JPH04171888A - Method of reflow soldering - Google Patents

Method of reflow soldering

Info

Publication number
JPH04171888A
JPH04171888A JP30074290A JP30074290A JPH04171888A JP H04171888 A JPH04171888 A JP H04171888A JP 30074290 A JP30074290 A JP 30074290A JP 30074290 A JP30074290 A JP 30074290A JP H04171888 A JPH04171888 A JP H04171888A
Authority
JP
Japan
Prior art keywords
solder
substrate
post
vacuum chamber
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30074290A
Other languages
Japanese (ja)
Other versions
JPH0797701B2 (en
Inventor
Koichi Tsurumi
浩一 鶴見
Kimihito Kuwabara
桑原 公仁
Shinji Shimazaki
島崎 新二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30074290A priority Critical patent/JPH0797701B2/en
Publication of JPH04171888A publication Critical patent/JPH04171888A/en
Publication of JPH0797701B2 publication Critical patent/JPH0797701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PURPOSE:To remove flux residue, prevent production of a blow hole, and make it possible to solder parts on to a substrate by reflow soldering by carrying the substrate taken out from a reflow furnace to the vacuum chamber of a post-treatment apparatus, and evacuating the vacuum chamber at a high temperature. CONSTITUTION:Paste solder is applied on to a substrate and parts are mounted on the paste solder on the substrate 4. The substrate is heated in a reflow furnace to melt the solder on the substrate. With the solder molten by heat, the substrate 4 is taken out from the reflow furnace and carried in a post- treatment apparatus promptly. The vacuum chamber of the post-treatment apparatus is kept at a temperature as high as 100-240 deg.C and evacuated. Therefore, flux residue and inner bubbles can be removed by suction from the molten or semi-molten solder by heating and evacuating the vacuum chamber 5. Then the substrate 4 is sent to a post-stage chamber 6 and naturally cooled therein and the solder solidifies to solder the parts on to the substrate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、基板上にペースト状半田を塗布した後、ペー
スト状半田上に部品を装着し、次いでリフロー炉にて部
品を基板に半田接合するリフロー半田付は方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a reflow process in which paste solder is applied onto a board, parts are mounted on the paste solder, and then the parts are soldered to the board in a reflow oven. Soldering is about a method.

従来の技術 表面実装技術を用いた電子回路基板の製造は基板上に塗
布したペースト状半田の上に表面実装用電子部品を搭載
してから、連続的に基板を搬送して、基板上のペースト
状半田を溶解して半田接合を行なうリフロー半田付は法
により行なわれる。リフロー半田付けを行なう装置は一
般に連続的に基板を搬送する機構を有するとともに、半
田材料の融点以下の温度まで加熱する予熱工程用の炉体
と半田材料の融点以上の温度まで加熱し半田材料を溶解
して部品と基板の半田接合を行なうリフロー工程用の炉
体を有する、ペースト状半田を加熱する熱源としては赤
外線か大気の熱風を用いるのが一般的である。基板は加
熱中つねに大気にさらされていることになり、基板や半
田の酸化がおこり半田ボールや半田未接合、ブリッジ等
の半田付は不良の原因となっている。さらに、半田付は
工程の後に行なわれる洗浄工程に用いられるフロン11
3の使用がオゾン層を破壊するので洗浄工程をなくす必
要がある。洗浄工程をなくすためには、半田付は部の高
温高温下での長期使用の信幀性を確保するとともにペー
スト状半田に含まれるフラックス成分の残渣を低減する
ことが必要である。半田付は部の高温高湿下での長期使
用の信頼性を確保するためにはリフロー後のイオン性の
残渣を低減することが必要で、無洗浄でこれを実現する
ためにはペースト状半田に含まれる塩素系の活性成分を
少なくする必要がある。このような目的で製造されるよ
うになった塩素系の活性成分を少なくしたペースト状半
田をRMA(Rosin  Mild  Activa
ted)タイプと呼ぶ。ところが、RMAタイプのペー
スト状半田は活性力が低く濡れ性があまりよくないため
大気中でリフローを行なった場合、十分な濡れ性が確保
できない。そこで、加熱雰囲気を窒素等の不活性ガス雰
囲気にしたリフロー炉が使われるようになった。雰囲気
を窒素にすることにより基板や部品の酸化が防止され濡
れ性は改善されるが、極く少量の塩素系活性成分の残渣
と共に、フラックスの固形分(ロジン、増粘剤等)の残
渣が残り、この固形分の残渣は半田接合部の表面に絶縁
層を形成するのでビンチエツクテストによる検査が難し
くなる。
Conventional technology The manufacture of electronic circuit boards using surface mount technology involves mounting electronic components for surface mount on paste-like solder applied to the board, and then transporting the board continuously to remove the paste on the board. Reflow soldering, in which solder joints are made by melting solder, is performed by a method. Equipment that performs reflow soldering generally has a mechanism that continuously transports the board, a furnace body for the preheating process that heats the solder material to a temperature below the melting point, and a furnace body that heats the solder material to a temperature above the melting point of the solder material. Infrared rays or hot air from the atmosphere are generally used as a heat source for heating the paste solder, which has a furnace body for the reflow process in which the solder is melted and soldered to the component and the board. The board is constantly exposed to the atmosphere during heating, which causes oxidation of the board and solder, causing defects in solder balls, unsoldered joints, bridges, and other soldered areas. Furthermore, the soldering process requires Freon 11, which is used in the cleaning process that is carried out after the soldering process.
Since the use of No. 3 destroys the ozone layer, it is necessary to eliminate the cleaning process. In order to eliminate the cleaning process, it is necessary to ensure the reliability of soldering parts during long-term use under high temperatures and to reduce the residue of flux components contained in the paste solder. In order to ensure the reliability of long-term use of soldering parts under high temperature and high humidity conditions, it is necessary to reduce ionic residue after reflow, and in order to achieve this without cleaning, paste solder is used. It is necessary to reduce the amount of chlorine-based active ingredients contained in RMA (Rosin Mild Activation) is a paste-like solder with reduced chlorine-based active ingredients that has been manufactured for this purpose.
ted) type. However, RMA type paste solder has low activation power and poor wettability, so when reflow is performed in the atmosphere, sufficient wettability cannot be ensured. Therefore, reflow ovens have been used in which the heating atmosphere is an inert gas atmosphere such as nitrogen. By changing the atmosphere to nitrogen, oxidation of the substrate and parts is prevented and wettability is improved. This remaining solid residue forms an insulating layer on the surface of the solder joint, making it difficult to inspect by a bin check test.

又、リフロー中にフラックスの溶剤分が半田から抜けき
らず気泡となるので半田内にブローホールが発生する等
の問題点がある。
Further, during reflow, the solvent component of the flux does not completely escape from the solder and forms bubbles, resulting in problems such as blowholes occurring within the solder.

発明が解決しようとする課題 上記のように窒素雰囲気でリフローを行なう場合、基板
や部品の酸化が防止されるので、RMAタイプの活性度
の低いペースト状半田を使用しても、半田の濡れ性は改
善されるが、フラックス残渣が残り、半田接合部の長期
信顛性に悪影響があることやビンチエツクテストが難く
なるという問題点があり、又、半田内にブローホールが
発生するという問題点がある。本発明はこれらの問題点
を解決することを目的としている。
Problems to be Solved by the Invention When reflowing is performed in a nitrogen atmosphere as described above, oxidation of the board and components is prevented, so even if RMA type paste solder with low activity is used, the solder wettability will be improved. However, there are problems in that flux residue remains and has a negative effect on the long-term reliability of the solder joint, making it difficult to conduct a vinyl check test, and there is also the problem that blowholes occur in the solder. There is. The present invention aims to solve these problems.

課題を解決するための手段 本発明は上記目的を達成するため、基板上にペースト状
半田を塗布する工程、基板のペースト状半田上に部品を
装着する工程、リフロー炉において熱を与えて部品を基
板に半田付けする工程を順次実行するリフロー半田付は
方法において、リフロー炉から取出された基板を後処理
装置の真空室に搬入し、この真空室を高温状態に保ち、
真空吸引することを特徴とする。
Means for Solving the Problems In order to achieve the above object, the present invention includes a process of applying paste solder on a board, a process of mounting components on the paste solder of the board, and a process of applying heat to the parts in a reflow oven. Reflow soldering is a method in which the steps of soldering to a board are performed sequentially, and the board is taken out of the reflow oven and transported into a vacuum chamber of a post-processing device, and this vacuum chamber is kept at a high temperature.
It is characterized by vacuum suction.

前記真空室を100〜240°Cで、かつ10−3〜1
0− ’ torrの真空度に設定することが好ましい
The temperature of the vacuum chamber is 100 to 240°C, and 10-3 to 1
It is preferable to set the degree of vacuum to 0-' torr.

作用 リフロー炉から後処理装置の真空室に搬入された基板上
の半田は、溶融状態又は半溶融状態にあり、フラックス
残渣が表面に残っていると共に、内部に気泡が閉じ込め
られている。後処理装置の真空室においては、半田を溶
融状態又は半溶融状態に維持できる温度に保たれており
、フラックス成分は液相あるいは気相状態にあり非常に
気化しやすい状態であるので、真空吸引することにより
フラックス残渣を外部に吸引除去できる。前記ブローホ
ールも溶融半田より取出し外部に吸引除去することがで
きる。従って、後処理装置の真空室における加熱状態で
の真空吸引作業が終了した後冷却された基板には、その
半田部分にフラックス残渣がほとんど残らず、又ブロー
ホールが形成されなくなる。
The solder on the substrate transferred from the reflow furnace to the vacuum chamber of the post-processing device is in a molten or semi-molten state, with flux residue remaining on the surface and air bubbles trapped inside. In the vacuum chamber of the post-processing equipment, the temperature is maintained at a temperature that allows the solder to be kept in a molten or semi-molten state, and the flux component is in a liquid or gas phase and is very easily vaporized. By doing so, the flux residue can be removed by suction to the outside. The blowhole can also be taken out from the molten solder and removed by suction to the outside. Therefore, when the substrate is cooled after the vacuum suction operation in the heated state in the vacuum chamber of the post-processing device is completed, almost no flux residue remains on the solder portion, and no blowholes are formed.

前記真空室の温度は、フラックス成分が溶解、気化する
状態にある100〜240°Cの温度、半田中のブロー
ホール除去が可能である180〜240°Cの温度、す
なわち100〜240°Cに設定するとよい0両方の効
果を出すためには180〜240°Cに設定する必要が
あるが、フラックス残渣の除去効果を主張とする場合は
100〜180°Cでよい。100°Cより温度が低け
ればフラックスが固体のままであり真空下でも除去する
ことができず、240” Cより温度が高ければ基板や
部品が熱損傷を受けるので好ましくない。又真空室の真
空度は10−”torr前後が最適であり、10− ’
 torrより大気圧側にあるとフラックス残渣等の除
去効果が不十分となり、10− ’ torrより真空
側にあると溶融した半田が飛散するようになり、半田も
吸引除去されることになって不適当である。
The temperature of the vacuum chamber is 100 to 240°C, at which the flux component melts and vaporizes, and 180 to 240°C, where blowholes in the solder can be removed, that is, 100 to 240°C. It is necessary to set the temperature at 180 to 240°C in order to obtain both effects, but if the flux residue removal effect is desired, the temperature may be set at 100 to 180°C. If the temperature is lower than 100°C, the flux will remain solid and cannot be removed even under vacuum, and if the temperature is higher than 240"C, the board and parts will be damaged by heat, which is undesirable. Also, the flux in the vacuum chamber is unfavorable. The optimal temperature is around 10-''torr, and 10-'
If the pressure is on the atmospheric pressure side rather than torr, the removal effect of flux residue etc. will be insufficient, and if it is on the vacuum side than 10-' torr, the molten solder will scatter and the solder will also be removed by suction, resulting in failure. Appropriate.

実施例 本発明の一実施例について以下に図面を参照しながら説
明する。第1図は本発明の一実施例を示す工程図である
。Aは基板上にペースト状半田を塗布する工程を示し、
この工程は一般にスクリーン印刷法を用いて行なわれる
。Bは基板のペースト状半田上に部品を装着する工程を
示し、この工程は一般に自動部品装着機を用いて行なわ
れる。Cはリフロー炉において熱を与えて部品を基板に
半田付けする工程を示し、「従来の技術」において説明
したように、一般には予熱工程とリフロー工程の2段階
の工程を含んでいる。しかし単独のリフロー工程のみで
半田付けする場合もある。又不活性ガスの雰囲気中で行
なうこともあるが、大気の雰囲気中で行なわれることが
一般である。リフロー炉で半田が加熱溶融された状態の
ままで、リフロー炉から取出して速やかに後処理工程に
導入することが好ましいが、−度冷却して半田が凝固し
てから、後処理工程に導入することも可能である。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a process diagram showing an embodiment of the present invention. A shows the process of applying paste solder on the board,
This step is generally performed using screen printing. B shows the step of mounting components onto the paste-like solder of the board, and this step is generally performed using an automatic component mounting machine. C indicates a process of applying heat in a reflow oven to solder components to a board, which generally includes two steps: a preheating process and a reflow process, as explained in the "Prior Art" section. However, there are cases where soldering is performed using only a single reflow process. Although it may be carried out in an inert gas atmosphere, it is generally carried out in an air atmosphere. It is preferable to take the solder out of the reflow oven and immediately introduce it into the post-processing process while it is heated and melted in the reflow oven, but it is preferable to introduce it into the post-processing process after the solder has been cooled by -degrees and solidified. It is also possible.

Dは後処理工程を示し、この後処理工程において、リフ
ロー炉から取出された基板を後処理装置に搬入される。
D indicates a post-processing step, and in this post-processing step, the substrate taken out from the reflow oven is carried into a post-processing device.

この後処理装置の真空室は100〜240@Cの高温状
態に保たれ、その内部が真空吸引されるようになってい
る。
The vacuum chamber of this post-processing device is maintained at a high temperature of 100 to 240@C, and its interior is vacuum-suctioned.

第2図は前記リフロー炉1と前記後処理装置11を示し
ている。リフロー炉1内にはヒータ2が設けられていて
、基板4を加熱する。リフロー炉1内の温度は220〜
240’ Cに保たれ、リフロー炉1内の基板4上の半
田(融点は180〜185°C)を溶融させる。
FIG. 2 shows the reflow oven 1 and the post-processing device 11. A heater 2 is provided in the reflow oven 1 and heats the substrate 4. The temperature inside the reflow oven 1 is 220~
The temperature is maintained at 240'C to melt the solder (melting point is 180 to 185C) on the substrate 4 in the reflow oven 1.

後処理装置11は前段階室4、真空室5、後段階室6を
備えており、夫々は真空ポンプ7に接続されて、真空吸
引される。又前段階室4、及び真空室5はヒータ8.9
を備えている。リフロー炉1から取出された基板4は、
速やかに(例えば10秒以内)前段階室4に搬入され、
搬送コンベヤ3によって、前段階室4、真空室5、後段
階室6に順次間欠的に送られた後、外部に取出される。
The post-processing device 11 includes a pre-stage chamber 4, a vacuum chamber 5, and a post-stage chamber 6, each of which is connected to a vacuum pump 7 for vacuum suction. In addition, the pre-stage chamber 4 and the vacuum chamber 5 are equipped with heaters 8.9.
It is equipped with The substrate 4 taken out from the reflow oven 1 is
It is promptly carried into the pre-stage chamber 4 (for example, within 10 seconds),
After being intermittently sent to the pre-stage chamber 4, the vacuum chamber 5, and the post-stage chamber 6 in sequence by the conveyor 3, it is taken out to the outside.

12.13.14.15は各室4.5.6の真空度を維
持するような気密構造を有するシャッターである。
12.13.14.15 are shutters having an airtight structure to maintain the degree of vacuum in each chamber 4.5.6.

前段階室4は真空ポンプ7によって1〜100torr
の真空度になるように真空吸引されている。シャッター
12が開放され、基[4を受入れるときは、1QQto
rr前後になり、シャッター12が閉じられたときはl
 torr前後に真空度が上がるように構成されている
。又前段階室4はヒータ8によって160〜170°C
になるよう加熱されている。
The pre-stage chamber 4 is heated to 1 to 100 torr by the vacuum pump 7.
It is vacuumed to a vacuum level of . When shutter 12 is opened and accepts group [4, 1QQto
When it is around rr and the shutter 12 is closed, l
It is constructed so that the degree of vacuum increases around torr. Also, the pre-stage chamber 4 is heated to 160 to 170°C by the heater 8.
It is heated to

真空室5は真空ポンプ7によって10− ” torr
前後の真空度になるよう真空吸引され、その真空吸引通
路途中にはフィルタ10が配されている。
The vacuum chamber 5 is heated to 10-” torr by the vacuum pump 7.
Vacuum suction is carried out to maintain the degree of vacuum at the front and rear, and a filter 10 is disposed in the middle of the vacuum suction passage.

又真空室5はヒータ9によって160〜170@Cにな
るよう加熱されている。シャッター13が開放され前段
階室4から基板4を受は入れるとき、前段階室4は1 
torr前後の真空度となでいる、又シャッター14が
開放され基板4を後段階室6に搬出するときも、同様に
後段階室6は1 t。
Further, the vacuum chamber 5 is heated to 160 to 170@C by a heater 9. When the shutter 13 is opened and the substrate 4 is received from the pre-stage chamber 4, the pre-stage chamber 4 is
When the vacuum level is around torr, and when the shutter 14 is opened and the substrate 4 is carried out to the post-stage chamber 6, the vacuum level in the post-stage chamber 6 is 1 t.

rr前後の真空度となっている。The degree of vacuum is around rr.

真空室5における加熱と真空吸引とによって、溶融状態
又は半溶融状態にある半田からフラックス残渣及び内部
気泡(ブローホール)を吸引除去することがきる。フラ
ックス残渣等はフィルタ10によって捕獲されるので、
真空ポンプ7の機能劣化を防ぐことがきる。
By heating and vacuum suction in the vacuum chamber 5, flux residue and internal air bubbles (blowholes) can be suctioned and removed from the solder in a molten or semi-molten state. Since flux residue etc. are captured by the filter 10,
Functional deterioration of the vacuum pump 7 can be prevented.

後段階室6は真空ポンプ7によって1〜100torr
の真空度になるように真空吸引されている、シャッター
15が開放され、基板4を外部に搬出するときは、10
0torr前後になり、シャッター15が閉じられたと
きは1 torr前後に真空度が上がるように構成され
ている。この後段階室6は常温であって、真空室5から
後段階室6に送られてきた基板4はここで自然冷却され
、半田も凝固して部品の基板上への半田接合が行なわれ
る。
The post-stage chamber 6 is heated to 1 to 100 torr by a vacuum pump 7.
When the shutter 15 is opened and the substrate 4 is carried out to the outside, the vacuum level is 10.
The vacuum level is around 0 torr, and when the shutter 15 is closed, the degree of vacuum increases to around 1 torr. The post-stage chamber 6 is at room temperature, and the substrate 4 sent from the vacuum chamber 5 to the post-stage chamber 6 is naturally cooled here, the solder also solidifies, and the components are soldered onto the board.

発明の効果 本発明によれば、フラックス残渣を除去し、ブローホー
ルの発生を防いで、部品を基板上にリフロー半田付けす
ることができるので、フロン等による洗浄工程を省略で
き、かつ製品の信頼性向上を図ることができる。
Effects of the Invention According to the present invention, components can be reflow soldered onto a board by removing flux residue and preventing the occurrence of blowholes, thereby omitting the cleaning process using fluorocarbons, etc., and improving product reliability. It is possible to improve sexual performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における工程を説明する工程図
、第2図はリフロー装置と後処理装置を示す概略図であ
る。
FIG. 1 is a process diagram illustrating steps in an embodiment of the present invention, and FIG. 2 is a schematic diagram showing a reflow device and a post-processing device.

Claims (2)

【特許請求の範囲】[Claims] (1)基板上にペースト状半田を塗布する工程、基板の
ペースト状半田上に部品を装着する工程、リフロー炉に
おいて熱を与えて部品を基板に半田付けする工程を順次
実行するリフロー半田付け方法において、リフロー炉か
ら取出された基板を後処理装置の真空室に搬入し、この
真空室を高温状態に保ち、真空吸引することを特徴とす
るリフロー半田付け方法。
(1) A reflow soldering method that sequentially performs the steps of applying paste solder on the board, mounting components on the paste solder on the board, and soldering the components to the board by applying heat in a reflow oven. A reflow soldering method characterized in that a board taken out from a reflow oven is carried into a vacuum chamber of a post-processing device, the vacuum chamber is kept at a high temperature, and vacuum suction is applied.
(2)真空室を100〜240℃で、かつ10^−^3
〜10^−^1torrの真空度とすることを特徴とす
る請求項1記載のリフロー半田付け方法。
(2) Set the vacuum chamber at 100-240℃ and 10^-^3
2. The reflow soldering method according to claim 1, wherein the degree of vacuum is ~10^-^1 torr.
JP30074290A 1990-11-05 1990-11-05 Reflow soldering method Expired - Lifetime JPH0797701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30074290A JPH0797701B2 (en) 1990-11-05 1990-11-05 Reflow soldering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30074290A JPH0797701B2 (en) 1990-11-05 1990-11-05 Reflow soldering method

Publications (2)

Publication Number Publication Date
JPH04171888A true JPH04171888A (en) 1992-06-19
JPH0797701B2 JPH0797701B2 (en) 1995-10-18

Family

ID=17888556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30074290A Expired - Lifetime JPH0797701B2 (en) 1990-11-05 1990-11-05 Reflow soldering method

Country Status (1)

Country Link
JP (1) JPH0797701B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326444A (en) * 1993-05-17 1994-11-25 Nec Corp Removing method of residual opaque flux
US6666369B2 (en) 1999-12-20 2003-12-23 Fujitsu Limited Semiconductor device manufacturing method, electronic parts mounting method and heating/melting process equipment
JP2008277757A (en) * 2007-03-06 2008-11-13 Infineon Technologies Ag Solder connection section between semiconductor chip and substrate, and manufacturing process for the same
JP2009538739A (en) * 2006-05-29 2009-11-12 ピンク ゲゼルシャフト ミット ベシュレンクター ハフツング ヴァクームテヒニク Heat treatment method and heat treatment apparatus especially used for solder connection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326444A (en) * 1993-05-17 1994-11-25 Nec Corp Removing method of residual opaque flux
US6666369B2 (en) 1999-12-20 2003-12-23 Fujitsu Limited Semiconductor device manufacturing method, electronic parts mounting method and heating/melting process equipment
KR100483485B1 (en) * 1999-12-20 2005-04-15 후지쯔 가부시끼가이샤 Semiconductor device manufacturing method and electronic parts mounting method
JP2009538739A (en) * 2006-05-29 2009-11-12 ピンク ゲゼルシャフト ミット ベシュレンクター ハフツング ヴァクームテヒニク Heat treatment method and heat treatment apparatus especially used for solder connection
JP2008277757A (en) * 2007-03-06 2008-11-13 Infineon Technologies Ag Solder connection section between semiconductor chip and substrate, and manufacturing process for the same

Also Published As

Publication number Publication date
JPH0797701B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
JP3809806B2 (en) Manufacturing method of semiconductor device
CN101835349B (en) Reflow soldering method
KR20090005488A (en) Apparatus and method for reflow
US4022371A (en) Vapor bonding method
US20050023327A1 (en) Method and apparatus for flip chip attachment by post collapse re-melt and re-solidification of bumps
JPH04171888A (en) Method of reflow soldering
JP3043435B2 (en) Reflow soldering apparatus and reflow soldering method
JP2003078242A (en) Method of partially soldering printed board
JPH10233484A (en) Method and device for assembling semiconductor device
US5398865A (en) Preparation of surfaces for solder joining
JP3753524B2 (en) Manufacturing method of electronic parts
JP2003332726A (en) Reflow furnace, flux recovering device connected to the furnace, and method of operating the device
JP3346280B2 (en) Solder surface treatment method, solder and soldering method
JPH11224981A (en) Soldering method and formation of solder bump
JP3294460B2 (en) Circuit board manufacturing method
JP3529164B2 (en) Soldering method and apparatus
JPH07170063A (en) Reflow soldering
KR102591564B1 (en) Laser Soldering System
JPH06333987A (en) Electric circuit junction device and electric circuit junction method
JP3933879B2 (en) Method for preventing oxidation of molten solder in water vapor atmosphere
JP2001267729A (en) Method and device for mounting electronic part
JP2000000685A (en) Electronic circuit joining method and electronic circuit device
JP2000049450A (en) Soldering of electronic component
JPH06112644A (en) Method of soldering printed wiring board
JP2000003936A (en) Bonding of electronic circuit and electronic circuit device