JP4619748B2 - Defect detection method for multilayer flat plate inspection object having optical transparency - Google Patents

Defect detection method for multilayer flat plate inspection object having optical transparency Download PDF

Info

Publication number
JP4619748B2
JP4619748B2 JP2004321342A JP2004321342A JP4619748B2 JP 4619748 B2 JP4619748 B2 JP 4619748B2 JP 2004321342 A JP2004321342 A JP 2004321342A JP 2004321342 A JP2004321342 A JP 2004321342A JP 4619748 B2 JP4619748 B2 JP 4619748B2
Authority
JP
Japan
Prior art keywords
layer
brightness
defect
inspection object
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004321342A
Other languages
Japanese (ja)
Other versions
JP2006133042A (en
Inventor
芳紀 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V Technology Co Ltd
Original Assignee
V Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V Technology Co Ltd filed Critical V Technology Co Ltd
Priority to JP2004321342A priority Critical patent/JP4619748B2/en
Publication of JP2006133042A publication Critical patent/JP2006133042A/en
Application granted granted Critical
Publication of JP4619748B2 publication Critical patent/JP4619748B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は液晶基板等の光透過性を有する多層平板状被検査体のキズや異物等の欠陥を内包する層を特定するための欠陥検査方法に関するものである。   The present invention relates to a defect inspection method for identifying a layer containing defects such as scratches and foreign matter in a light-transmitting multilayer flat plate-shaped inspection object such as a liquid crystal substrate.

液晶基板等の製造過程において、キズの発生や異物混入等の欠陥が発生する場合があり、これらの欠陥を検出して修正することが必要となる。
従来、これら欠陥の検出のため液晶基板の被検査部位に検査用の光を照射し、その被検査部位の欠陥部分からの散乱光をCCDカメラ等によって撮影した画像データを画像処理し、液晶基板の平面視における欠陥位置を検出する方法(特許文献1)が開示されている。
また、上記液晶基板の被検査部位の下面から光を照射し、その被検査部位の欠陥からの透過光をCCDカメラ等によって撮影した画像データを画像処理し、欠陥位置を検出する検査方法(特許文献2)が開示されている。
特開平10−038753号公報 特開平09−033448号公報
In the process of manufacturing a liquid crystal substrate or the like, defects such as scratches and foreign matter may occur, and it is necessary to detect and correct these defects.
Conventionally, in order to detect these defects, the inspection part of the liquid crystal substrate is irradiated with inspection light, and the image data obtained by photographing the scattered light from the defective part of the inspection part with a CCD camera or the like is subjected to image processing. Discloses a method for detecting a defect position in a plan view (Patent Document 1).
Also, an inspection method for detecting a defect position by irradiating light from the lower surface of the inspection site of the liquid crystal substrate, performing image processing on image data obtained by photographing a transmitted light from the defect of the inspection site with a CCD camera or the like (patent) Document 2) is disclosed.
Japanese Patent Laid-Open No. 10-038753 Japanese Patent Laid-Open No. 09-033448

しかし、前記欠陥は、前記被検査部位の表面に存在する場合(図2a)と同被検査部位における各層の層内に存在する場合(図2b)とがあり、前記層内に存在する微小な欠陥の場合、前記従来技術(特許文献1)では、この欠陥部分からの十分な散乱光が得られず、検出が困難であった。
また、前記従来技術(特許文献2)では、平面視における欠陥位置を検出することが可能であるが、前記被検査部位の表面に存在する欠陥と、各層の内部に存在する欠陥とが区別できないため、これらの欠陥部分を顕微鏡を用いて確認することが必要となり、作業時間が長引くという問題があった。
However, there are cases where the defect exists on the surface of the inspected site (FIG. 2a) and in the layer of each layer in the inspected site (FIG. 2b). In the case of a defect, in the prior art (Patent Document 1), sufficient scattered light from this defect portion cannot be obtained, and detection is difficult.
Moreover, in the said prior art (patent document 2), although the defect position in planar view can be detected, the defect which exists in the surface of the said to-be-inspected site | part and the defect which exists in each layer cannot be distinguished. Therefore, it is necessary to check these defective portions using a microscope, and there is a problem that the working time is prolonged.

そこで、本発明は、このような問題点に対処するため、光透過性を有する多層平板状被検査体の欠陥検出に際して、その内部欠陥の存在する層を特定することができるようにした方法を提供することを課題とする。   Therefore, in order to cope with such problems, the present invention provides a method in which a layer in which an internal defect exists can be specified when detecting a defect of a multilayer flat plate inspection object having optical transparency. The issue is to provide.

上述の課題を解決するために、本発明の光透過性を有する多層平板状被検査体の欠陥検出方法は、光透過性を有する多層平板状被検査体の被測定部位に光を照射して、同多層平板状被検査体に対向して設けられた撮影手段を前記多層平板状被検査体の前記被測定部位の各層についての直角方向に連続的に接近させながら、該撮影手段により、前記被測定部位の各層についての直角方向の画像データを連続的に取り込んでから、前記の連続的に取り込まれた画像データに基づいて前記被測定部位の各層についての直角方向の明るさに関するデータの分布を求め、ついで前記各層についての直角方向の明るさに関するデータの分布と、予め求められている無欠陥の多層平板状基準検査体の前記被測定部位に対応した部位における各層についての直角方向の明るさに関するデータの分布とを比較することにより、前記多層平板状被検査体の被測定部位における欠陥の有無を特定することを特徴としている。 In order to solve the above-described problems, the defect detection method for a light-transmitting multilayer flat-plate inspection object is to irradiate light on a measurement site of the light-transmitting multilayer flat inspection object. The imaging means provided facing the multi-layer plate-like object to be inspected is continuously approached in the direction perpendicular to each layer of the measurement site of the multilayer flat-plate object to be inspected by the imaging means . Distribution of data relating to the brightness in the perpendicular direction for each layer of the measured region based on the continuously captured image data after continuously capturing the image data in the perpendicular direction for each layer of the measured region Next, the distribution of data regarding the brightness in the perpendicular direction for each layer and the direct data for each layer in the portion corresponding to the measured portion of the defect-free multi-layer flat reference inspection object obtained in advance. By comparing the distribution of the data relating to the brightness of the direction, it is characterized by identifying the presence or absence of a defect in the measurement region of the multilayer flat-plate-shaped device under test.

本発明の光透過性を有する多層平板状被検査体の欠陥検出方法によれば、被検査体の被測定部位の各層についての直角方向の明るさに関するデータの分布と、予めメモリ等に記憶されている前記無欠陥の基準検査体の対応する部位における各層についての直角方向の明るさに関するデータの分布とを比較することによって、欠陥の存在する被検査体の層を特定することができる。
すなわち、前記被測定部位において欠陥が存在する部位の各層についての直角方向の明るさに関するデータの分布が、前記基準検査体の対応する部位における各層についての直角方向の明るさに関するデータの分布と異なるため、被検査体において欠陥の存在する層が容易に判別され検出されるようになる、という優れた効果を奏する。
According to the defect detection method for a multilayer flat plate inspection object having optical transparency according to the present invention, the distribution of data relating to the brightness in the perpendicular direction for each layer of the measurement target portion of the inspection object and the memory are stored in advance. By comparing the distribution of data relating to the brightness in the direction perpendicular to each layer at the corresponding part of the defect-free reference inspection object, the layer of the inspection object in which a defect exists can be specified.
That is, the distribution of the data regarding the brightness in the perpendicular direction for each layer of the portion where the defect exists in the measured region is different from the distribution of the data regarding the brightness in the perpendicular direction for each layer in the corresponding portion of the reference specimen. Therefore, there is an excellent effect that a layer in which a defect exists in the inspection object can be easily identified and detected.

水平に置かれた多層平板状被検査体について欠陥が存在する層の特定を能率よく容易に行うため、被検査体の被測定部位における各層の鉛直方向の画像データから、同各層の鉛直方向の明るさに関するデータの分布を求め、無欠陥の多層平板状基準検査体について予め求めてある各層の鉛直方向の明るさに関するデータの分布と比較する操作が行われる。   In order to efficiently and easily identify the layer in which a defect exists in a horizontally placed multi-layer flat specimen, the vertical direction of each layer is determined from the vertical image data of each layer at the measurement site of the specimen. An operation for obtaining a distribution of data relating to brightness and comparing it with a distribution of data relating to the brightness in the vertical direction of each layer obtained in advance for a defect-free multilayer flat-plate reference inspection object is performed.

以下、本発明の実施例としての光透過性を有する多層平板状被検査体の欠陥検出方法について、図面を参照して説明する。
まず、本発明の実施例1の光透過性を有する多層平板状被検査体の欠陥検出方法に係る装置について説明すると、図1に示すように、欠陥検出装置1は、平板状の被検査体2を水平に載置する架台3と、同架台3をX軸方向及びY軸方向(紙面に鉛直の方向)に移動可能にする移動手段13とを備えるほか、被検査体2に対向して設けられた対物レンズ4と、この対物レンズ4と同軸に設けられた結像レンズ5と、この結像レンズ5の結像位置に受光面を有するように設けられた被検査体2の被測定部位の画像を取込むための撮影手段としてのCCDカメラ6と、対物レンズ4の鉛直方向の光軸7と被検査体2との交点9を含む被測定部位に検査用の光Lを照射する光量調節可能な照明手段8とからなる光学系11とを備えている。
Hereinafter, a method for detecting a defect of a multilayer flat plate inspection object having optical transparency as an embodiment of the present invention will be described with reference to the drawings.
First, a description will be given of an apparatus according to a defect detection method for a multilayer flat plate inspection object having optical transparency according to the first embodiment of the present invention. As shown in FIG. 1, the defect detection apparatus 1 is a flat inspection object. 2 and a moving means 13 that can move the gantry 3 in the X-axis direction and the Y-axis direction (direction perpendicular to the paper surface). An objective lens 4 provided, an imaging lens 5 provided coaxially with the objective lens 4, and an object to be inspected 2 provided with a light receiving surface at the imaging position of the imaging lens 5 An inspection light L is applied to a measurement site including a CCD camera 6 as an imaging means for capturing an image of the site, and an intersection 9 between the vertical optical axis 7 of the objective lens 4 and the object 2 to be inspected. And an optical system 11 including an illuminating means 8 capable of adjusting the amount of light.

また欠陥検出装置1には、光学系11を一体的に被検査体2の鉛直方向(光軸7と平行なZ軸方向)に移動可能にするZ軸方向移動手段10と、光学系11のZ軸方向の位置を検出する位置検出器12と、CCDカメラ6によって取込まれた被検査体2の被測定部位の画像データを処理するための測定装置14とが設けられている。   The defect detection apparatus 1 also includes a Z-axis direction moving means 10 that allows the optical system 11 to move integrally in the vertical direction of the object 2 to be inspected (Z-axis direction parallel to the optical axis 7), and the optical system 11. A position detector 12 for detecting the position in the Z-axis direction and a measuring device 14 for processing the image data of the measured region of the device under test 2 captured by the CCD camera 6 are provided.

そして、測定装置14は、CCDカメラ6で撮影して得られた被検査体2の各層の鉛直方向のアナログ画像信号をデジタル信号に変換するA/D変換器15と、このA/D変換器15からの前記デジタル信号を記憶する画像メモリ16Aと、この画像メモリ16Aに取り込まれた前記デジタル信号を読み出して同デジタル信号から前記各層の鉛直方向の明るさに関するデータを作成し同データの分布を求める演算器17と、前記基準検査体の各層の鉛直方向の明るさに関するデータの分布を記憶させた基準メモリ16Bとを備えて構成される。   The measuring device 14 includes an A / D converter 15 that converts the analog image signal in the vertical direction of each layer of the inspection object 2 obtained by photographing with the CCD camera 6 into a digital signal, and the A / D converter. The image memory 16A for storing the digital signal from 15 and the digital signal captured in the image memory 16A are read out, and data relating to the brightness in the vertical direction of each layer is created from the digital signal, and the distribution of the data is determined. An arithmetic unit 17 to be obtained and a reference memory 16B in which a distribution of data relating to the brightness in the vertical direction of each layer of the reference inspection object is stored.

また、演算器17からの被検査体2の各層の鉛直方向の明るさに関するデータの分布と基準メモリ16Bより取り出した前記基準検査体の各層の鉛直方向の明るさに関するデータの分布とを表示できる表示器18とが設けられている。   Further, it is possible to display the distribution of data relating to the brightness in the vertical direction of each layer of the inspection object 2 from the computing unit 17 and the distribution of data relating to the brightness in the vertical direction of each layer of the reference inspection object extracted from the reference memory 16B. A display 18 is provided.

なお、前記の明るさに関するデータとは、前記撮影手段(CCDカメラ6)で取り込まれる画像内に存在する明部と暗部との輝度差(コントラスト)を数値化したデータを意味し、またデータの分布とは、前記撮影手段(CCDカメラ6)の移動方向(図1のZ軸方向)の前記明るさに関するデータの変化の状態(例えば、図5a,図5b参照)を意味するものであり、以下においても同じである。   The data relating to the brightness means data obtained by quantifying a luminance difference (contrast) between a bright part and a dark part existing in an image captured by the photographing unit (CCD camera 6). The distribution means a change state of data relating to the brightness in the moving direction (Z-axis direction in FIG. 1) of the photographing means (CCD camera 6) (see, for example, FIGS. 5a and 5b). The same applies to the following.

次に、上記構成を備えた欠陥検出検査装置1の作用とともに、同欠陥検出装置1によって実施される本発明の実施例1に係る被検査体の欠陥検出方法について、図1〜図7を参照して説明する。
本実施例1の欠陥検出方法では、被検査体2の欠陥検出を行う前の準備工程として、図3に示すように、前記基準検査体を架台3にセットし(ステップ1)、架台移動手段13を用いて架台3をXY方向に移動させ(ステップ2)、各位置につき照明手段8によって光を照射し、光学系11をZ軸方向移動手段10によって前記基準検査体に連続的に接近させながら、CCDカメラ6によって撮影し、前記各位置における各層の鉛直方向の画像データを取り込み(ステップ3)、その画像データをA/D変換器15によりデジタル信号に変換してメモリ16Aに記憶させ(ステップ4)、その記憶させた前記各層の鉛直方向の画像データを演算器17に取り込んで、前記基準検査体の各層の鉛直方向の明るさに関するデータの分布を求め(ステップ5)、その結果をメモリ16Bに記憶させる(ステップ6)。
上記準備工程の完了後は前記基準検査体を架台3から取り外し、メモリ16Aの記憶内容を削除(リセット)しておく(ステップ7)。
Next, with reference to FIGS. 1 to 7 for the defect detection method for the inspection object according to the first embodiment of the present invention, which is performed by the defect detection apparatus 1 together with the operation of the defect detection inspection apparatus 1 having the above-described configuration. To explain.
In the defect detection method of the first embodiment, as a preparatory step before performing the defect detection of the inspection object 2, the reference inspection object is set on the gantry 3 as shown in FIG. 13 is used to move the gantry 3 in the XY directions (step 2), light is irradiated by the illumination means 8 at each position, and the optical system 11 is continuously approached to the reference inspection object by the Z-axis direction moving means 10. However, the image is taken by the CCD camera 6, the vertical image data of each layer at each position is taken in (step 3), and the image data is converted into a digital signal by the A / D converter 15 and stored in the memory 16A ( Step 4), fetching the stored vertical image data of each layer into the computing unit 17 to obtain a distribution of data relating to the vertical brightness of each layer of the reference inspection object (Step 4). 5), and stores the result in the memory 16B (step 6).
After completion of the preparation process, the reference inspection object is removed from the gantry 3 and the stored contents of the memory 16A are deleted (reset) (step 7).

前記分布は、前記基準検査体内に異物等が存在しないため、CCDカメラ6によって取り込まれる画像のコントラストが各被撮影面(例えば各層の境界面などの前記CCDカメラ6のピントが合う面)以外では大きくならず、明るさに関するデータの分布は図5aのようになる。   In the distribution, since there is no foreign matter or the like in the reference inspection body, the contrast of the image captured by the CCD camera 6 is other than each surface to be imaged (for example, a surface on which the CCD camera 6 is focused, such as a boundary surface of each layer). The distribution of data regarding brightness is not as shown in FIG. 5a.

次に、本実施例1の欠陥検出方法における検査工程は、図4に示すように、平面視において欠陥位置が明確にされている被検査体2を架台3に載せる。(ステップ10)
そして、上記欠陥位置が対物レンズの光軸7の直下になるように、架台移動手段13を用いて架台3をXY方向に移動させる。(ステップ11)
この状態で、光学系11をZ軸方向移動手段10によって被検査体2に連続的に接近させながら、CCDカメラ6によって被検査体2の被測定部位の撮影を実施する。(ステップ12)
そして、CCDカメラ6によって鉛直方向に連続的に撮影された被検査体2の被測定部位の画像データをA/D変換器15によってデジタル信号に変換し、メモリ16Aに記憶させる。(ステップ13)
Next, in the inspection process in the defect detection method of the first embodiment, as shown in FIG. 4, the inspection object 2 whose defect position is clarified in plan view is placed on the gantry 3. (Step 10)
Then, the gantry 3 is moved in the XY directions using the gantry moving means 13 so that the defect position is directly below the optical axis 7 of the objective lens. (Step 11)
In this state, while the optical system 11 is continuously approached to the inspection object 2 by the Z-axis direction moving means 10, the measurement site of the inspection object 2 is imaged by the CCD camera 6. (Step 12)
Then, the image data of the measurement site of the object 2 to be inspected continuously taken in the vertical direction by the CCD camera 6 is converted into a digital signal by the A / D converter 15 and stored in the memory 16A. (Step 13)

ついで、メモリ16Aに記憶されたデジタル信号を演算器17に取り込んで、同デジタル信号から被検査体2の被測定部位の各層の鉛直方向の明るさに関するデータを作成し、このデータから被検査体2の被測定部位の各層の鉛直方向の前記明るさに関するデータの分布を求める。(ステップ14)
被検査体2の欠陥が異物による場合、同欠陥部分にCCDカメラ6のピントが合うため、欠陥の存在する層における明るさに関するデータの分布は例えば図5bのようになる。 なお、図5aおよび図5bの縦軸はZ軸方向位置検出器12によって検出された光学系11のZ軸方向の位置を示すものである。
Next, the digital signal stored in the memory 16A is taken into the computing unit 17, and data relating to the brightness in the vertical direction of each layer of the measurement site of the device under test 2 is created from the digital signal. A distribution of data relating to the brightness in the vertical direction of each layer of the part to be measured is obtained. (Step 14)
When the defect of the inspection object 2 is caused by a foreign substance, the CCD camera 6 is focused on the defective portion, so the data distribution regarding the brightness in the layer where the defect exists is, for example, as shown in FIG. 5a and 5b indicate the position of the optical system 11 detected by the Z-axis direction position detector 12 in the Z-axis direction.

ついで、演算器17によって求められた被検査体2の被測定部位の各層の鉛直方向の明るさに関するデータの分布と、前記準備工程で得られている基準検査体の被検査体2の被測定部位に対応した部位の各層の鉛直方向の明るさに関するデータの分布(図5a)とを表示器18に表示する(ステップ15)。   Next, the distribution of data regarding the brightness in the vertical direction of each layer of the measurement site of the device under test 2 obtained by the computing unit 17 and the device under test 2 of the standard test sample obtained in the preparation step. The distribution of data relating to the brightness in the vertical direction of each layer of the part corresponding to the part (FIG. 5a) is displayed on the display 18 (step 15).

さらに、表示器18に表示された明るさに関するデータの分布を作業者が目視で確認し、前記基準検査体の各層の鉛直方向の明るさに関するデータの分布との差異が基準を超えている場合は、被検査体2の被測定部位の層に欠陥が存在すると判断される。(ステップ16)   Furthermore, when the operator visually confirms the distribution of data regarding the brightness displayed on the display 18 and the difference from the distribution of data regarding the brightness in the vertical direction of each layer of the reference inspection object exceeds the reference Is determined that there is a defect in the layer of the measured region of the inspection object 2. (Step 16)

前述の実施例1では、演算器17によって求められた明るさに関するデータの分布を、表示器18に直接表示する構成としたが、図6に示すごとく、演算器17によって求められた被検査体2の各層の鉛直方向の明るさに関するデータの分布と、前記準備工程で得られている基準検査体の被検査体の被測定部位に対応した部位の各層の鉛直方向の明るさに関するデータの分布とを比較判定器19によって比較し、その結果を表示器18に表示する構成としてもよい。   In the first embodiment described above, the distribution of the data relating to the brightness obtained by the computing unit 17 is directly displayed on the display unit 18, but as shown in FIG. Distribution of data relating to the vertical brightness of each layer of 2 and data relating to the brightness in the vertical direction of each layer of the part corresponding to the measured part of the inspection object of the reference inspection object obtained in the preparation step May be compared by the comparison / determination unit 19 and the result may be displayed on the display unit 18.

実施例2では、図6に示される構成を有する欠陥検出検査装置1Aによる被検査体2の欠陥検出方法が、図7に示す工程により実施されるが、ステップ1からステップ5までの工程は実施例1と同じである。
すなわち、本実施例2では、演算器17によって求められた被検査体2の被測定部位の各層の鉛直方向の明るさに関するデータの分布(例えば図5b)と、前記準備工程で得られている前記基準検査体の被検査体2の被測定部位に対応した部位の各層の鉛直方向の明るさに関するデータの分布(例えば図5a)とを、比較判定器19に供給し、同比較判定器19で両者の各層の鉛直方向の明るさに関するデータのピーク値を比較し(ステップ15′)、そのピーク値が異なる被検査体2の被測定部位の層が欠陥の存在する層であるとして認定し、その層の位置を表示器18に表示する。(ステップ16)
In the second embodiment, the defect detection method for the inspected object 2 by the defect detection / inspection apparatus 1A having the configuration shown in FIG. 6 is performed by the steps shown in FIG. 7, but the steps from step 1 to step 5 are performed. Same as Example 1.
That is, in the second embodiment, the distribution of data relating to the brightness in the vertical direction of each layer of the measurement site of the device under test 2 obtained by the computing unit 17 (for example, FIG. 5b) and obtained in the preparation step. A data distribution (for example, FIG. 5 a) relating to the brightness in the vertical direction of each layer of the part corresponding to the part to be measured of the inspection object 2 of the reference inspection object is supplied to the comparison / determination unit 19. Then, the peak values of the data regarding the brightness in the vertical direction of both layers are compared (step 15 '), and the layer of the measurement site of the object 2 to be inspected having a different peak value is recognized as a layer having a defect. The position of the layer is displayed on the display 18. (Step 16)

実施例2の欠陥検出検査装置1Aを用いる方法では、欠陥の有無についての判定が作業者の目視によらないため、作業者の個人差が生じにくいこと、そして判定を迅速に行うことができるという効果が得られる。   In the method using the defect detection / inspection apparatus 1A according to the second embodiment, the determination as to the presence / absence of a defect does not depend on the operator's visual observation, so that individual differences among workers are less likely to occur, and the determination can be performed quickly. An effect is obtained.

なお、上述の各実施例1,2の欠陥検出方法においては、対物レンズ4と結像レンズ5を有する光学系11を用いているが、結合レンズ5の代わりにCCDカメラ6のレンズを用いてもよい。
また、被検査体2と光学系11とのXY軸方向における相対移動手段は、前述の構成に限らず、被検査体2の架台3を固定し光学系11を移動させるようにしてもよい。
In the defect detection methods of the first and second embodiments described above, the optical system 11 having the objective lens 4 and the imaging lens 5 is used, but the lens of the CCD camera 6 is used instead of the coupling lens 5. Also good.
Further, the relative movement means in the XY-axis direction between the inspected object 2 and the optical system 11 is not limited to the above-described configuration, and the optical system 11 may be moved by fixing the gantry 3 of the inspected object 2.

本発明の実施例1に係る被検査体の欠陥検出方法を実施するための欠陥検出装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the defect detection apparatus for enforcing the defect detection method of the to-be-inspected object which concerns on Example 1 of this invention. 被検査体の表面に存在する異物の一例を示す説明図である。It is explanatory drawing which shows an example of the foreign material which exists on the surface of a to-be-inspected object. 被検査体の一つの層内に存在する異物の一例を示す説明図である。It is explanatory drawing which shows an example of the foreign material which exists in one layer of to-be-inspected object. 図1の装置における被検査体の欠陥検出方法の準備工程を示す説明図である。It is explanatory drawing which shows the preparatory process of the defect detection method of the to-be-inspected object in the apparatus of FIG. 図1の装置における被検査体の欠陥検出方法の検査工程を示す説明図である。It is explanatory drawing which shows the inspection process of the defect detection method of the to-be-inspected object in the apparatus of FIG. 基準検査体の層の明るさに関するデータの分布の一例を表すグラフである。It is a graph showing an example of the distribution of the data regarding the brightness of the layer of a reference | standard test body. 被検査体の層の明るさに関するデータの分布の一例を表すグラフである。It is a graph showing an example of the distribution of the data regarding the brightness of the layer of a to-be-inspected object. 本発明の実施例2に係る被検査体の欠陥検出方法を実施するための欠陥検出装置の概略構成を示す図である。It is a figure which shows schematic structure of the defect detection apparatus for enforcing the defect detection method of the to-be-inspected object which concerns on Example 2 of this invention. 図6の装置における被検査体の欠陥検出方法の検査工程を示す説明図である。It is explanatory drawing which shows the inspection process of the defect detection method of the to-be-inspected object in the apparatus of FIG.

符号の説明Explanation of symbols

1,1A 欠陥検出装置
2 被検査体
3 架台
4 対物レンズ
5 結像レンズ
6 CCDカメラ
7 対物レンズの光軸
8 照明手段
9 対物レンズの光軸と被検査体の交点
10 光学系のZ軸方向移動手段
11 光学系
12 光学系のZ軸方向位置検出器
13 架台移動手段
14 測定機
15 A/D変換器
16A メモリ
16B メモリ
17 演算器
18 表示器
19 比較判定器
DESCRIPTION OF SYMBOLS 1,1A Defect detection apparatus 2 Inspection object 3 Base 4 Objective lens 5 Imaging lens 6 CCD camera 7 Optical axis of objective lens 8 Illumination means 9 Intersection point of optical axis of objective lens and inspection object 10 Z-axis direction of optical system Moving means 11 Optical system 12 Optical system Z-axis direction position detector 13 Base moving means 14 Measuring instrument 15 A / D converter 16A Memory 16B Memory 17 Calculator 18 Display 19 Comparison comparator

Claims (1)

光透過性を有する多層平板状被検査体の被測定部位に光を照射して、
同多層平板状被検査体に対向して設けられた撮影手段を前記多層平板状被検査体の前記被測定部位の各層についての直角方向に連続的に接近させながら、該撮影手段により、前記被測定部位の各層についての直角方向の画像データを連続的に取り込んでから、
前記の連続的に取り込まれた画像データに基づいて前記被測定部位の各層についての直角方向の明るさに関するデータの分布を求め、
ついで前記各層についての直角方向の明るさに関するデータの分布と、予め求められている無欠陥の多層平板状基準検査体の前記被測定部位に対応した部位における各層についての直角方向の明るさに関するデータの分布とを比較することにより、前記多層平板状被検査体の被測定部位における欠陥の有無を特定することを特徴とする、光透過性を有する多層平板状被検査体の欠陥検出方法。
Irradiate light to the measurement site of the multi-layer plate-shaped object to be inspected with light transmittance,
While continuously approach the imaging means provided in opposition to the multi-layer flat-plate-shaped device under test in a perpendicular direction for each layer of the target part of the multilayer flat-plate-shaped device under test, by the photographing means, the object After continuously capturing the image data in the perpendicular direction for each layer of the measurement site,
Based on the continuously captured image data, obtain a distribution of data on the brightness in the perpendicular direction for each layer of the measurement site,
Next, the distribution of the data regarding the brightness in the perpendicular direction for each layer and the data regarding the brightness in the perpendicular direction for each layer in the part corresponding to the measured part of the defect-free multilayer flat-plate reference inspection object obtained in advance. A defect detection method for a multilayer flat-plate inspecting object having light transmissivity, wherein the presence or absence of a defect in a measurement site of the multilayer flat-plate inspecting object is specified by comparing with a distribution of the above.
JP2004321342A 2004-11-04 2004-11-04 Defect detection method for multilayer flat plate inspection object having optical transparency Expired - Fee Related JP4619748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321342A JP4619748B2 (en) 2004-11-04 2004-11-04 Defect detection method for multilayer flat plate inspection object having optical transparency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321342A JP4619748B2 (en) 2004-11-04 2004-11-04 Defect detection method for multilayer flat plate inspection object having optical transparency

Publications (2)

Publication Number Publication Date
JP2006133042A JP2006133042A (en) 2006-05-25
JP4619748B2 true JP4619748B2 (en) 2011-01-26

Family

ID=36726712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321342A Expired - Fee Related JP4619748B2 (en) 2004-11-04 2004-11-04 Defect detection method for multilayer flat plate inspection object having optical transparency

Country Status (1)

Country Link
JP (1) JP4619748B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058759A1 (en) 2008-11-20 2010-05-27 旭硝子株式会社 Transparent body inspecting device
JP5867855B2 (en) * 2011-10-31 2016-02-24 国立大学法人 千葉大学 Tomographic image measuring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293102A (en) * 1998-05-11 1998-11-04 Mitsui Mining & Smelting Co Ltd Detecting method of defect in semiconductor or the like
JPH10293101A (en) * 1998-05-11 1998-11-04 Mitsui Mining & Smelting Co Ltd Detecting method of defect in semiconductor or the like
JP2001091475A (en) * 1999-09-20 2001-04-06 Rohm Co Ltd Inspection device for transparent laminated body
JP2002181734A (en) * 2000-12-13 2002-06-26 Rohm Co Ltd Apparatus for inspecting transparent laminated body
JP2002277411A (en) * 2001-03-16 2002-09-25 Rohm Co Ltd Method and apparatus for inspecting transparent laminate
JP2004170102A (en) * 2002-11-18 2004-06-17 Horiba Ltd Foreign matter inspection device for liquid crystal display panel
JP2004257859A (en) * 2003-02-26 2004-09-16 Nisshin Steel Co Ltd Edge shape detection method of metal band

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293102A (en) * 1998-05-11 1998-11-04 Mitsui Mining & Smelting Co Ltd Detecting method of defect in semiconductor or the like
JPH10293101A (en) * 1998-05-11 1998-11-04 Mitsui Mining & Smelting Co Ltd Detecting method of defect in semiconductor or the like
JP2001091475A (en) * 1999-09-20 2001-04-06 Rohm Co Ltd Inspection device for transparent laminated body
JP2002181734A (en) * 2000-12-13 2002-06-26 Rohm Co Ltd Apparatus for inspecting transparent laminated body
JP2002277411A (en) * 2001-03-16 2002-09-25 Rohm Co Ltd Method and apparatus for inspecting transparent laminate
JP2004170102A (en) * 2002-11-18 2004-06-17 Horiba Ltd Foreign matter inspection device for liquid crystal display panel
JP2004257859A (en) * 2003-02-26 2004-09-16 Nisshin Steel Co Ltd Edge shape detection method of metal band

Also Published As

Publication number Publication date
JP2006133042A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
US7660036B2 (en) Method for particle analysis and particle analysis system
TWI797296B (en) System and method for inspecting optical power and thickness of ophthalmic lenses immersed in a solution
JP2001519890A (en) Techniques for detecting three-dimensional defect locations in transparent structures
JP2012514193A (en) Non-destructive inspection method for machine parts
JPS62173731A (en) Inspection device for surface of article to be inspected
JP4618502B2 (en) Fluorescence flaw detector and fluorescent flaw detection method
JP2005292136A (en) System for inspecting multiplex resolution and its operation method
JP6430532B2 (en) Apparatus and method for optically inspecting and analyzing a stent-like object
TWI502186B (en) A bright spot detection device for filtering foreign matter noise and its method
KR100851212B1 (en) Method of inspecting surface defect on semiconductor and afm therefor
TW201428279A (en) Appearance inspection device, and appearance inspection method
KR101094968B1 (en) System for Inspecting Defects on Glass Substrate Using Contrast Value, and Method of the same
JP2001209798A (en) Method and device for inspecting outward appearance
JP4619748B2 (en) Defect detection method for multilayer flat plate inspection object having optical transparency
JP2001305075A (en) Appearance inspecting device
JP2004301847A (en) Defects inspection apparatus and method
JP5104346B2 (en) Surface defect inspection method and apparatus
JPH08505478A (en) Method and associated apparatus for controlling the surface condition of one side of a solid
JP4523310B2 (en) Foreign matter identification method and foreign matter identification device
JP2001124538A (en) Method and device for detecting defect in surface of object
JP5622338B2 (en) Method for discriminating and checking foreign matter and scratch marks in semiconductor device manufacturing process
JP2007187630A (en) Method and apparatus for detecting flaw of pattern
US8577119B2 (en) Wafer surface observing method and apparatus
JP2019066222A (en) Visual inspection device and visual inspection method
JP2004257776A (en) Inspection device for light transmission body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4619748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees