JPH04171585A - Picture processor - Google Patents

Picture processor

Info

Publication number
JPH04171585A
JPH04171585A JP2300411A JP30041190A JPH04171585A JP H04171585 A JPH04171585 A JP H04171585A JP 2300411 A JP2300411 A JP 2300411A JP 30041190 A JP30041190 A JP 30041190A JP H04171585 A JPH04171585 A JP H04171585A
Authority
JP
Japan
Prior art keywords
image
edge position
center point
steel
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2300411A
Other languages
Japanese (ja)
Other versions
JP2928375B2 (en
Inventor
Satoshi Matsushita
智 松下
Akira Kawasaki
彰 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Toshiba Engineering Corp
Original Assignee
Daido Steel Co Ltd
Toshiba Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Toshiba Engineering Corp filed Critical Daido Steel Co Ltd
Priority to JP2300411A priority Critical patent/JP2928375B2/en
Publication of JPH04171585A publication Critical patent/JPH04171585A/en
Application granted granted Critical
Publication of JP2928375B2 publication Critical patent/JP2928375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To execute picture processing precisely by finding a precise center point from a temporary center point, picture-processing based on the precise center point and executing the picture processing of a circular body to be image-picked-up. CONSTITUTION:A first picture edge position P2 of a circular body to be image-picked- up is found at the neighborhood of a position separated for the length of the semidiameter of the circular body to be image-picked-up in the first direction from a temporary center point TP, a second picture edge position P3 on a straight line to pass through the first picture edge position P2 and the temporary center point TP is found and a middle point P4 of a line segment to connect the first picture edge position P2 and the second picture edge position P3 is found. Then, a third picture edge position P6 is found at the neighborhood of the position separated for the length of the semidiameter in the second direction except the first direction from the middle point P4, a position CP separated for the length of the semidiameter in the opposite direction of the second direction from the third picture edge position P6 is found and the processing of a picture is executed with the position as the center point CP of the circular body to be image-picked-up. Thus, the precise center of an object to be checked 100 can be found.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は画像処理装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to an image processing device.

(従来の技術) 自動車や産業機械等の部材に用いられる特殊鋼をはじめ
とする鉄鋼材料は圧延や熱処理等の製造過程で雰囲気中
の酸素にふれると鋼材中の炭素と雰囲気中の酸素が反応
し、Co、co2として鋼材から散逸する。従って、鋼
材の表面ならびに表面近傍の炭素含有率がバルク(bu
lk)と異なることになる。(通常、脱炭と称する。)
例えば、鋼線材からボルトを成形する場合には鋼材表面
を切断せずに圧延肌又は熱処理肌のままボルト成形機に
てボルトを成形する。従って、鋼材に脱炭層が生じてい
る場合、ボルトにも脱炭層か残存する。二〇脱炭層部は
強度が低いのでボルトは使用中に破損という事態をもお
こしかねない。
(Conventional technology) When steel materials such as special steel used for parts of automobiles and industrial machinery come into contact with oxygen in the atmosphere during manufacturing processes such as rolling and heat treatment, carbon in the steel reacts with oxygen in the atmosphere. However, it dissipates from the steel material as Co and co2. Therefore, the carbon content on the surface and near the surface of the steel material is
lk). (Usually called decarburization.)
For example, when forming a bolt from a steel wire, the bolt is formed using a bolt forming machine without cutting the surface of the steel material, leaving the rolled or heat-treated surface intact. Therefore, if a decarburized layer occurs in the steel material, the decarburized layer also remains in the bolt. 20 Since the strength of the decarburized layer is low, the bolt may break during use.

鋼材メーカは実質脱炭の無い鋼材の製法を改善していく
ことは重要ではあるが、一方、ユーザへの脱炭のない鋼
材であることを保証するための検査技術もまた重要であ
る。
Although it is important for steel manufacturers to improve the manufacturing method of steel products that are virtually free from decarburization, it is also important to have inspection techniques to ensure that the steel products are free from decarburization to users.

したがって鋼材の品質を定期的に検査することか必要に
なってくる。この検査は鋼材の一部を切り出して周囲を
樹脂で固めたサンプルを作り、このサンプルの切り出し
面を画像処理して濃淡情報から脱炭の状態を測定するこ
とによって行われている。
Therefore, it is necessary to periodically inspect the quality of steel materials. This inspection is performed by cutting out a portion of the steel material, making a sample with the surrounding area hardened with resin, and then performing image processing on the cut surface of this sample to measure the state of decarburization from the density information.

ところで脱炭の状態はは鋼材の表層から中心に向って脱
炭かどの程度の深さまで進行しているかを調べることに
よって行われる。
By the way, the state of decarburization is determined by examining the depth to which decarburization has progressed from the surface layer of the steel material toward the center.

このためサンプルである鋼材の正確な中心を求めること
か必要となっている。
For this reason, it is necessary to find the exact center of the steel sample.

しかしながら従来のこのような検査装置では位置合わせ
装置などで位置合わせをしていただけなのでサンプルで
ある鋼材の十分正確な中心を求めることが難しく、この
検査には技能を要し、また多大の工数を要するため正確
な中心を求めることのできる画像処理装置か望まれてい
た。
However, with conventional inspection equipment, it is difficult to find a sufficiently accurate center of the steel sample because the alignment is performed using a positioning device, etc. This inspection requires skill and requires a large amount of man-hours. Therefore, an image processing device that can accurately determine the center has been desired.

(発明が解決しようとする課題) 上述したように、従来の鋼材の脱炭検査装置などではサ
ンプルである鋼材の十分正確な中心を求めることか難し
く、正確な中心を求めることのできる画像処理装置か望
まれていた。
(Problems to be Solved by the Invention) As mentioned above, it is difficult to find a sufficiently accurate center of a steel sample using conventional steel decarburization inspection equipment. It was desired.

本発明は上記課題を解決すべく創案されたもので、被検
査物の正確な中心を求めることかできる画像処理装置を
提供することを目的とする。
The present invention was devised to solve the above problems, and an object of the present invention is to provide an image processing device that can accurately determine the center of an object to be inspected.

[発明の構成] (課題を解決するための手段) 本発明の検査装置では、上記目的を達成するために、円
形状被撮像体の画像を入力する画像入力手段と、この画
像入力手段から入力された円形状被撮像体の画像の仮中
心点を求める仮中心点求出手段と、前記仮中心点から第
1の方向に前記円形状被撮像体の半径の長さ離れた位置
近傍で前記円形状被撮像体の第1の画像エツジ位置を求
め、この第1の画像エツジ位置と前記仮中心点とを通る
直線上の第2の画像エツジ位置を求め、前記第1の画像
エツジ位置と前記第2の画像エツジ位置とを結ぶ線分の
中点を求め、この中点から前記第1の方向とは異なる第
2の方向に前記半径の長さ離れた位置近傍で第3の画像
エツジ位置を求め、この第3の画像エツジ位置から前記
第2の方向と逆方向に前記半径の長さ離れた位置を求め
、この位置を前記円形状被検査物の中心点とする中心点
求出手段とこの中心点算出手段によって求められた中心
点に基づいて前記円形状被撮像体の画像に所定の画像処
理を実行する画像処理手段とを具備している。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the inspection apparatus of the present invention includes an image input means for inputting an image of a circular object to be imaged, and an image input means for inputting an image from the image input means. provisional center point determining means for determining a provisional center point of an image of the circular imaged object; A first image edge position of the circular imaged object is determined, a second image edge position on a straight line passing through the first image edge position and the temporary center point is determined, and the first image edge position and the second image edge position are determined. Find the midpoint of the line segment that connects the second image edge position, and move the third image edge near a position away from the midpoint by the length of the radius in a second direction different from the first direction. determining a position, determining a position separated by the length of the radius in a direction opposite to the second direction from the third image edge position, and determining a center point by setting this position as the center point of the circular object to be inspected; and an image processing means for performing predetermined image processing on the image of the circular object based on the center point calculated by the center point calculation means.

(作 用) 本発明の画像処理装置では、仮中心点から第1の方向に
前記円形状被撮像体の半径の長さ離れた位置近傍で円形
状被撮像体の第1の画像エツジ位置を求め、この第1の
画像エツジ位置と仮中心点とを通る直線上の第2の画像
エツジ位置を求め、第1の画像エツジ位置と第2の画像
エツジ位置とを結ぶ線分の中点を求め、この中点から前
記第1の方向以外の第2の方向に半径の長さ離れた位置
近傍で第3の画像エツジ位置を求め、この第3の画像エ
ツジ位置から第2の方向と逆方向に半径の長さ離れた位
置を求め、この位置を円形状被撮像体の中心点として、
この中心点を基準として画像の処理が行われる。
(Function) In the image processing device of the present invention, the first image edge position of the circular imaged object is determined in the vicinity of a position that is a radius of the circular imaged object in the first direction from the temporary center point. Find the second image edge position on the straight line passing through the first image edge position and the temporary center point, and find the midpoint of the line segment connecting the first image edge position and the second image edge position. A third image edge position is found near a position a radius away from this midpoint in a second direction other than the first direction, and a third image edge position is found in the opposite direction from the third image edge position. Find a position that is the length of the radius in the direction, and use this position as the center point of the circular object to be imaged.
Image processing is performed using this center point as a reference.

したがって、より正確な中心点を基準として画像処理が
行われるので精度か高くなる。
Therefore, image processing is performed using a more accurate center point as a reference, resulting in higher accuracy.

(実施例) 以下、本発明の実施例を図面を用いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の画像処理装置を鋼材の脱炭検査に適用
した場合の一実施例である脱炭検査装置の構成を示す図
である。
FIG. 1 is a diagram showing the configuration of a decarburization inspection apparatus which is an embodiment in which the image processing apparatus of the present invention is applied to decarburization inspection of steel materials.

同図に示すように、この脱炭検査装置は鋼材サンプル1
00を拡大視した映像信号を得るための光学系200と
、光学系200により得られた映像信号を画像処理して
脱炭の検査を行う処理系3OOとから主要部が構成され
ている。
As shown in the figure, this decarburization inspection device is used for steel sample 1.
The main parts are composed of an optical system 200 for obtaining an enlarged video signal of 00, and a processing system 3OO for performing image processing on the video signal obtained by the optical system 200 and inspecting decarburization.

光学系200は鋼材サンプル100を収納するホルダ2
10と、鋼材サンプル100の切断面を光学的に拡大す
る光学顕微鏡220と、光学顕微鏡220により拡大さ
れた鋼材サンプル100の切断面を撮影して映像信号に
変換するITV(INDUSTRIAL 置EVISI
ON)カメラ230と、鋼材サンプル100の切断面を
照明する照明装置240と、顕微鏡220に備えられた
オートフォーカス機構の制御を行うオートフォーカスコ
ントローラ250と、ホルダ210を保持して平面上を
移動させるX−Yステージ260と、画像処理系300
からの指示に基づいてX−Yステージ260の移動制御
を行うX−Yステージコントローラ270とから構成さ
れている。
The optical system 200 includes a holder 2 that stores the steel sample 100.
10, an optical microscope 220 that optically magnifies the cut surface of the steel sample 100, and an ITV (INDUSTRIAL EVIS) that photographs the cut surface of the steel sample 100 magnified by the optical microscope 220 and converts it into a video signal.
ON) A camera 230, an illumination device 240 that illuminates the cut surface of the steel sample 100, an autofocus controller 250 that controls the autofocus mechanism provided in the microscope 220, and a holder 210 that is held and moved on a plane. X-Y stage 260 and image processing system 300
and an X-Y stage controller 270 that controls the movement of the X-Y stage 260 based on instructions from the X-Y stage controller 270.

処理系300は脱炭検査装置全体の検査装置全体の制御
と測定データの処理を行う情報処理装置310と、情報
処理装置310の指示に基づいてITVカメラ230か
ら映像信号を入力して脱炭検査に必要な画像処理を行う
画像処理装置320と、ITVカメラ230て撮影され
た生画像の表示を行う画像モニタ330、画像処理装置
320で画像処理された画像の表示を行う画像モニタ3
40、画像処理装置320で画像処理された画像のハー
ドコピーを出力するビデオプリンタ350と、情報処理
装置310て処理された測定データなどの印字を行うプ
リンタ360とから構成されている。
A processing system 300 includes an information processing device 310 that controls the entire decarburization inspection device and processes measurement data, and a processing system 300 that inputs video signals from an ITV camera 230 based on instructions from the information processing device 310 to perform decarburization inspection. an image processing device 320 that performs image processing necessary for image processing, an image monitor 330 that displays raw images taken by the ITV camera 230, and an image monitor 3 that displays images processed by the image processing device 320.
40, a video printer 350 that outputs a hard copy of an image processed by the image processing device 320, and a printer 360 that prints measurement data processed by the information processing device 310.

第2図は画像処理装置320の構成を示すブロック図で
ある。
FIG. 2 is a block diagram showing the configuration of the image processing device 320.

同図に示すように、画像処理装置320は、画像処理装
置320全体の制御を行うCPU321と、ITVカメ
ラ230から入力された映像信号の濃度データをディジ
タル値に変換するA/Dコンバータ322と、A/Dコ
ンバータ322によって変換された画像データを格納す
るフレームメモリ323と、フレームメモリ323に格
納されている画像データの画像処理を行う画像処理プロ
セッサ324と、画像処理プロセッサか画像処理を行う
場合に使用する作業RAMである。
As shown in the figure, the image processing device 320 includes a CPU 321 that controls the entire image processing device 320, and an A/D converter 322 that converts the density data of the video signal input from the ITV camera 230 into digital values. A frame memory 323 that stores image data converted by the A/D converter 322, an image processing processor 324 that performs image processing of the image data stored in the frame memory 323, and an image processing processor that performs image processing. This is the work RAM to be used.

第3図は鋼材サンプル100を示す斜視図である。FIG. 3 is a perspective view showing the steel sample 100.

同図に示すように鋼材サンプル100は鋼材から切り出
した鋼材片101の周囲を黒い樹脂102で固められ、
円柱状になっている。
As shown in the figure, a steel sample 100 has a piece of steel 101 cut out from a steel material, and its surroundings are hardened with black resin 102.
It is cylindrical.

次に、上述した構成の脱炭検査装置の動作について説明
する。
Next, the operation of the decarburization inspection apparatus configured as described above will be explained.

まずITVカメラ230により鋼材サンプル100の全
体の画像が取込まれる。図示を省略する位置合わせ装置
あるいは鋼材サンプル100の全体の画像のX方向およ
びY方向の射影が取られて鋼材サンプル100の鋼材片
101の仮中心点TPが求められる。また情報処理装置
310に予め登録しである鋼材の半径の長さをRとする
First, an image of the entire steel sample 100 is captured by the ITV camera 230. A tentative center point TP of the steel piece 101 of the steel sample 100 is determined by an alignment device (not shown) or by taking projections of the entire image of the steel sample 100 in the X and Y directions. Further, the length of the radius of the steel material registered in advance in the information processing device 310 is assumed to be R.

次に、この仮中心点TPからより正確な中心点CPを求
める動作を説明する。
Next, the operation of determining a more accurate center point CP from this temporary center point TP will be explained.

第4図は中心点CPを求める動作を説明するための図で
ある。
FIG. 4 is a diagram for explaining the operation of determining the center point CP.

まず仮中心点TPからX軸の正の方向にR離れた位置P
1の画素の濃度を検出して鋼材面であると判定されたら
、さらにX軸の正の方向の画素の濃度を順次測定してい
き、鋼材片101と樹脂102の境界点P2を求める。
First, a position P located R away from the temporary center point TP in the positive direction of the X-axis.
When the density of one pixel is detected and it is determined that the surface is a steel material surface, the density of pixels in the positive direction of the X axis is further sequentially measured, and the boundary point P2 between the steel piece 101 and the resin 102 is determined.

(同図(a))位置P1の画素の濃度を検出した結果、
樹脂面であると判定された場合にはX軸の負の方向の画
素を順次測定していき鋼材片101と樹脂102の境界
点P2を求める。(同図(b))そして境界点P2か求
まったらX軸の負の方向の画素の濃度を順次測定してい
き、鋼材片101と樹脂102の境界点P3を求める。
(Figure (a)) As a result of detecting the density of the pixel at position P1,
If it is determined that the surface is a resin surface, pixels in the negative direction of the X-axis are sequentially measured to find a boundary point P2 between the steel piece 101 and the resin 102. ((b) in the figure) Once the boundary point P2 is determined, the density of pixels in the negative direction of the X axis is sequentially measured to determine the boundary point P3 between the steel piece 101 and the resin 102.

(同図(c)さらに境界点P2と境界点P3とを結ぶ線
分の中点P4を求める。(同図(d)) つぎに中点P4からY軸の正の方向にRMれた位置P5
の画素の濃度を検出して鋼材面であると判定されたら、
さらにY軸の正の方向の画素の濃度を順次測定していき
、鋼材片101と樹脂102の境界点P6を求める。(
同図(e))つぎに中点P4からY軸の正の方向にR離
れた位置P5の画素の濃度を検出した結果、樹脂面であ
ると判定された場合にはY軸の負の方向の画素を順次測
定していき鋼材片101と樹脂102の境界点P6を求
める。(同図(f)) そして境界点P6からY軸の負の方向にRだけ離れた点
が中心点CPになる。
(Figure (c)) Furthermore, find the midpoint P4 of the line segment connecting boundary point P2 and boundary point P3. (Figure (d)) Next, find the position RM from the midpoint P4 in the positive direction of the Y axis. P5
If the density of the pixels is detected and it is determined that the surface is a steel surface,
Furthermore, the density of pixels in the positive direction of the Y axis is sequentially measured, and a boundary point P6 between the steel piece 101 and the resin 102 is determined. (
(e) of the same figure) Next, as a result of detecting the density of the pixel at position P5, which is R away from the midpoint P4 in the positive direction of the Y-axis, if it is determined that it is a resin surface, the density of the pixel is detected in the negative direction of the Y-axis. The boundary point P6 between the steel piece 101 and the resin 102 is determined by sequentially measuring the pixels. ((f) in the same figure) Then, a point separated by R in the negative direction of the Y-axis from the boundary point P6 becomes the center point CP.

このようにして鋼材片101の中心が求まった後は、画
像処理が行われる。
After the center of the steel piece 101 is determined in this way, image processing is performed.

まず第5図に示すように鋼材片101の周辺部分の画像
が画面F1分取込まれる。フレームメモリ323上で1
画面分の画像データは第6図に示すように255個のセ
クタに分割され、セクタ毎に濃度データが加算され、作
業RAM325に格納される。
First, as shown in FIG. 5, an image of the peripheral portion of the steel piece 101 is captured for a screen F1. 1 on frame memory 323
The image data for the screen is divided into 255 sectors as shown in FIG. 6, and density data is added for each sector and stored in the work RAM 325.

つぎにX−Yステージコントローラ270によってX−
Yステージ260が移動制御されて画面Flに隣接する
画面F2分の画像が取込まれ、同様に、画面F2分の画
像はフレームメモリ323上で255個のセクタに分割
され、セクタ毎に濃度データか加算され、作業RAM3
25に格納される。
Next, the X-Y stage controller 270 performs
The movement of the Y stage 260 is controlled to capture an image for screen F2 adjacent to screen Fl. Similarly, the image for screen F2 is divided into 255 sectors on the frame memory 323, and density data is stored for each sector. is added and the working RAM3
25.

同様にして画面F3、F4に対応する画像のセクタ毎の
濃度データか加算されて作業RAM325に格納される
Similarly, the density data for each sector of the images corresponding to screens F3 and F4 is added and stored in the work RAM 325.

第7図はセクタ毎の濃度データの積算値とセクタとの関
係を示すグラフである。このグラフで示される作業RA
 M 325に格納されているセクタ毎の積算濃度デー
タに平滑化処理が施されて、第8図に示すデータに変換
されて再び作業RA M 325上に格納される。
FIG. 7 is a graph showing the relationship between the integrated value of density data for each sector and the sector. Work RA shown in this graph
The integrated density data for each sector stored in the RAM 325 is smoothed, converted into data shown in FIG. 8, and stored in the working RAM 325 again.

鋼材片101のエツジAから鋼材片101の脱炭してい
ない表面濃度になる位置Bまでの距離である脱炭深度D
Tが測定される。二〇脱炭深度DTが所定の値より大き
い場合には不良品であると判断される。また第8図に示
すエツジ部から鋼材片の中心方向の距離と画像の濃度デ
ータのグラフが画像モニタ340に表示される。
The decarburization depth D is the distance from the edge A of the steel piece 101 to the position B where the surface concentration of the steel piece 101 is not decarburized.
T is measured. 20 If the decarburization depth DT is greater than a predetermined value, it is determined that the product is defective. Further, a graph of the distance from the edge toward the center of the steel piece and the image density data shown in FIG. 8 is displayed on the image monitor 340.

本実施例の脱炭検査装置では、仮の中心点からより正確
な中心点か求められ、この正確な中心点を基準として脱
炭の検査か行われるので鋼材の脱炭深度が正確に測定さ
れる。
In the decarburization inspection device of this embodiment, a more accurate center point is determined from the temporary center point, and the decarburization inspection is performed using this accurate center point as a reference, so the depth of decarburization of the steel material can be accurately measured. Ru.

[発明の効果コ 以上説明したように、本発明の画像処理装置によれば、
仮中心点から正確な中心点が求められ、この正確な中心
点に基づいて画像処理して円形状被撮像体の画像処理が
行われる。このため画像処理が正確に実行される。
[Effects of the Invention As explained above, according to the image processing device of the present invention,
An accurate center point is determined from the temporary center point, and image processing of the circular imaged object is performed based on this accurate center point. Therefore, image processing is performed accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の脱炭検査装置の一実施例の構成を示す
図、第2図は画像処理装置の構成を示すブロック図、第
3図は鋼材サンプルを示す斜視図、第4図は鋼材片の中
心点を求める動作を説明するための図、第5図は鋼材サ
ンプルの画像を取込む画面を示す図、第6図は1画面の
画像をセクタに分割した様子を示す図、第7図はセクタ
毎の濃度データの積算値とセクタとの関係を示すグラフ
、第8図は第7図に示す濃度データを平滑化した後の状
態を示す図である。 100・・・鋼材サンプル、101・・・鋼材片、10
2・・・樹脂、200・・・光学系、210・・・ホル
ダ、220・・・光学顕微鏡、230・・・ITVカメ
ラ、24O・・・照明装置f、250・・・オートフォ
ーカスコントローラ、260・・・x−yステージ27
0・・・x−yステージコントローラ、300・・・処
理系、310・・・情報処理装置、320・・・画像処
理装置、330.340・・パ画像モニタ、350・・
・ビデオプリンタ、360・・・プリンタ。 出願人      東芝エンジニアリング株式会社 同       大同特殊鋼株式会社 代理人 弁理士  須 山 佐 − (ほか1名) 直 L−−一―■−−−−−シー軸−−−−畳、−一一静一
−−」第2図 第31¥) 第4図 F4 榛51 tqり253 第61¥:l
Fig. 1 is a diagram showing the configuration of an embodiment of the decarburization inspection device of the present invention, Fig. 2 is a block diagram showing the configuration of the image processing device, Fig. 3 is a perspective view showing a steel sample, and Fig. 4 is Figure 5 is a diagram for explaining the operation of determining the center point of a steel piece. Figure 5 is a diagram showing a screen for capturing an image of a steel sample. Figure 6 is a diagram showing how one screen image is divided into sectors. FIG. 7 is a graph showing the relationship between the integrated value of the density data for each sector and the sector, and FIG. 8 is a diagram showing the state after the density data shown in FIG. 7 has been smoothed. 100... Steel material sample, 101... Steel material piece, 10
2... Resin, 200... Optical system, 210... Holder, 220... Optical microscope, 230... ITV camera, 24O... Illumination device f, 250... Auto focus controller, 260 ...x-y stage 27
0... x-y stage controller, 300... processing system, 310... information processing device, 320... image processing device, 330.340... image monitor, 350...
・Video printer, 360... printer. Applicant: Toshiba Engineering Co., Ltd. Daido Steel Co., Ltd. Agent Patent attorney: Sa Suyama - (1 other person) Nao L - - 1 - ■ - - - Sea axis - Tatami, -11 Seiichi --" Figure 2 31 yen) Figure 4 F4 Haru 51 tqri 253 61 yen:l

Claims (1)

【特許請求の範囲】[Claims] (1)円形状被撮像体の画像を入力する画像入力手段と
、 この画像入力手段から入力された円形状被撮像体の画像
の仮中心点を求める仮中心点求出手段と、前記仮中心点
から第1の方向に前記円形状被撮像体の半径の長さ離れ
た位置近傍で前記円形状被撮像体の第1の画像エッジ位
置を求め、この第1の画像エッジ位置と前記仮中心点と
を通る直線上の第2の画像エッジ位置を求め、前記第1
の画像エッジ位置と前記第2の画像エッジ位置とを結ぶ
線分の中点を求め、この中点から前記第1の方向とは異
なる第2の方向に前記半径の長さ離れた位置近傍で第3
の画像エッジ位置を求め、この第3の画像エッジ位置か
ら前記第2の方向と逆方向に前記半径の長さ離れた位置
を求め、この位置を前記円形状被検査物の中心点とする
中心点求出手段と、 この中心点算出手段によって求められた中心点に基づい
て前記円形状被撮像体の画像に所定の画像処理を実行す
る画像処理手段と を具備したことを特徴とする画像処理装置。
(1) an image input means for inputting an image of a circular object to be imaged; a temporary center point calculating means for calculating a temporary center point of the image of the circular object to be imaged inputted from the image input means; A first image edge position of the circular imaged object is determined in the vicinity of a position separated by the length of the radius of the circular imaged object in a first direction from the point, and this first image edge position and the temporary center are determined. Find the second image edge position on the straight line passing through the first point.
Find the midpoint of the line segment connecting the image edge position and the second image edge position, and calculate the distance from the midpoint by the length of the radius in a second direction different from the first direction. Third
Find the image edge position of the third image edge position, find a position away from the third image edge position by the length of the radius in the opposite direction to the second direction, and set this position as the center point of the circular object to be inspected. Image processing characterized by comprising a point finding means and an image processing means for performing predetermined image processing on the image of the circular imaged object based on the center point found by the center point calculating means. Device.
JP2300411A 1990-11-06 1990-11-06 Image processing device Expired - Lifetime JP2928375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2300411A JP2928375B2 (en) 1990-11-06 1990-11-06 Image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2300411A JP2928375B2 (en) 1990-11-06 1990-11-06 Image processing device

Publications (2)

Publication Number Publication Date
JPH04171585A true JPH04171585A (en) 1992-06-18
JP2928375B2 JP2928375B2 (en) 1999-08-03

Family

ID=17884478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2300411A Expired - Lifetime JP2928375B2 (en) 1990-11-06 1990-11-06 Image processing device

Country Status (1)

Country Link
JP (1) JP2928375B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331312A (en) * 1993-05-26 1994-12-02 U H T Kk Detection of center position of target mark by image processing
US5655030A (en) * 1993-12-27 1997-08-05 Uht Corporation Method for detecting the center of target marks by image processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331312A (en) * 1993-05-26 1994-12-02 U H T Kk Detection of center position of target mark by image processing
US5655030A (en) * 1993-12-27 1997-08-05 Uht Corporation Method for detecting the center of target marks by image processing

Also Published As

Publication number Publication date
JP2928375B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP3373831B2 (en) Test specimen elongation measuring method and apparatus
JP2000241117A (en) Edge detection method of image, inspecting device, and storage medium
JP3645547B2 (en) Sample inspection equipment
JP3132385B2 (en) Inspection position determination method for metal weld section
JPH04171585A (en) Picture processor
JPH08505478A (en) Method and associated apparatus for controlling the surface condition of one side of a solid
JP2869579B2 (en) Decarburization inspection method and decarburization inspection device
JPH11279936A (en) Creping capability measurement system for creped woven fabric and creping capability measurement
JP2848520B2 (en) Abnormal inspection method for object surface shape
JP2869580B2 (en) Decarburization inspection method and decarburization inspection device
JP2865125B2 (en) Inspection method for ERW pipe weld and inspection device for ERW pipe weld
JP4619748B2 (en) Defect detection method for multilayer flat plate inspection object having optical transparency
JPH09196635A (en) Image measuring device
JPH084615Y2 (en) Inspection device for non-metallic inclusions
JP3552381B2 (en) Image measuring machine
JP3013255B2 (en) Shape measurement method
JPH08304054A (en) Method for evaluating abnormal state of object surface
JPH03100424A (en) Automatic indicator reading device
JP2897912B2 (en) Evaluation method of object surface shape
JPH0273139A (en) Surface defect checking device
JP2024109397A (en) Appearance inspection equipment for battery exterior body
JP2004045128A (en) Calibration standard device, image processing method for calibrating image inspection device using the same, and method for calibrating image inspection device
JP2879355B2 (en) Shape measurement method
JPH0128991B2 (en)
JPH07128243A (en) Inspection method and inspection device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 12