JPH04170423A - Production of phenol polymer - Google Patents

Production of phenol polymer

Info

Publication number
JPH04170423A
JPH04170423A JP29548990A JP29548990A JPH04170423A JP H04170423 A JPH04170423 A JP H04170423A JP 29548990 A JP29548990 A JP 29548990A JP 29548990 A JP29548990 A JP 29548990A JP H04170423 A JPH04170423 A JP H04170423A
Authority
JP
Japan
Prior art keywords
phenol
reaction
catalyst
acid
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29548990A
Other languages
Japanese (ja)
Other versions
JP2899100B2 (en
Inventor
Keisaburo Yamaguchi
桂三郎 山口
Tatsunobu Uragami
達宣 浦上
Teruhiro Yamaguchi
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP29548990A priority Critical patent/JP2899100B2/en
Publication of JPH04170423A publication Critical patent/JPH04170423A/en
Application granted granted Critical
Publication of JP2899100B2 publication Critical patent/JP2899100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To obtain a useful phenol polymer at a low cost by reacting a phenol compd. with dicyclopentadiene in the presence of a specific alkanesulfonic acid catalyst. CONSTITUTION:A phenol polymer is prepd. by reacting a phenol compd. with dicyclopentadiene in the presence of an alkanesulfonic acid catalyst of the formula, such as methanesulfonic acid (CH3SO3H), ethanesulfonic acid (C2H5SO3 H), propanesulfonic acid (C3H7SO3H), or butanesulfonic acid (C4H9SO3H), among which methanesulfonic acid is pref. industrially. The reaction is pref. conducted by adding dicyclopentadiene dropwise to the phenol compd. contg. the catalyst at a specified temp. and can be traced by high-performance liq. chromatography.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフェノール化合物から誘導される重合体の製造
方法に関する。このようなフェノール重合体はへキサメ
チレンテトラミンのような架橋剤を使用して熱硬化性樹
脂として利用される他、エポキシ樹脂の原料や硬化剤に
も利用できる。特に近年では、半導体封止剤としての用
途が期待されている。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing polymers derived from phenolic compounds. Such phenol polymers can be used as thermosetting resins using crosslinking agents such as hexamethylenetetramine, and can also be used as raw materials and curing agents for epoxy resins. Particularly in recent years, it has been expected to be used as a semiconductor encapsulant.

〔従来の技術〕[Conventional technology]

従来、このようなフェノール重合体の製造方法に関して
は、(A)特公昭41−14099号公報、CB)特開
昭47−35000号公報、(C)特開昭61−168
624号公報、(D)特開昭63−99224号公報、
(E)特開昭62−4720号公報、(F)特開昭62
−257924号公報、(G)米国特許3,336,3
98号公報、(I1)米国特許3.536,734号公
報および(T)石油学会誌、第27巻、No、3 (I
984年)207〜213ページ等に記載されている。
Conventionally, methods for producing such phenol polymers have been disclosed in (A) Japanese Patent Publication No. 41-14099, CB) Japanese Patent Application Publication No. 47-35000, and (C) Japanese Patent Application Publication No. 61-168.
No. 624, (D) Japanese Unexamined Patent Publication No. 63-99224,
(E) Unexamined Japanese Patent Publication No. 62-4720, (F) Unexamined Japanese Patent Publication No. 62-4720
-257924 Publication, (G) U.S. Patent No. 3,336,3
No. 98, (I1) U.S. Patent No. 3,536,734 and (T) Journal of the Japan Petroleum Institute, Volume 27, No. 3 (I
984), pages 207-213.

[発明が解決しようとする課題] 上記公知の製造方法を類別すると、(B) 、(G)お
よび(I)は、無触媒でオートクレーブ中200″C以
上の温度で反応させる方法であり、一方、(A)、(C
) 、(D) 、(E) 、(F) 、(H)および(
I)はフリーゾルタラフッ触媒としてルイス酸触媒を使
用する方法である。しかしながら使用されている触媒と
しては、専ら三弗化ホウ素およびその錯体である。
[Problems to be Solved by the Invention] Classifying the above-mentioned known production methods, (B), (G) and (I) are methods in which the reaction is carried out without a catalyst at a temperature of 200"C or higher in an autoclave; , (A), (C
) , (D) , (E) , (F) , (H) and (
I) is a method using a Lewis acid catalyst as a free sol fluorine catalyst. However, the catalysts used are exclusively boron trifluoride and its complexes.

上記製造方法において、前者の無触媒で行なう方法は、
オートクレーブ中で加圧下、高温で反応させる必要があ
るため、装置およびエネルギー的に経費の増大となる。
In the above production method, the former method without catalyst is
Since it is necessary to carry out the reaction under pressure and high temperature in an autoclave, the cost increases in terms of equipment and energy.

又、高温下で反応を行なうため、原料のシンクロペンタ
ジエンの開裂反応やフェノールを含まない単独重合等の
副反応が生起するので、好ましい交互共重合体の生成側
合が低下する等の問題がiる。(土星等、石油学会誌、
第27巻、k3(I984年)207〜209ページ)
又、後者のフリーゾルタラフッ触媒を使用する方法は、
主として交互共重合体を製造する方法として開示されて
いる。この反応で、最も好ましい触媒は三弗化・ホウ素
系触媒であり、公知技術のいずれの場合もこの触媒が使
用されている。しかしながら、この三弗化ホウ素系触媒
の欠点は、水分の存在や加熱による分解等で極めて腐蝕
性の強い物質が生成するので通常の材質では使用できな
いことである。
In addition, since the reaction is carried out at high temperatures, side reactions such as the cleavage reaction of the raw material synchropentadiene and homopolymerization without phenol occur, resulting in problems such as a decrease in side reactions to produce the desired alternating copolymer. Ru. (Saturn et al., Journal of the Japan Petroleum Institute,
Volume 27, k3 (I984) pages 207-209)
In addition, the latter method using a free sol fluorine catalyst is
It is mainly disclosed as a method for producing alternating copolymers. In this reaction, the most preferred catalyst is a trifluoride/boron catalyst, and this catalyst is used in all known techniques. However, the drawback of this boron trifluoride catalyst is that it cannot be used with ordinary materials because extremely corrosive substances are produced in the presence of moisture or decomposition due to heating.

また、(F)の特開昭62−257924号公報には酸
触媒としてジフェニルオキシドのスルホン酸顯が使用で
きることが記載されている。この様な芳香族スルホン酸
は固体であるが、反応により生成した重合体には相溶し
、分離除去が困難である。
Furthermore, JP-A-62-257924 (F) describes that a sulfonic acid salt of diphenyl oxide can be used as an acid catalyst. Although such aromatic sulfonic acids are solid, they are compatible with the polymer produced by the reaction and are difficult to separate and remove.

芳香族スルホン酸、三弗化ホウ素あるいはその他のルイ
ス酸を触媒とするいずれの場合にも共通する欠点は、重
合体中に触媒およびその分解物が残存することである。
A common drawback in all cases in which aromatic sulfonic acids, boron trifluoride, or other Lewis acids are used as catalysts is that the catalyst and its decomposition products remain in the polymer.

このことは半導体封止剤等の電子材料分野においては重
大な欠陥として問題となる。
This poses a serious problem in the field of electronic materials such as semiconductor encapsulants.

一方、公知技術のうち(D)の特開昭63−99224
号公報では、上記問題点を解消するために、反応後、溶
媒を加えて重合体を溶解し、多量の水で洗浄する方法を
提案している。しかしながら、この方法では、触媒成分
とともに未反応フェノールを水洗除去しなければならず
、溶媒の回収とともに多量のフェノール化合物を含む洗
浄水の無公害化が必要となってくる。
On the other hand, among the known techniques, (D) JP-A-63-99224
In order to solve the above problems, the publication proposes a method in which after the reaction, a solvent is added to dissolve the polymer and the polymer is washed with a large amount of water. However, in this method, unreacted phenol must be removed together with the catalyst components by washing with water, and it is necessary to recover the solvent and to make the washing water containing a large amount of phenolic compounds pollution-free.

このように、三弗化ホウ素に代表されるルイス酸や芳香
族スルホン酸を触媒として使用する公知の方法では、得
られる重合体の品質や製造上に多くの問題点があるため
、工業的な製造法として採用することは非常に難しいの
が現状である。
In this way, the known methods that use Lewis acids such as boron trifluoride and aromatic sulfonic acids as catalysts have many problems in the quality and production of the resulting polymers, so they are not suitable for industrial use. At present, it is extremely difficult to adopt this method as a manufacturing method.

(I1!1!を解決するための手段] 本発明者らは、前記種々の問題点を克服し、エポキシ樹
脂や半導体封止剤分野で利用可能なフェノール化合物と
シンクロペンタジエンの交互共重合体を主成分とする重
合体の製造方法を鋭意検討した。その結果、本発明を完
成させたものである。
(Means for solving I1!1!) The present inventors have overcome the various problems described above and have developed an alternating copolymer of a phenol compound and synchropentadiene that can be used in the fields of epoxy resins and semiconductor encapsulants. We have conducted extensive research into methods for producing the polymer as the main component, and as a result, we have completed the present invention.

即ち、本発明はフェノール化合物とシンクロペンタジェ
ンを一般式(I) %式%(I) (但し、式中nは1〜4の整数を示す)で表わされるア
ルカンスルホン酸触媒の存在下で反応させることを特徴
とするフェノール重合体の製造方法である。
That is, the present invention involves reacting a phenol compound and synchlopentadiene in the presence of an alkanesulfonic acid catalyst represented by the general formula (I) (where n is an integer of 1 to 4). This is a method for producing a phenol polymer, which is characterized by:

本発明の方法で触媒として使用する式(I)のアルカン
スルホン酸としては、具体的には、メタンスルホン酸(
CH3SO311) 、エタンスルホン酸(CJsSO
J) 、プロパンスルホン酸(CコHtSO3H)およ
びブタンスルホン酸(C,)19SOJ)が挙げられる
が、工業的にはメタンスルホン酸が好ましい。
The alkanesulfonic acid of formula (I) used as a catalyst in the method of the present invention is specifically methanesulfonic acid (
CH3SO311), ethanesulfonic acid (CJsSO
J), propanesulfonic acid (C,)HtSO3H) and butanesulfonic acid (C,)19SOJ), but methanesulfonic acid is industrially preferred.

本発明の方法で使用する触媒の量は全原料に対して0.
5重量%以上あればよく、上限は制限されないが、経済
性を考慮すれば、0.5〜100重量%、好ましくは1
.0〜50重量%の範囲である。
The amount of catalyst used in the method of the present invention is 0.0000000000000000000000000000000000000000,000.
It may be 5% by weight or more, and the upper limit is not limited, but considering economic efficiency, it is 0.5 to 100% by weight, preferably 1% by weight.
.. It ranges from 0 to 50% by weight.

本発明で用いるこれらのアルカンスルホン酸は、通常、
液体であり、その沸点は原料のフェノール化合物の沸点
に近いので除去することは容易である。即ち、反応終了
後、未反応原料を蒸留回収する際にアルカンスルホン酸
も同時に回収出来る。
These alkanesulfonic acids used in the present invention are usually
Since it is a liquid and its boiling point is close to that of the raw material phenol compound, it is easy to remove. That is, when the unreacted raw materials are recovered by distillation after the reaction is completed, the alkanesulfonic acid can also be recovered at the same time.

しかも、回収されたアルカンスルホン酸は回収フェノー
ル化合物とともに再利用できる利点がある。
Moreover, there is an advantage that the recovered alkanesulfonic acid can be reused together with the recovered phenol compound.

又、より厳密にイオン性不純物が問題とされる場合には
、未反応原料等を真空蒸留除去後、溶媒を加えて水洗分
液して除去する方法がとられる。
If ionic impurities are more strictly a problem, a method is used in which unreacted raw materials are removed by vacuum distillation, followed by adding a solvent and washing with water for separation.

本発明の方法で使用するフェノール化合物は、−価また
は二価フェノール、ビスフェノール、およびトリスフェ
ノール等が挙げられる。具体的には、フェノール、0−
クレゾール、m−クレゾール、p−クレゾール、0〜エ
チルフエノール、p−エチルフェノール、0−イソプロ
ビルフェノ−ル、p−n−プロピルフェノール、p −
5ec −ブチルフェノール、P−シクロヘキシルフェ
ノール、p−クロロフェノール、0−ブロモフェノール
、p−ブロモフェノール、レゾルシン、カテコール、ハ
イドロキノン、2.2−ビス(4−ヒドロキシフェニル
)プロパン、4,4”−チオジフェノール、ジヒドロキ
シジフェニルメタンおよびトリスヒドロキシフェニルメ
タン等が挙げられるが、これらのみに限定されるもので
はない。
Examples of the phenolic compound used in the method of the present invention include -hydric or dihydric phenol, bisphenol, and trisphenol. Specifically, phenol, 0-
Cresol, m-cresol, p-cresol, 0-ethylphenol, p-ethylphenol, 0-isopropylphenol, p-n-propylphenol, p-
5ec-butylphenol, P-cyclohexylphenol, p-chlorophenol, 0-bromophenol, p-bromophenol, resorcinol, catechol, hydroquinone, 2,2-bis(4-hydroxyphenyl)propane, 4,4”-thiodidi Examples include, but are not limited to, phenol, dihydroxydiphenylmethane, and trishydroxyphenylmethane.

本発明の方法における反応では、シンクロペンタジエン
に対する前記フェノール化合物の使用割合は、1〜20
倍モル、好ましくは1.3〜10倍モルの範囲である。
In the reaction in the method of the present invention, the ratio of the phenol compound to synchropentadiene is 1 to 20.
The amount is twice the molar amount, preferably 1.3 to 10 times the molar amount.

反応は通常、無溶媒下で加熱重合させる方法が−i的で
あるが、反応に不活性な溶媒を使用して行なっても何ら
不都合はない。反応温度は20〜200°C1好ましく
は40〜160°Cの範囲である。反応時間は2〜15
時間程度である。
The reaction is usually carried out by heating and polymerizing in the absence of a solvent, but there is no disadvantage in carrying out the reaction using an inert solvent. The reaction temperature is in the range of 20 to 200°C, preferably 40 to 160°C. Reaction time is 2-15
It takes about an hour.

本発明の方法における反応の一般的な実施態様は触媒を
含む全原料を一括装入して、そのまま所定の温度まで昇
温する方法でもよいが、好ましくは、所定の温度で、触
媒を含むフェノール化合物にシンクロペンタジエンを滴
下させながら反応させる方法がよい0反応の進行は高速
液体クロマトグラフィーにより追跡できる。
A general embodiment of the reaction in the method of the present invention may be a method in which all raw materials containing the catalyst are charged at once and the temperature is raised to a predetermined temperature as it is, but preferably, the phenol containing the catalyst is heated at a predetermined temperature. A good method is to react the compound while dropping synchropentadiene. The progress of the reaction can be monitored by high performance liquid chromatography.

反応終了後、未反応原料および触媒を真空蒸留により回
収した後、そのまま排出して重合体を得てもよく、トル
エン、メチルイソブチルケトン等を加えて溶解させた重
合体溶液を水洗後、脱溶媒して重合体を得てもよい。
After the reaction is completed, the unreacted raw materials and catalyst may be recovered by vacuum distillation and then discharged as they are to obtain a polymer, or the polymer solution in which toluene, methyl isobutyl ketone, etc. are added and dissolved is washed with water, and then the solvent is removed. The polymer may be obtained by

[実施例〕 次に、本発明を実施例により更に詳細に説明する。[Example〕 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 温度針、攪拌装置を付したガラス製反応器にフェノール
470g(5モル)と触媒のメタンスルホン酸30gを
装入し、撹拌しながら昇温しで90°Cに保った。つい
で、これにシンクロペンタジエン132.2g(Iモル
)を5時間かけて滴下した。滴下後、内温を150°C
まで昇温し、この温度で5時間熟成を行なって反応を終
了した。次に、この粘稠な反応溶液を真空下で内温16
0°Cまで昇温し、未反応のフェノール等を蒸留回収し
たのち、ただちに排出して放冷した。得られた暗赤色の
重合体塊は一般式[I[) (II) 〔式中、mは1以上の整数を示す〕 で表わされるフェノールとシンクロペンタジエンの共重
合体であり、GPCで測定した結果、その組成(Are
a%)は以下の通りであった。
Example 1 470 g (5 moles) of phenol and 30 g of methanesulfonic acid as a catalyst were charged into a glass reactor equipped with a temperature needle and a stirring device, and the temperature was raised while stirring and maintained at 90°C. Then, 132.2 g (1 mol) of synchropentadiene was added dropwise to this over 5 hours. After dropping, lower the internal temperature to 150°C
The reaction was completed by aging at this temperature for 5 hours. Next, this viscous reaction solution was heated under vacuum to an internal temperature of 16.
After raising the temperature to 0°C and distilling and recovering unreacted phenol, it was immediately discharged and allowed to cool. The obtained dark red polymer mass is a copolymer of phenol and synchropentadiene represented by the general formula [I[) (II) [where m is an integer of 1 or more], and was measured by GPC. As a result, its composition (Are
a%) were as follows.

m−049゜1% m−126,5% m = 2    13.8% m≧3    10.6% 収量は285gであり、この重合体の軟化点はJIS−
に−2548による環球法で測定した結果、104’C
であり、水酸基当量は178.1 g /eqであった
m-049゜1% m-126.5% m = 2 13.8% m≧3 10.6% The yield was 285 g, and the softening point of this polymer was JIS-
As a result of measurement using the ring and ball method using -2548, 104'C
The hydroxyl equivalent was 178.1 g/eq.

なお、反応後も反応器には見た目で何ら変化は認められ
なかった。
In addition, no change was observed in the reactor even after the reaction.

実施例2 温度計、攪拌装置を付したガラス製反応器にフェノール
282 g (3モル)と触媒のエタンスルホン#8.
2gを装入し、攪拌しながら昇温して90”Cに保った
。ついで、これにシンクロペンタジエン132.2g 
(Iモル)を4時間かけて滴下した0滴下後、内温を1
50°Cまで昇温し、この温度で5時間熟成を行なって
、反応を終了した0次に、この粘稠な反応溶液を、真空
下で内温160°Cまで昇温し、未反応のフェノール等
を蒸留回収した。この蒸留残査にトルエン500 gを
性別して均一溶液とし、攪拌下で水500gを加えた。
Example 2 In a glass reactor equipped with a thermometer and a stirring device, 282 g (3 mol) of phenol and ethanesulfone #8 as a catalyst were added.
2g of synchropentadiene was charged, and the temperature was raised while stirring and maintained at 90"C. Next, 132.2g of synchropentadiene was added to this.
(I mol) was added dropwise over 4 hours. After 0 drops, the internal temperature was lowered to 1
The reaction was completed by raising the temperature to 50°C and aging for 5 hours at this temperature.Next, this viscous reaction solution was heated to an internal temperature of 160°C under vacuum to remove unreacted Phenol etc. were recovered by distillation. To this distillation residue, 500 g of toluene was mixed to obtain a homogeneous solution, and 500 g of water was added under stirring.

1時間還流状態を保ったのち静置したところ2層に分液
した。下層の水層を抜き去り、上層のトルエン層から真
空下でトルエンを留去させた。ただちに、排出して放冷
したところ、茶褐色の重合体塊が得られた。
After maintaining the reflux state for 1 hour, the mixture was allowed to stand still and the mixture was separated into two layers. The lower aqueous layer was removed, and toluene was distilled off from the upper toluene layer under vacuum. When the mixture was immediately discharged and allowed to cool, a brownish-brown polymer mass was obtained.

収量は272gで、軟化点は120″Cであった。実施
例1と同様にGPCにより分析した結果、その組成(^
rea%)は以下の通りであった。
The yield was 272 g, and the softening point was 120"C. As a result of analysis by GPC in the same manner as in Example 1, the composition (^
rea%) were as follows.

m= 0      40.5% m−124,7% m=2      15.8% m鱈3     9.5% m≧4     9.5% 水酸基当量は211 g /eqであった。m= 0    40.5% m-124,7% m=2 15.8% m cod 3 9.5% m≧4 9.5% The hydroxyl equivalent was 211 g/eq.

なお、分液した水層のpnは6.2であった6反応後も
、反応器には見た目で何ら変化は認められなかった。
In addition, even after six reactions in which the pn of the separated aqueous layer was 6.2, no change was visually observed in the reactor.

実施例3 実施例1の反応で、フェノールの代わりにp−クレゾー
ル540g(5モル)を使用して実施例1と同様に反応
、後処理を行って下記式(II)(II) 〔式中、mは式(I)と同じ意味を示す〕で表される重
合体297gを得た。この重合体の軟化点は93°Cで
、GPCにより測定した重合体の紹成(Areaχ)は
次の通りであった。
Example 3 In the reaction of Example 1, 540 g (5 mol) of p-cresol was used instead of phenol, and the reaction and post-treatment were carried out in the same manner as in Example 1 to obtain the following formula (II) (II) [in the formula , m has the same meaning as in formula (I)] was obtained. The softening point of this polymer was 93°C, and the area x of the polymer measured by GPC was as follows.

m −047,2% m−126,9% m −214,6% m≧3     11.3% この重合体の水酸基当量は185g/eqであった。m -047,2% m-126,9% m -214,6% m≧3 11.3% The hydroxyl equivalent of this polymer was 185 g/eq.

反応後も反応器には見た目で何ら変化は認められなかっ
た。
Even after the reaction, no visible change was observed in the reactor.

比較例1 温度針、撹拌装置を付したガラス製反応器にフェノール
470g(5モル)と三弗化ホウ素含量26%のフェノ
ール/三弗化ホウ素錯体1−1−、5 gとを装入し、
攪拌下で90°Cまで昇温した。ついで、シンクロペン
タジエン132gを内温90〜100″Cの間で4時間
かけて滴下した。滴下後5時間熟成を行なって反応を終
了した。次に、この粘稠な反応溶液を実施例1と同様に
して未反応フェノールを回収したところ、蒸留の最後の
時点で内容物から白煙の発生が認められた。残量を実施
例2と同様にトルエンに溶解後、水洗、分電した。下層
の水層のpl(は3.2で、酸性であった0反応後、反
応器の一部に僅かに腐蝕が認められた。
Comparative Example 1 A glass reactor equipped with a temperature needle and a stirring device was charged with 470 g (5 moles) of phenol and 5 g of phenol/boron trifluoride complex 1-1-, with a boron trifluoride content of 26%. ,
The temperature was raised to 90°C while stirring. Then, 132 g of synchropentadiene was added dropwise over 4 hours at an internal temperature of 90 to 100"C. After the addition, aging was carried out for 5 hours to complete the reaction. Next, this viscous reaction solution was mixed into Example 1. When unreacted phenol was recovered in the same manner, white smoke was observed to be generated from the contents at the end of distillation.The remaining amount was dissolved in toluene in the same manner as in Example 2, washed with water, and subjected to electrostatic distribution.Lower layer The PL of the aqueous layer was 3.2, and after the acidic 0 reaction, slight corrosion was observed in a part of the reactor.

〔発明の効果〕〔Effect of the invention〕

本発明は有用なフェノール重合体を簡単に製造できる方
法を1!供する。
The present invention provides a method for easily producing useful phenol polymers! offer

従来から知られている反応方法では、重合体の品質や装
置の腐蝕に伴う材質上の問題があり、工業的に全く製造
出来なかった0本発明の方法はこのような問題点を完全
に解決し、有用なフェノール重合体を安価に供給できる
ため、産業上の発展に貢献すること大である。
Conventionally known reaction methods have problems with the quality of the polymer and the material quality associated with corrosion of the equipment, making it impossible to produce it industrially at all.The method of the present invention completely solves these problems. However, since useful phenol polymers can be supplied at low cost, it will greatly contribute to industrial development.

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1)フェノール化合物とシンクロペンタジエンを一般式
( I ) C_nH_2_n_+_1SO_3H( I )(但し、
式中nは1〜4の整数を示す) で表わされるアルカンスルホン酸触媒の存在下で反応さ
せることを特徴とするフェノール重合体の製造方法。
[Claims] 1) A phenol compound and synchropentadiene are represented by the general formula (I) C_nH_2_n_+_1SO_3H (I) (however,
A method for producing a phenol polymer, characterized in that the reaction is carried out in the presence of an alkanesulfonic acid catalyst represented by the formula (n represents an integer of 1 to 4).
JP29548990A 1990-11-02 1990-11-02 Method for producing phenolic polymer Expired - Fee Related JP2899100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29548990A JP2899100B2 (en) 1990-11-02 1990-11-02 Method for producing phenolic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29548990A JP2899100B2 (en) 1990-11-02 1990-11-02 Method for producing phenolic polymer

Publications (2)

Publication Number Publication Date
JPH04170423A true JPH04170423A (en) 1992-06-18
JP2899100B2 JP2899100B2 (en) 1999-06-02

Family

ID=17821271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29548990A Expired - Fee Related JP2899100B2 (en) 1990-11-02 1990-11-02 Method for producing phenolic polymer

Country Status (1)

Country Link
JP (1) JP2899100B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394914A (en) * 2022-01-24 2022-04-26 中钢集团鞍山热能研究院有限公司 Self-catalyzed resin oligomer based on DCPD phenol structure, cured product and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394914A (en) * 2022-01-24 2022-04-26 中钢集团鞍山热能研究院有限公司 Self-catalyzed resin oligomer based on DCPD phenol structure, cured product and preparation method

Also Published As

Publication number Publication date
JP2899100B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
CN101283009B (en) Phenol polymer, production method thereof and use thereof
JP2866747B2 (en) Method for producing phenolic polymer
JPH055022A (en) Production of phenol polymer
JPH04170423A (en) Production of phenol polymer
JP2899098B2 (en) Method for producing phenolic polymer
JPH0521925B2 (en)
JP3897366B2 (en) Bis (hydroxybenzyl) benzenes, epoxy resins thereof, and methods for producing them
JP2993727B2 (en) Method for producing phenolic polymer
JPH04222819A (en) Production of phenolic polymer
JPH11255868A (en) Preparation of phenol aralkyl resin
JP3862958B2 (en) Process for producing hydrocarbon-phenolic resin and epoxy resin
KR950013537B1 (en) Method for preparing a phenolic polymer
JPH06329741A (en) Resin, epoxy resin, its production, resin composition and cured product of said composition
US2931787A (en) Method for recovering purified phenolic isomers from low boiling cresylic acids
CN116261573B (en) Process for producing triphenolmethane
JPH0340734B2 (en)
JPS6377915A (en) Phenol novolaks and its production
JP2981266B2 (en) Method for producing phenolic polymer
JP3269700B2 (en) Phenol resin, phenol epoxy resin and method for producing the same
JPH11279265A (en) Production of phenolic resin
JPH04275317A (en) New novolak type resin and its production
JPH04202219A (en) Production of phenol polymer
JP3085593B2 (en) Method for producing naphthol resin
CN118055961A (en) Method for producing epoxy resin, epoxy resin composition, cured product, and electric/electronic component
JPH06116369A (en) Production of phenolic aralkyl resin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees