JPH04172140A - High tension brass fine diameter tube and its manufacture - Google Patents

High tension brass fine diameter tube and its manufacture

Info

Publication number
JPH04172140A
JPH04172140A JP30027790A JP30027790A JPH04172140A JP H04172140 A JPH04172140 A JP H04172140A JP 30027790 A JP30027790 A JP 30027790A JP 30027790 A JP30027790 A JP 30027790A JP H04172140 A JPH04172140 A JP H04172140A
Authority
JP
Japan
Prior art keywords
weight
diameter
pipe
less
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30027790A
Other languages
Japanese (ja)
Inventor
Kazuichi Hamada
濱田 和一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP30027790A priority Critical patent/JPH04172140A/en
Publication of JPH04172140A publication Critical patent/JPH04172140A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain excellent high temperature wear resistance, heat resistance, heat/fatigue resistance and heat conductivity and to prevent the central hole from being eccentric by specifying the composition of high tension brass fine diameter pipe. CONSTITUTION:The tube composition is, by weight, 60.0-64.0% Cu, 1.5-3.5% Al, 2.0-4.0% Mn, <=1.0% Cr, <=0.1% Ni, <=1.0% Pb, <=1.0% Fe, the balance Zn. Accordingly, the structure in which the intermetallic compound generated by mutually reacting the Mn-Si compound with Cr, Ni, Fe is distributed uniformly, and finely in the matrix which is improved in hardness by entering Zn into solid solution, is obtained. Therefore, the heat conductivity with Cu itself is not deteriorated especially, high temperature heat resistance is improved remarkably, and excellent heat resistance and heat fatigue resistance are obtained, further Al is entered into solid solution, so further excellent heat resistance especially in the oxidation atomosphere is displayed, and the cutting property and the comformability are improved by adding Pb.

Description

【発明の詳細な説明】 「産業上の利用分野j この発明は高力黄銅製細径パイプおよびその製造方法に
係わり、特に、産業機械の軸受等に利用されるものに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-strength brass small-diameter pipe and a method for manufacturing the same, and particularly relates to a pipe for use in bearings of industrial machinery.

「従来の技術」 この種の軸受として、例えば、自動車のターボチャージ
ャー用軸受が挙げられる。この軸受は細径の円筒状をな
しており、その内部にメインシャフトがラジアル方向に
摺動自在に支持されるようになっている。
"Prior Art" An example of this type of bearing is a bearing for an automobile turbocharger. This bearing has a cylindrical shape with a small diameter, and the main shaft is supported within the bearing so as to be slidable in the radial direction.

上記軸受は、通常、青銅、黄銅によって形成されている
が、近年、エンジンの高性能化および高速化に伴って、
ターボチャージャーが高温化するため、特に、高温耐摩
耗性、耐熱性および耐熱疲労性に優れた素材からなる軸
受の開発が望まれている。
The above bearings are usually made of bronze or brass, but in recent years, with the increase in performance and speed of engines,
As turbochargers become hotter, it is particularly desirable to develop bearings made of materials that have excellent high-temperature wear resistance, heat resistance, and thermal fatigue resistance.

ところで、上記のような特殊高力黄銅製の軸受を製造す
るには、基本的にこの種の高力黄銅は冷間加工が困難で
あるので、大径のパイプから温間引抜きで形成すること
が考えられるが、この場合、400°C以上の高い温度
で引き抜きを行わなければならないので、装置および潤
滑面で問題がある。
By the way, in order to manufacture bearings made of special high-strength brass as mentioned above, basically it is difficult to cold-work this kind of high-strength brass, so it must be formed by warm drawing from a large-diameter pipe. However, in this case, drawing must be performed at a high temperature of 400° C. or higher, which poses problems in terms of equipment and lubrication.

そこで、−船釣には、丸棒押出後、この丸棒の中心部に
切削加工により穴を明けることにより製造していた。
Therefore, for boat fishing, after extruding a round bar, a hole is made in the center of the round bar by cutting.

「発明が解決しようとする課題」 しかしながら、上記のように切削加工で穴明けを行うと
、特に、上記の高力黄銅製リングは被削性が悪(、充分
な精度が得られないという問題があった。また、切削に
より穴を形成するので、加工硬化が期待できず高強度が
得られないという問題があった。
"Problems to be Solved by the Invention" However, when drilling holes by cutting as described above, the above-mentioned high-strength brass ring has poor machinability (and sufficient precision cannot be obtained). In addition, since the holes are formed by cutting, work hardening cannot be expected and high strength cannot be obtained.

「発明の目的」 この発明は上記事情に鑑みてなされたものであり、高温
耐摩耗性、耐熱性、耐熱疲労性および熱伝導性に優れる
とともに、中心部の穴の偏心を防止できかつ高強度の高
力黄銅製細径パイプおよびその製造方法を提供すること
を目的としている。
``Purpose of the Invention'' This invention was made in view of the above circumstances, and has excellent high-temperature wear resistance, heat resistance, thermal fatigue resistance, and thermal conductivity, as well as being able to prevent eccentricity of the hole in the center and having high strength. The purpose of the present invention is to provide a high-strength brass small-diameter pipe and a method for manufacturing the same.

「課題を解決するための手段」 上記目的を達成するために、この発明の請求項1の高力
黄銅製細径パイプは、円筒状をなし、かつその成分組成
が、 Cu:60.0〜64.0重量%、Aa:1.5〜35
重量%、M n : 2 、 0〜4 、0重量%、C
r: 1 、0重量%以下、Ni:1.Of!量%以下
、Pb:1.0重量%以下、F e: 1 、0重量%
以下、Zn;残り、からなるものである。
"Means for Solving the Problems" In order to achieve the above object, the high-strength brass small diameter pipe according to claim 1 of the present invention has a cylindrical shape and has a component composition of Cu: 60.0 to 60.0. 64.0% by weight, Aa: 1.5-35
Weight %, Mn: 2, 0-4, 0 weight %, C
r: 1, 0% by weight or less, Ni: 1. Of! % or less, Pb: 1.0% by weight or less, Fe: 1, 0% by weight
Hereinafter, it consists of Zn; the rest.

また、請求項2の高力黄銅製細径パイプの製造方法は、
高力黄銅製のパイプに、2個以上のロールまたはボール
を回転させつつ圧接して100〜400℃で転造加工を
施すことにより、上記パイプの径を縮径してなり、上記
高力黄銅の成分組成を、 Cu:60.0〜64.0重量%、/l:1.5〜3゜
5重量%、Mれ12.0〜4.0重量%、Cr:1.0
重量%以下、N i: 1 、0重量%以下、P b:
 1 、 OfI重量%下、Fe:1.0重量%以下、
Zi、残り、にしたものである 「作用」 この発明の高力黄銅製細径パイプにあっては、Znが固
溶することによって硬さが向上した素地に、Mn−3目
ヒ合物とCrs N rs F eとの相互反応によっ
て生じる金属間化合物が均一微細に共存分散した組織を
もつようになることから、Cu自体によってもたらされ
る熱伝導性が損なわれることなく、特に、上記金属間化
合物の作用で高温耐摩耗性が著しく向上するようになり
、かつ優れた耐熱性および耐熱疲労性も有し1.さらに
、AQを含有させることにより、これが素地に固溶して
、特に酸化性雰囲気で一段と優れた耐熱性を示すように
なる。また、Pbを添加することにより切削性およびな
じみ性が向上する。
Furthermore, the method for manufacturing a high-strength brass small-diameter pipe according to claim 2 includes:
The diameter of the high-strength brass pipe is reduced by press-welding two or more rolls or balls while rotating at 100 to 400°C to reduce the diameter of the high-strength brass pipe. The component composition is as follows: Cu: 60.0-64.0% by weight, /l: 1.5-3°5% by weight, M 12.0-4.0% by weight, Cr: 1.0
Weight % or less, N i: 1, 0 weight % or less, P b:
1, OfI weight% or less, Fe: 1.0 weight% or less,
In the high-strength brass small-diameter pipe of the present invention, a Mn-triacetate compound is added to the base material whose hardness has been improved by solid solution of Zn. Since the intermetallic compounds produced by the interaction with CrsNrsFe have a structure in which they coexist and disperse in a uniform and fine manner, the thermal conductivity provided by Cu itself is not impaired, and in particular, the intermetallic compounds The high temperature wear resistance is significantly improved by the action of 1. It also has excellent heat resistance and thermal fatigue resistance. Furthermore, by containing AQ, it is solid-dissolved in the base material and exhibits even more excellent heat resistance, especially in an oxidizing atmosphere. Furthermore, the addition of Pb improves machinability and conformability.

また、高力黄銅製細径パイプの製造方法にあっては、ロ
ールまたはボールが回転および公転しつつパイプの外周
部に圧接して、このパイプを縮径することにより、肉厚
が均一でかつ中心部の穴の偏心が殆ど無い高力黄銅製細
径パイプを製造する。
In addition, in the method for manufacturing small-diameter high-strength brass pipes, rolls or balls rotate and revolve while pressing against the outer periphery of the pipe to reduce the diameter of the pipe, resulting in uniform wall thickness and To manufacture a high-strength brass small-diameter pipe with almost no eccentricity in the center hole.

また、パイプに圧縮加工が加わるので、加工硬化が生じ
るとともに組織がより均一かして高強度の高力黄銅製細
径パイプが得られる。なお、成分組成による作用は上記
と同様である。
Furthermore, since the pipe is subjected to compression processing, work hardening occurs and the structure becomes more uniform, resulting in a high-strength, high-strength brass small-diameter pipe. Note that the effect depending on the component composition is the same as above.

ここで、上記のように成分組成を限定した理由を説明す
る。
Here, the reason for limiting the component composition as described above will be explained.

(a)AQ2 ΔQ酸成分は、素地に固溶して強度を高めるとともに、
特に、酸化性雰囲気での耐熱性を一段と向上させる作用
があるが、その含有量が1.5重量%未満では所望の耐
熱性向上効果が得られず、一方、3.5重量%を越える
と、熱伝導性に低下傾向が現れるとともに、材質の脆化
を生じることから、その含有量を1.5〜3.5重量%
と定めた。
(a) AQ2 ΔQ acid component is dissolved in the base material to increase strength,
In particular, it has the effect of further improving heat resistance in an oxidizing atmosphere, but if the content is less than 1.5% by weight, the desired effect of improving heat resistance cannot be obtained, whereas if it exceeds 3.5% by weight, , the thermal conductivity tends to decrease and the material becomes brittle, so its content is reduced to 1.5 to 3.5% by weight.
It was determined that

(b)Mn Mn成分は、Siと化合してMn−Si化合物を生成し
、このMn−Si化合物とCr、 Ni、 Feとの間
で金属間化合物を形成して高温耐摩耗性を向上させる作
用があるが、その含有量が2.0重量%未満では所望の
高温耐摩耗性を確保することができず、一方、4.0重
量%を越えると、熱伝導性が低下するとともに、材質の
脆化を生じることから、その含有量を2.0〜4.0重
量%に定めた。
(b) Mn The Mn component combines with Si to produce a Mn-Si compound, and forms an intermetallic compound between this Mn-Si compound and Cr, Ni, and Fe to improve high-temperature wear resistance. However, if the content is less than 2.0% by weight, the desired high-temperature wear resistance cannot be ensured, while if it exceeds 4.0% by weight, the thermal conductivity decreases and the material quality deteriorates. Since this causes embrittlement, its content is set at 2.0 to 4.0% by weight.

(c)Si Si成分は、Mnと化合してMn−Si化合物を生成し
、これが上記と同様にして金属間化合物を形成して高温
耐摩耗性を向上させる作用があるが、その含有量が0.
5重量%未満では所望の高温耐摩耗性を確保することが
できず、一方、2.0重量%を越えると、熱伝導性が低
下するとともに、材質の脆化を生じることから、その含
有量をO15〜2.0重量%に定めた。
(c) Si The Si component combines with Mn to produce an Mn-Si compound, which forms an intermetallic compound in the same manner as above and has the effect of improving high-temperature wear resistance, but the content is 0.
If the content is less than 5% by weight, the desired high-temperature wear resistance cannot be ensured, while if it exceeds 2.0% by weight, the thermal conductivity will decrease and the material will become brittle. was set at 15 to 2.0% by weight of O.

(cl)Cr、 Ni%Fe これらの成分は、それぞれ上記Mn−Si化合物との間
で金属間化合物を形成して高温耐摩耗性を向上させる作
用があるが、それぞれの含有量が1゜0重量%を越える
と、溶解によっても合金化せず、金属元素として残存す
るので材質の性能を害することから、その含有量を1.
0重量%以下に定めた。
(cl) Cr, Ni%Fe These components each have the effect of forming an intermetallic compound with the above Mn-Si compound to improve high-temperature wear resistance, but when the content of each is 1°0 If it exceeds 1% by weight, it will not be alloyed even when melted and will remain as a metallic element, impairing the performance of the material, so the content should be set to 1.
The content was set at 0% by weight or less.

(e)Pb Pb成分は、合金の切削性およびなじみ性を向上させる
作用があるが、その含有量が1.0重量%を越えると、
強度が低下することから、その含有量を1.0重量%以
下に定めた。
(e) Pb The Pb component has the effect of improving the machinability and conformability of the alloy, but if its content exceeds 1.0% by weight,
Since the strength decreases, its content is set at 1.0% by weight or less.

また、上記転造の際の温度条件を100〜400℃に設
定したのは、100°C未満ではパイプに割れやクラッ
クが生じるためであり、一方400℃を越えると、高力
黄銅製のパイプが軟化しすぎて、製造される高力黄銅製
細径パイプの形状か不安定になるからである。
In addition, the temperature conditions during rolling were set at 100 to 400°C because if the temperature is less than 100°C, cracks will occur in the pipe, whereas if it exceeds 400°C, the pipe made of high-strength brass will This is because the material becomes too soft and the shape of the manufactured high-strength brass small-diameter pipe becomes unstable.

「実施例」 以下、この発明の一実施例を図面を参照して説明する。"Example" An embodiment of the present invention will be described below with reference to the drawings.

通常の高周波溶解炉を用い、黒鉛るつぼ中で、成分組成
を、Cu:60.0〜64.0重量%、AQ:1.5〜
3.5重量%、M n : 2 、0〜4 、0重量%
、Cr:1.0重量%以下、Ni:1.0重量%以下、
Pb: t 、 o重量%以下、F e: 1 、0重
量%以下、Zn残り、に調整した高力黄銅溶湯を溶製し
、金型に鋳造してビレットを作製し、このビレットに押
出加工を施して高力黄銅製のパイプ(外径35111゜
内径27++禦)lを製造した。
Using a normal high frequency melting furnace, in a graphite crucible, the component composition was changed to Cu: 60.0-64.0% by weight, AQ: 1.5-
3.5% by weight, Mn: 2, 0-4, 0% by weight
, Cr: 1.0% by weight or less, Ni: 1.0% by weight or less,
A high-strength brass molten metal adjusted to Pb: t, o weight % or less, Fe: 1, 0 weight % or less, Zn remaining is melted, cast into a mold to produce a billet, and extruded into this billet. A high-strength brass pipe (outer diameter: 35111°, inner diameter: 27++ mm) was manufactured by applying the following steps.

次に、このパイプlに転造加工を施して該パイプ1を縮
径するが、この転造加工法を説明する前に、転造加工装
置について説明する。
Next, the pipe 1 is subjected to a rolling process to reduce the diameter of the pipe 1. Before explaining this rolling process, the rolling process apparatus will be explained.

第1図において、符号21・・・は転造ボールであり、
符号22は転造ボール21の半径方向の力を保持する径
方向保持部材である。転造ボール21・・・は、径方向
保持部材22内にパイプlの回りに等間隔で4個回転自
在に配設されており、この径方向保持部材22は第1の
枠体23および第2の枠体24によって挾持されている
。また、径方向保持部材22は、超硬含金で形成された
内リング25と、この内リング25をバックアップする
外リング26とにより構成されたものである。
In FIG. 1, numerals 21... are rolled balls;
Reference numeral 22 denotes a radial holding member that holds the force of the rolled ball 21 in the radial direction. Four rolled balls 21 are rotatably arranged at equal intervals around the pipe l in a radial holding member 22, and this radial holding member 22 is attached to a first frame 23 and a first frame 23. It is held between two frame bodies 24. Further, the radial holding member 22 is composed of an inner ring 25 made of carbide-containing metal, and an outer ring 26 that backs up the inner ring 25.

第1の枠体23および第2の枠体24には、それらの同
軸位置に上記径方向保持部材22の外周に嵌合して該径
方向保持部材22を保持するための太径凹部23aおよ
び大径凹部24aが形成されているとともに、これらの
太径凹部23aおよび大径凹部24mの内側に、該大径
凹部23aおよび大径凹部24aと同軸の小径凹部23
bおよび24bが形成されている。そして、小径凹部2
3bおよび小径凹部24bには、転造ボール21の軸方
向の位置を規制する第1の軸方向保持部材27および第
2の軸方向保持部材28がそれぞれ設けられている。こ
れらの軸方向保持部材27.28は環状に形成されてい
て、パイプlの外径より十分大きく形成されている。ま
た、第1の枠体23には、小径凹部23bの内側に、第
1の軸方向保持部材27の内周面に連続する径の貫通孔
23cが形成されており、一方、第2の枠体24の小径
凹部24bの内側には、該小径四部24bに同軸に貫通
孔24cが形成されている。この貫通孔24cには転造
ボール24で転造されて縮径されたパイプlの外周面を
整える整形ダイス29が嵌合されており、この整形ダイ
ス29は当板30によって軸方向後段側(図中右側)へ
の移動が規制されている。
The first frame 23 and the second frame 24 have a large-diameter recess 23a and a large-diameter recess 23a for fitting into the outer periphery of the radial holding member 22 and holding the radial holding member 22 at coaxial positions thereof. A large-diameter recess 24a is formed, and a small-diameter recess 23 coaxial with the large-diameter recess 23a and large-diameter recess 24a is formed inside the large-diameter recess 23a and large-diameter recess 24m.
b and 24b are formed. And small diameter recess 2
3b and the small diameter recess 24b are provided with a first axial holding member 27 and a second axial holding member 28, respectively, which regulate the axial position of the rolled ball 21. These axial holding members 27, 28 are formed in an annular shape and are formed to be sufficiently larger than the outer diameter of the pipe l. Further, a through hole 23c having a diameter continuous with the inner circumferential surface of the first axial holding member 27 is formed inside the small diameter recess 23b in the first frame 23. A through hole 24c is formed inside the small diameter concave portion 24b of the body 24, coaxially with the small diameter four portions 24b. A shaping die 29 is fitted into the through hole 24c to trim the outer circumferential surface of the pipe l which has been rolled with the rolling ball 24 and reduced in diameter. Movement to the right side in the figure is restricted.

そして、上記構成の転造加工装置は、図示しないホルダ
が枠体23.24に嵌合され、このホルダを介して電動
モータ等によりパイプ1の中心線口りに回転されるよう
になっている。
In the rolling device having the above configuration, a holder (not shown) is fitted into the frame 23, 24, and the pipe 1 is rotated around the centerline of the pipe 1 by an electric motor or the like via this holder. .

上記構成の転造加工装置によって、パイプlを縮径する
には、まず、枠体23.24を60 Orpmで回転さ
せるとともに、パイプlを貫通孔23cから転造ボール
21・・・間に送り速度4. 5 m/sinで挿入す
る。なお、このとき、パイプ1を挾んで対向する位置に
設けられた転造ボール21.21間の離間距離はしは2
0!鱈こ設定されている。するとパイプlの外周におい
て転造ボール21・・・が自転および公転しつつ、パイ
プ1の外周面に圧接し、これによりパイプ1の外径を2
0ff11まで縮径する。なお、このときの温度は20
0℃に設定する。
In order to reduce the diameter of the pipe l using the rolling device configured as described above, first, the frames 23 and 24 are rotated at 60 Orpm, and the pipe l is fed through the through hole 23c between the rolling balls 21... Speed 4. Insert at 5 m/sin. In addition, at this time, the distance between the rolled balls 21 and 21 provided at opposing positions with the pipe 1 in between is 2.
0! Codfish set. Then, the rolled balls 21... rotate and revolve around the outer circumference of the pipe 1, and come into pressure contact with the outer circumferential surface of the pipe 1, thereby increasing the outer diameter of the pipe 1 by 2.
The diameter is reduced to 0ff11. Note that the temperature at this time was 20
Set to 0℃.

次いで、上記転造ボール21.21間の離間距離りを1
2mm+こ設定した後、外径が20+mに縮径されたパ
イプlを再び貫通孔23cから転造ボール21・・・に
送り速度4  m/+inで押入する。このとき、直径
7svの円筒状のマンドレルlOをパイプ1に挿入して
、転造ボール21・・・に対向する部位に位置させる。
Next, the distance between the rolled balls 21 and 21 is set to 1.
After setting the diameter to 2 mm+, the pipe l whose outer diameter has been reduced to 20+ m is again pushed into the rolling balls 21 through the through hole 23c at a feeding speed of 4 m/+in. At this time, a cylindrical mandrel lO having a diameter of 7 sv is inserted into the pipe 1 and positioned at a portion facing the rolled balls 21 .

ここで、このマンドレルlOはロッド11に回転自在に
支持されたものであり、このロッド11を図示しない支
持手段により支持することによりマンドレル10を転造
ボール21・・と対向する位置に位置させるようになっ
ている。
Here, this mandrel lO is rotatably supported by a rod 11, and by supporting this rod 11 by a support means (not shown), the mandrel 10 is positioned at a position facing the rolled balls 21... It has become.

すると、パイプ1の外周において転造ボール21・・・
が自転および公転しつつ、パイプ1の外周面に圧接する
とともに、パイプlの内周面がマンドレル10に圧接す
る。これによりパイプ1の外径を12i+mまで縮径す
るとともに、内径を71に縮径する。なお、このときの
温度は200℃に設定する。
Then, rolled balls 21...
While rotating and revolving around its axis, it comes into pressure contact with the outer peripheral surface of the pipe 1, and the inner peripheral surface of the pipe 1 comes into pressure contact with the mandrel 10. As a result, the outer diameter of the pipe 1 is reduced to 12i+m, and the inner diameter is reduced to 71. Note that the temperature at this time is set to 200°C.

このようにして、縮径されたパイプ1は、肉厚が均一で
かつ中心部の穴に偏心が殆どなく、しかも転造ボール2
1・・・による圧縮加工であるのて、加工硬化が生じる
とともに、組織が均一化して高強度が得られる。ちなみ
に、上記方法により縮径されたパイプlの引張強度は6
5 kgf/mm”であった。
In this way, the diameter of the reduced pipe 1 is uniform, the hole in the center has almost no eccentricity, and the rolled ball 2
1..., work hardening occurs, the structure becomes uniform, and high strength is obtained. By the way, the tensile strength of the pipe L reduced in diameter by the above method is 6.
5 kgf/mm”.

また、上記パイプ1は、その成分組成が、Cu:60.
0〜64.0重量%、lj:1.5〜3.5重量%、M
n:2.0〜4.0重量%、Cr:1.0重量%以下、
Ni:1.0重量%以下、Pb:1.0重量%以下、F
e:1.0重量%以下、Zn:残り、であるので、高温
耐摩耗性、耐熱性、耐熱疲労性および熱伝導性に優れて
いる。
Moreover, the component composition of the pipe 1 is Cu:60.
0-64.0% by weight, lj: 1.5-3.5% by weight, M
n: 2.0 to 4.0% by weight, Cr: 1.0% by weight or less,
Ni: 1.0% by weight or less, Pb: 1.0% by weight or less, F
Since e: 1.0% by weight or less and Zn: the remainder, it has excellent high-temperature wear resistance, heat resistance, thermal fatigue resistance, and thermal conductivity.

次に比較例により、この発明に係わる上記実施例の効果
を明確にする。
Next, comparative examples will clarify the effects of the above embodiments according to the present invention.

(比較例1) 上記実施例と同様の成分組成のビレットから直径14I
の押出丸棒を製造した後、切削加工により直径を12s
vに落とし、次いで、この丸棒の中心部にドリルを用い
て内径7mmの穴加工を行うことによりパイプを製造し
た。そして、外径と内径の偏肉を測定したところ0.3
11のずれが生じた。
(Comparative Example 1) A diameter of 14I was obtained from a billet with the same composition as in the above example.
After producing an extruded round bar, the diameter was reduced to 12s by cutting.
A pipe was manufactured by drilling a hole with an inner diameter of 7 mm in the center of this round bar using a drill. The thickness deviation between the outer diameter and inner diameter was measured and was 0.3.
A deviation of 11 occurred.

また、このパイプの引張強度を測定したところ、55 
kgr/mm″であり、上記実施例に比べて低かった。
In addition, when the tensile strength of this pipe was measured, it was found to be 55.
kgr/mm'', which was lower than that of the above example.

(比較例2) 上記実施例と同様の成分組成のビレットから外径35s
u+、内径27mmの押出しパイプを製造し。
(Comparative Example 2) Outer diameter 35s from a billet with the same composition as in the above example
U+, manufactured an extruded pipe with an inner diameter of 27 mm.

この押出しパイプに、400℃で10Passの温間引
き抜きを行い、外径を14.5111こ落とし、さらに
、マンドレルを使用して400℃で2PasSの温間引
き抜きを行い、外径121N、内径7■のパイプを製造
した。そして、穴の偏心量を測定したところ穴の長さl
000xxjこ対して0.3肩肩のずれが生じた。また
、このパイプの引張強度を測定したところ、57 kg
r/am”であり、比較例1より若干向上したが、上記
実施例に比べて低かった。
This extruded pipe was warm drawn at 400°C for 10 passes to reduce the outer diameter by 14.5111 mm, and then warm drawn at 400°C for 2 PasS using a mandrel, with an outer diameter of 121N and an inner diameter of 7mm. manufactured pipes. When the eccentricity of the hole was measured, the length of the hole was l
There was a shoulder deviation of 0.3 compared to 000xxj. Also, when we measured the tensile strength of this pipe, it was 57 kg.
r/am'', which was slightly improved compared to Comparative Example 1, but lower than that of the above example.

ナオ、上記実施例では、転造加工においてボール21・
・・を使用したが、これの代わりに、円筒状のロールを
用いてもよい。ロールは比較的太径のパイプを縮径する
場合に使用し、ボールは細径のパイプを縮径する場合に
使用するが、その境界は縮径後のパイプの直径20■を
目安とする。
Nao, in the above embodiment, the ball 21 and
... was used, but a cylindrical roll may be used instead. Rolls are used to reduce the diameter of relatively large-diameter pipes, and balls are used to reduce the diameter of small-diameter pipes, but the boundary between them is set at the diameter of the pipe after the reduction is 20 cm.

「発明の効果」 以上説明したように、この発明の高力黄銅製細径パイプ
は、高忍耐摩耗性、耐熱性、耐熱疲労性および熱伝導性
に優れているので、これらの特性が要求される自動車の
ターボチャージャー用軸受として有効であり、これらの
高性能化および高速化に伴う過酷な条件下での使用に際
しても十分満足して対応することができ、長期に亙って
すくれた性能を発揮することができる。
"Effects of the Invention" As explained above, the high-strength brass small-diameter pipe of the present invention is excellent in high endurance abrasion resistance, heat resistance, thermal fatigue resistance, and thermal conductivity. It is effective as a bearing for turbochargers in automobiles, and can satisfactorily handle use under harsh conditions associated with higher performance and higher speeds, and maintains excellent performance over a long period of time. can demonstrate.

また、この発明の高力黄銅製細径パイプの製造方法によ
れば、ロールまたはボールが回転および公転しつつパイ
プの外周部に圧接して、このパイプを縮径するので、肉
厚が均一でかつ中心部の穴の偏心が殆ど無い高力黄銅製
細径パイプを製造することができるとともに、パイプに
圧縮加工が加わるので、加工硬化が生じるとともに組織
がより均一かして高強度の高力黄銅製細径パイプを得る
ことができる。
Furthermore, according to the method of manufacturing a small diameter high-strength brass pipe of the present invention, the roll or ball rotates and revolves while pressing against the outer circumference of the pipe to reduce the diameter of the pipe, so that the wall thickness is uniform. In addition, it is possible to manufacture a small-diameter high-strength brass pipe with almost no eccentricity in the center hole, and since the pipe is subjected to compression processing, work hardening occurs and the structure becomes more uniform, resulting in high strength and high strength. A small diameter brass pipe can be obtained.

また、ロールまたはボールによって圧縮されて縮径され
る圧縮加工であるので、引抜加工よりも塑性変形に必要
なエネルギーが少なく、変形も容易に行えることから、
温間加工を行う場合に低温側での加工が可能である。
In addition, since it is a compression process in which the diameter is reduced by being compressed by rolls or balls, less energy is required for plastic deformation than in drawing process, and deformation can be easily performed.
When performing warm processing, processing at low temperatures is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の高力黄銅製細径ノくイブの製造方
法を実施例するための転造加工装置の断面図である。 1・・・・・・パイプ、21・・・・・・転造ボール。
FIG. 1 is a cross-sectional view of a rolling device for carrying out the method of manufacturing a small-diameter high-strength brass nozzle according to the present invention. 1...Pipe, 21...Rolled ball.

Claims (2)

【特許請求の範囲】[Claims] (1)円筒状をなし、かつその成分組成が、Cu:60
.0〜64.0重量%、Al:1.5〜3.5重量%、
Mn:2.0〜4.0重量%、Cr:1.0重量%以下
、Ni:1.0重量%以下、Pb:1.0重量%以下、
Fe:1.0重量%以下、Zn:残り、であることを特
徴とする高力黄銅製細径パイプ。
(1) It has a cylindrical shape and its component composition is Cu:60
.. 0 to 64.0% by weight, Al: 1.5 to 3.5% by weight,
Mn: 2.0 to 4.0% by weight, Cr: 1.0% by weight or less, Ni: 1.0% by weight or less, Pb: 1.0% by weight or less,
A high-strength brass narrow-diameter pipe characterized by Fe: 1.0% by weight or less, Zn: the remainder.
(2)高力黄銅製のパイプ外周部に、2個以上のロール
またはボールを回転させつつ圧接して100〜400℃
で転造加工を施すことにより、上記パイプの径を縮径し
てなり、上記高力黄銅の成分組成が、 Cu:60.0〜64.0重量%、Al:1.5〜3.
5重量%、Mn:2.0〜4.0重量%、Cr:1.0
重量%以下、Ni:1.0重量%以下、Pb:1.0重
量%以下、Fe:1.0重量%以下、Zn:残り、であ
ることを特徴とする高力黄銅製細径パイプの製造方法。
(2) Two or more rolls or balls are pressed against the outer periphery of a high-strength brass pipe at 100 to 400°C.
The diameter of the above-mentioned pipe is reduced by subjecting it to a rolling process, and the composition of the above-mentioned high-strength brass is as follows: Cu: 60.0-64.0% by weight, Al: 1.5-3.
5% by weight, Mn: 2.0-4.0% by weight, Cr: 1.0
% by weight or less, Ni: 1.0% by weight or less, Pb: 1.0% by weight or less, Fe: 1.0% by weight or less, and Zn: the remainder. Production method.
JP30027790A 1990-11-06 1990-11-06 High tension brass fine diameter tube and its manufacture Pending JPH04172140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30027790A JPH04172140A (en) 1990-11-06 1990-11-06 High tension brass fine diameter tube and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30027790A JPH04172140A (en) 1990-11-06 1990-11-06 High tension brass fine diameter tube and its manufacture

Publications (1)

Publication Number Publication Date
JPH04172140A true JPH04172140A (en) 1992-06-19

Family

ID=17882855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30027790A Pending JPH04172140A (en) 1990-11-06 1990-11-06 High tension brass fine diameter tube and its manufacture

Country Status (1)

Country Link
JP (1) JPH04172140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894430A (en) * 2015-06-29 2015-09-09 宁波金田铜业(集团)股份有限公司 Wear-resistant easy-to-cut brass pipe material and method of using same to manufacture brass pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507010U (en) * 1973-05-17 1975-01-24
JPH02155509A (en) * 1988-12-07 1990-06-14 Kobe Steel Ltd Method and device for grooving inside surface of metallic tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507010U (en) * 1973-05-17 1975-01-24
JPH02155509A (en) * 1988-12-07 1990-06-14 Kobe Steel Ltd Method and device for grooving inside surface of metallic tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894430A (en) * 2015-06-29 2015-09-09 宁波金田铜业(集团)股份有限公司 Wear-resistant easy-to-cut brass pipe material and method of using same to manufacture brass pipe
CN104894430B (en) * 2015-06-29 2017-05-10 宁波金田铜业(集团)股份有限公司 Wear-resistant easy-to-cut brass pipe material and method of using same to manufacture brass pipe

Similar Documents

Publication Publication Date Title
JP4019772B2 (en) Seamless pipe manufacturing method
JP3309344B2 (en) Manufacturing method of gear with center hole
JP3249345B2 (en) Bevel gear manufacturing method
US3659323A (en) A method of producing compound cast rolls
WO2005075121A1 (en) Cold-finished seamless steel pipe
JP6678158B2 (en) Briquette roll and method for producing the same
US5108491A (en) Rolling bearing composition
EP1894641A1 (en) Roll for rolling seamless pipes
JPH04172140A (en) High tension brass fine diameter tube and its manufacture
CA1220607A (en) Making molds with rectangular or square-shaped cross section
CA2359294C (en) Process for manufacturing a cylindrical hollow body and hollow body made thereby
JP3302244B2 (en) Internal grooved tube processing equipment
FR2636076A1 (en) PROCESS FOR MANUFACTURING STEEL ELEMENTS DESIGNED TO RESIST HIGH STRESSES, SUCH AS ROLLER BEARING ELEMENTS
JP3346054B2 (en) Method of manufacturing synchronizer ring made of brass-based copper alloy for automotive transmission with excellent seizure resistance
JP3107932B2 (en) Method of manufacturing composite high-speed sleeve roll
JPS6320627B2 (en)
JPH089045B2 (en) Cavity roll for cold tube rolling mill and method for manufacturing the same
JP3880770B2 (en) Method of manufacturing high-speed sleeve roll for rolling and sleeve roll
JP3344120B2 (en) Copper alloy synchronizer ring for automotive transmission with excellent seizure resistance
JP2009208135A (en) Method for manufacturing semifinished product for holder of needle roller bearing by cold rolling
JPH0823060B2 (en) High chromium composite roll with graphite
JPH10156410A (en) Plug for piercing seamless steel tube and manufacture of seamless steel tube using the same
JPH06155287A (en) Manufacture of high fatigue strength aluminum alloy connecting rod
JPH0340102B2 (en)
JPH0810826A (en) Production of cold drawn wire rod of alloyed steel for bearing