown that Zn plating cracking sensitivity is the lowest among them. It is also considered that such effects of Cd and Sn are related to the generation of Fe-Zn intermetallic compounds formed during hot-dip Zn plating. Simply put, Cd and Sn in molten Zn suppress the growth of Fe-Zn intermetallic compounds formed at the interface between the wire and the Zn bath, accelerating their penetration into the molten ZnO wire grain boundaries, and as a result. This increases the Zn plating susceptibility to cracking.

なお、CdやSnの含有量の少ない純Znは電解法によ
って得ることができる。これは、工業的に利用可能であ
るが、溶融Znメンキに通常使用される蒸留Znに比し
て高価である。
Note that pure Zn with a low content of Cd and Sn can be obtained by an electrolytic method. Although it is commercially available, it is more expensive than distilled Zn, which is commonly used for molten Zn coatings.

〔発明が解決しようとする課題] ところで、従来開発されている耐Znメッキ割れに優れ
た鋼材は、いずれも強度60kg/mmz級までである
。しかし、最近は溶接構造物の大型化、鋼材使用量低減
による低コスト化が著しく進み、強度65kg/m+”
吸収上の鋼材も望まれている。
[Problems to be Solved by the Invention] By the way, conventionally developed steel materials with excellent Zn plating cracking resistance all have a strength of up to 60 kg/mmz class. However, recently, welded structures have become larger and costs have been significantly reduced by reducing the amount of steel used, and the strength has increased to 65 kg/m+.
Absorbent steel materials are also desired.

ところが、Znメッキ割れ感受性は、前述した通り高強
度鋼材はど高くなる。
However, as mentioned above, the susceptibility to Zn plating cracking increases with high-strength steel materials.

一方、構造物の溶融Znメッキでは、耐Znメ、キ割れ
性以外に、Znメッキの密着性も等しく重要視される。
On the other hand, in hot-dip Zn plating of structures, in addition to Zn resistance and cracking properties, adhesion of Zn plating is equally important.

というのは、部分的にしろZnメッキが剥離すると、そ
の箇所はZnメ、キによる耐食性改善効果がほとんどな
く、棟材と同様の腐食速度になり、それで構造物の耐用
年数が決まってしまうからである。従って、構造物の溶
融Znメッキでは、Znメンキ割れの有無の検査以外に
、ハンマーテストなどでZnメッキの密着性が必ず検査
される。
This is because if the Zn plating peels off, even if it is only partially, the Zn coating will have little effect on improving corrosion resistance in that area, and the corrosion rate will be the same as that of the ridge material, which will determine the service life of the structure. It is. Therefore, when hot-dip Zn plating a structure, in addition to inspecting the presence or absence of cracks in the Zn coating, the adhesion of the Zn plating is always inspected by a hammer test or the like.

しかし、そのような事情があるにもががわらず、耐Zn
メンキ割れとZnメンキの密着性との関係について触れ
た報告も、本発明者らの知る限り存在しない。前記文献
によっても、Znメッキ割れに関係しているZn浴中の
CdやSnが、Znメッキ密着性とどのように関係して
いるかは不明である。
However, despite such circumstances, Zn-resistant
As far as the present inventors are aware, there is no report that mentions the relationship between coating cracking and Zn coating adhesion. Even from the above literature, it is unclear how Cd and Sn in the Zn bath, which are related to Zn plating cracking, are related to Zn plating adhesion.

ところが、この点に関し、注目すべき事実が本発明者ら
の研究から明らかになった。それは、Znメッキ割れの
重要因子であるZn浴中のCdやSnが、一方でZnメ
ッキの密着性の改善に寄与するというものである。強度
65kg/閣2級のようなZnメッキ割れの発生しゃす
い高強度鋼材に対しては、Zn浴中からCdやSnを極
力排除することが必要になるが、これはZnメッキの密
着性を確保する点から言えば逆効果になる。鋼材の高強
度化が推進されている大型溶接構造物で、このことが大
きな問題になることは言うまでもない。
However, in this regard, a noteworthy fact has become clear through research conducted by the present inventors. This is because Cd and Sn in the Zn bath, which are important factors in Zn plating cracking, also contribute to improving the adhesion of Zn plating. For high-strength steel materials with a strength of 65 kg/Kaku 2, which are susceptible to Zn plating cracking, it is necessary to exclude Cd and Sn from the Zn bath as much as possible, but this reduces the adhesion of the Zn plating. From the point of view of ensuring security, it will have the opposite effect. Needless to say, this becomes a major problem in large welded structures where steel materials are being made to have higher strength.

本発明の目的は、強度65kg/am”級の高強度材に
も優れた耐Znメッキ割れ性を付与し、しがもZnメン
キの密着性を低下させるおそれがない高強度鋼材の溶融
Znメッキ方法を提供することにある。
The purpose of the present invention is to impart excellent Zn plating cracking resistance even to high-strength materials with a strength of 65 kg/am" class, and to provide hot-dip Zn plating for high-strength steel materials without the risk of reducing the adhesion of Zn coatings. The purpose is to provide a method.

〔課題を解決するための手段〕[Means to solve the problem]

前述した通り、耐Znメッキ割れ性とZnノットの密着
性とは、相反するものであることが本発明者らの研究か
ら明らかになった。即ち、耐メ。
As mentioned above, it has become clear from research by the present inventors that Zn plating cracking resistance and Zn knot adhesion are contradictory. In other words, resistance.

キ割れ性に優れる溶融Znではメッキの密着性が低下し
、密着性がよい溶融Znでは割れ感受性が高まる。
Molten Zn, which has excellent cracking properties, reduces plating adhesion, and molten Zn, which has good adhesion, increases cracking susceptibility.

例えば、純Zn中では、Fe−Zn合金メッキが厚く生
成するので、後述の実施例に示すようなメッキ割れ性試
験でメッキ割れを生じないが、その反面Fe−Zn合金
メンキ相が硬くて脆く、メッキ相中に容易に割れを生し
剥離が起こった。−方、CdとSnをそれぞれ0.1 
w t%ずっ含む蒸留Zn浴中では、Fe−Zn合金メ
ッキ相の生成が抑えられ、Znメッキの密着性は良好な
ものの、メッキ割れ性試験で)IAZにメッキ割れが生
じた。
For example, in pure Zn, Fe-Zn alloy plating is formed thickly, so no plating cracks occur in the plating crackability test shown in the examples below, but on the other hand, the Fe-Zn alloy coating phase is hard and brittle. , cracks easily formed in the plating phase and peeling occurred. - On the other hand, Cd and Sn are each 0.1
In a distilled Zn bath containing 50% by weight, the formation of the Fe-Zn alloy plating phase was suppressed and the adhesion of the Zn plating was good, but plating cracking occurred on IAZ (in the plating cracking test).

また、熱延あるいは冷延コイルの溶融Znメッキでは、
Znメッキの付着量の制御に使用されるAlが、Cdと
Snと同様の作用を示し、且つ少ない量でも、その作用
の大きいことが明らかになった。
In addition, in hot-dip Zn plating of hot-rolled or cold-rolled coils,
It has become clear that Al, which is used to control the amount of Zn plating, exhibits the same effect as Cd and Sn, and that even a small amount has a large effect.

本発明者らは、このような知見事実を背景として、耐Z
nメッキ割れ性とZnメッキの密着性との両立法につい
て鋭意検討した。その結果、Znメッキの密着性を劣化
させず、且つ強度65kg/m”級の高強度材にもZn
メッキ割れを起こさせない適正な量的範囲が、Cd、S
n及びAlに存在することが判明した。
Based on these findings, the present inventors have developed a Z-resistant
A method for achieving both N plating crackability and Zn plating adhesion was intensively studied. As a result, the adhesion of Zn plating does not deteriorate, and Zn can be applied to high-strength materials with a strength of 65 kg/m" class.
The appropriate quantitative range that does not cause plating cracking is Cd, S.
It was found that it exists in n and Al.

本発明は、Cd:O,10wt%以下、Sn:0゜10
wt%以下、Af:0.05wt%以下を含み、かつ、
0.05wt%≦Cd+Sn+A/!≦0.15wt%
を満足し、残部Zn及び不可避不純物からなる溶融Zn
浴に、高強度鋼材を浸漬してメッキすることを特徴とす
る高強度鋼材の溶融Znメッキ方法を要旨とする。
In the present invention, Cd: O, 10 wt% or less, Sn: 0°10
wt% or less, Af: 0.05wt% or less, and
0.05wt%≦Cd+Sn+A/! ≦0.15wt%
Molten Zn that satisfies the following and consists of the remainder Zn and unavoidable impurities
The gist of this invention is a method for hot-dip Zn plating of high-strength steel materials, which is characterized by plating the high-strength steel materials by immersing them in a bath.

〔作  用) 本発明の溶融Znメッキ方法は、Znメッキ割れ感受性
が大きい強度5.5kg/m”以上の高強度鋼材を対象
とし、特に強度65kg/mm”以上のものに対して効
果的である。強度65kg/m+2以上の高強度鋼材で
は、従来有効なZnメッキ割れ防止法がなく、且っZn
メッキ密着性との両立がとりわけ難しい。
[Function] The hot-dip Zn plating method of the present invention targets high-strength steel materials with a strength of 5.5 kg/m" or more and is particularly effective for steel materials with a strength of 65 kg/m" or more, which are highly susceptible to Zn plating cracking. be. For high-strength steel materials with a strength of 65 kg/m+2 or more, there is no effective method to prevent cracking of Zn plating, and
It is particularly difficult to balance this with plating adhesion.

なお、Znメッキ割れ感受性は鋼材強度が低くなるほど
低下するが、Znメッキの密着性は材料強度に依存しな
い。従って、主にZnメッキ密着性の改善のために本発
明法を低強度鋼に適用することは可能である。
Note that although the Zn plating cracking susceptibility decreases as the steel material strength decreases, the adhesion of Zn plating does not depend on the material strength. Therefore, it is possible to apply the method of the present invention to low-strength steel mainly for improving Zn plating adhesion.

溶融Zn浴中のCd、Zn及びAl量については、耐メ
・7キ割れ性を確保するために各量を制限する一方、Z
nメッキの密着性低下を阻止するために総量の確保を行
う。この観点から、Cdは0゜10wt%以下とし、こ
れを超えるとZnメッキ割れ感受性が高くなる。望まし
くは0.08wt%以下である。Snも0.10 w 
t%以下とし、これを超えるとZnメッキ割れ感受性が
高くなる。望ましくは0.08wt%以下である。Al
2はCd。
Regarding the amounts of Cd, Zn, and Al in the molten Zn bath, each amount is limited to ensure metal cracking resistance.
The total amount is secured to prevent the adhesion of n plating from decreasing. From this point of view, the Cd content should be 0°10 wt% or less, and if it exceeds this, the Zn plating will be susceptible to cracking. It is preferably 0.08 wt% or less. Sn is also 0.10w
t% or less; if it exceeds this, the Zn plating becomes susceptible to cracking. It is preferably 0.08 wt% or less. Al
2 is Cd.

Snよりも過敏で、0.05wt%以下とする。0゜0
5wt%を超えると、Znメッキ割れ感受性が高くなり
、望ましくは0.04%以下である。Cd+Sn十A!
については、0.05wt%以上、0゜15wt%以下
とする。0.05wt%未満ではZnメッキの密着性が
低下し、0.15 w t%超ではZnメッキ割れ感受
性が高くなる。このようなCd、Sn、Al量の制御は
、例えば蒸留Zn浴に、電解法で得た純Znを適量混合
することによって可能である。
It is more sensitive than Sn and should be 0.05 wt% or less. 0゜0
When the content exceeds 5 wt%, the Zn plating susceptibility to cracking becomes high, and the content is desirably 0.04% or less. Cd+Sn10A!
The content shall be 0.05 wt% or more and 0°15 wt% or less. If it is less than 0.05 wt%, the adhesion of Zn plating will decrease, and if it exceeds 0.15 wt%, the Zn plating will be susceptible to cracking. Such control of the amounts of Cd, Sn, and Al can be achieved, for example, by mixing an appropriate amount of pure Zn obtained by an electrolytic method into a distilled Zn bath.

〔実施例〕〔Example〕

第1表に示す組成を有する綱を熱間圧延して板厚15■
の強度65kg/■2級高強度鋼板とした。
A steel having the composition shown in Table 1 is hot-rolled to a thickness of 15 cm.
The steel plate was made of grade 2 high-strength steel plate with a strength of 65 kg/■.

第  1  表(wt%) この鋼板から第1図に示すような拘束継手を多数製作し
た。製作された各継手を、塩化アンモニウムと塩化亜鉛
を3=1で混合した50°Cの水溶液に約10分間浸漬
するフラックス処理で前処理した後、第2表に示す各種
組成を有する450°CのZn浴に10分間浸漬した。
Table 1 (wt%) A large number of restraint joints as shown in FIG. 1 were manufactured from this steel plate. Each of the manufactured joints was pretreated with flux treatment by immersing them in an aqueous solution of ammonium chloride and zinc chloride mixed in a ratio of 3=1 at 50°C for about 10 minutes, and then fluxed at 450°C with various compositions shown in Table 2. It was immersed in a Zn bath for 10 minutes.

浴中から取り出した後は空冷をした。試験ビード部を1
0等分して、その断面を検査して割れの有無を調査した
。調査数Nは各浴につき2とした。
After taking it out of the bath, it was air cooled. Test bead part 1
It was divided into 0 equal parts and the cross section was inspected to check for cracks. The number N of investigations was 2 for each bath.

マタ、JISHO401に規定されるハンマ試験でZn
メッキの密着性を調べた。即ち、継手試験に用いたのと
同一の鋼材から10X10c+mの試験板を切り出し、
同様のフラックス処理を施し、450 ’Cの各Zn浴
に10分間浸漬した。その後、第2図に示す試験装置を
用いて試験板のメッキ部分をハンマでそれぞれ30点た
たいてみて、欠点数3以上のメンキが剥離し易いものを
密着性不良(×)、3未満の剥離し難いものを密着性良
好(0)と判断した。
Mata, Zn in the hammer test specified in JISHO401
The adhesion of plating was investigated. That is, a 10x10c+m test plate was cut out from the same steel material used for the joint test,
A similar flux treatment was performed and immersed in each Zn bath at 450'C for 10 minutes. Then, using the testing device shown in Figure 2, the plated parts of the test plate were struck at 30 points each with a hammer, and those with 3 or more defects where the coating easily peeled off were marked as poor adhesion (x), and those with less than 3 defects were marked with poor adhesion (x). Those that were difficult to peel off were judged to have good adhesion (0).

これらの試験結果を第2表に示す。The results of these tests are shown in Table 2.

第  2  表(1) 第  2  表(2) 比較例1〜6は、Cd、Sn、Aj!の各量が少ないの
で密着性に劣る。本発明例7〜17は、Cd、Sn、A
lの各量及び総量が適正範囲にあるので、密着性及び耐
Znメッキ割れ性のいずれにも優れる。比較例18〜2
3は、Cd、Sn、Alの総量が0.15%を超えるの
で耐Znメッキ割れ性に劣る。比較例24〜27は、C
d、Sn、ANの各量が適正値を超えるので耐Znメ、
キ割れ性に劣る。
Table 2 (1) Table 2 (2) Comparative Examples 1 to 6 are Cd, Sn, Aj! Since the amount of each is small, the adhesion is poor. Examples 7 to 17 of the present invention are Cd, Sn, A
Since each amount and the total amount of 1 are within appropriate ranges, both adhesion and Zn plating cracking resistance are excellent. Comparative examples 18-2
Sample No. 3 has poor Zn plating cracking resistance because the total amount of Cd, Sn, and Al exceeds 0.15%. Comparative Examples 24 to 27 are C
Since each amount of d, Sn, and AN exceeds the appropriate value, Zn resistance method,
Poor cracking resistance.

(発明の効果〕 本発明の高強度鋼材の溶融Znメッキ方法は、Znメッ
キ感受性の高い強度65kg/I11”級鋼材にもメッ
キ割れを発生させず、且つ優れたZnメッキ密着性を確
保する。従って、大型溶接構造物の耐食性が改善され、
使用鋼材の高強度化による溶接構造物の高強度化、軽量
化も可能になる。
(Effects of the Invention) The hot-dip Zn plating method for high-strength steel materials of the present invention does not cause plating cracks even on 65 kg/I11'' class steel materials that are highly sensitive to Zn plating, and ensures excellent Zn plating adhesion. Therefore, the corrosion resistance of large welded structures is improved,
By increasing the strength of the steel used, it becomes possible to increase the strength and reduce the weight of welded structures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は拘束継手試験体の構造を示す模式図、第2図は
ハンマ試験に用いたハンマ試験装置の模式図である。
FIG. 1 is a schematic diagram showing the structure of the restrained joint test specimen, and FIG. 2 is a schematic diagram of the hammer test device used in the hammer test.

Claims (1)

【特許請求の範囲】[Claims] (1)Cd:0.10wt%以下、Sn:0.10wt
%以下、Al:0.05wt%以下を含み、かつ、0.
05wt%≦Cd+Sn+Al≦0.15wt%を満足
し、残部Zn及び不可避不純物からなる溶融Zn浴に、
高強度鋼材を浸漬してメッキすることを特徴とする高強
度鋼材の溶融Znメッキ方法。
(1) Cd: 0.10wt% or less, Sn: 0.10wt
% or less, Al: 0.05 wt% or less, and 0.05 wt% or less.
In a molten Zn bath satisfying 0.5wt%≦Cd+Sn+Al≦0.15wt% and consisting of the balance Zn and unavoidable impurities,
A method for hot-dip Zn plating of high-strength steel materials, characterized by immersing and plating the high-strength steel materials.
JP30181690A 1990-11-06 1990-11-06 Method for hot-dip galvanizing high strength steel Pending JPH04173947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30181690A JPH04173947A (en) 1990-11-06 1990-11-06 Method for hot-dip galvanizing high strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30181690A JPH04173947A (en) 1990-11-06 1990-11-06 Method for hot-dip galvanizing high strength steel

Publications (1)

Publication Number Publication Date
JPH04173947A true JPH04173947A (en) 1992-06-22

Family

ID=17901508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30181690A Pending JPH04173947A (en) 1990-11-06 1990-11-06 Method for hot-dip galvanizing high strength steel

Country Status (1)

Country Link
JP (1) JPH04173947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070851A (en) * 2008-08-21 2010-04-02 Kawada Kogyo Kk Hot-dip galvanized member superior in coatability by thermal spraying

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070851A (en) * 2008-08-21 2010-04-02 Kawada Kogyo Kk Hot-dip galvanized member superior in coatability by thermal spraying

Similar Documents

Publication Publication Date Title
RU2413600C2 (en) Wire from stainless steel with flux core for welding zinc-coated steel sheets
TWI452170B (en) Hot-dip galvanizing steel sheet and method for manufacturing a coated steel sheet
JP2012007245A (en) Tin-plating or aluminum-plating surface treated steel material with excellent corrosion resistance
US20240084833A1 (en) Welded joint and automobile member
JP7124990B1 (en) Welded joints and auto parts
JP2011208264A (en) Vehicle chassis member excellent in corrosion resistance and method of manufacturing the same
US11584981B2 (en) Plated steel sheet
JP5593810B2 (en) Zn-Mg plated steel sheet and method for producing the same
KR20210071631A (en) Galvanizing steel sheet having excelent bendability and corrosion resistance, and manufacturing method thereof
JP2825671B2 (en) Hot-dip Zn-Mg-Al-Sn plated steel sheet
KR102402239B1 (en) Welded structural member having excellent crack resistance and manufacturing method of the same
JP2012012649A (en) Al-zn based alloy plated steel having excellent weldability
WO2020213680A1 (en) Plated steel material
JPH0517860A (en) Hot-dip galvanizing method
JP2002241916A (en) Plated steel sheet having excellent corrosion resistance, workability and weldability and production method therefor
JPH04173947A (en) Method for hot-dip galvanizing high strength steel
KR20200093048A (en) High strength alloyed electro-galvanized steel sheet and manufacturing method thereof
WO2004033745A1 (en) HOT-DIPPED Sn-Zn PLATING PROVIDED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY
JP2006089787A (en) METHOD FOR PRODUCING Zn-Al-Mg ALLOY PLATED STEEL SHEET HAVING EXCELLENT HOT DIP METAL EMBRITTLEMENT CRACK RESISTANCE
JP2851651B2 (en) High-strength steel with excellent hot-dip galvanizing resistance
JPH03197660A (en) Method for hot dip galvanizing welded steel structure
WO2023191027A1 (en) Plated steel wire
JP2711554B2 (en) Hot dip galvanizing prevention method
JPH05311372A (en) Galvannealed steel sheet for adhesive structure
JP3382731B2 (en) Steel with excellent seawater corrosion resistance