JPH04170392A - Production of high thermal conductivity diamond film - Google Patents

Production of high thermal conductivity diamond film

Info

Publication number
JPH04170392A
JPH04170392A JP29817090A JP29817090A JPH04170392A JP H04170392 A JPH04170392 A JP H04170392A JP 29817090 A JP29817090 A JP 29817090A JP 29817090 A JP29817090 A JP 29817090A JP H04170392 A JPH04170392 A JP H04170392A
Authority
JP
Japan
Prior art keywords
diamond
substrate
single crystal
film
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29817090A
Other languages
Japanese (ja)
Inventor
Keiji Hirabayashi
敬二 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29817090A priority Critical patent/JPH04170392A/en
Publication of JPH04170392A publication Critical patent/JPH04170392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce the diamond thin film by depositing diamond single crystal grains on many nucleus generating origins regularly formed on a substrate at regular intervals and growing the grains into film. CONSTITUTION:An Si single crystal substrate 1 having (100) face orientation, for example, is inserted into alcohol in which diamond abrasive grains having 20mum average diameter are dispersed, and ultrasonic vibration is imparted to form minute ruggednesses on the nucleus generating origins on the substrate 1 surface. A resist pattern 2 as a mask having 1mum diameter is then formed on the substrate 1 with 5mum spacing by photolithography, and the substrate is etched by an Ar ion beam of 1000Angstrom . The pattern 2 is removed with acetone, and a diamond single crystal grain 3 is formed on the nucleus generating origin by filament CVD method. Consequently, the diamond single crystal or twin crystal grain is deposited from the part on which the pattern 2 was formed, and the grains are grown and associated to obtain a diamond film.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば半導体レーザー素子、マイクロ波発振
素子、超LSI等の半導体素子の脱熱部材(ヒートシン
ク)として用いられるダイヤモンド膜の製造方法に関す
るものである。
The present invention relates to a method for manufacturing a diamond film used as a heat sink for semiconductor devices such as semiconductor laser devices, microwave oscillation devices, and VLSIs.

【従来の技術】[Conventional technology]

従来より、ダイヤモンドは、現存する物質中で最も熱伝
導率の高い物質として知られており、このため、高効率
のヒートシンクとして利用価値が高い。具体的には、天
然あるいは人工合成のダイヤモンドを薄片化して成るも
のを、例えば半導体レーザーや高周波発振素子に付設し
、素子自体から発生する熱を放散させるようにしている
。 ところで、近年、気相合成によりダイヤモンドffMを
作製し、該ダイヤモンド薄膜をヒートシンクに応用した
例が報告されている(電子材料・1989年9月号、7
4ページ〜79ページ)。 この場合、前記気相合成により作製されたダイヤモンド
薄膜は、その熱伝導率が作製条件に大きく依存し高々1
000 W / m−に程度である。 なお、ダイヤモンドの熱伝導率は、天然ダイヤモンドH
a型(不純物の少ないタイプ)で200OW/m−に以
上、Ia型(窒素を不純物として含むタイプ)で100
OW/m−に程度である。
Diamond has traditionally been known to have the highest thermal conductivity among existing materials, and therefore has high utility value as a highly efficient heat sink. Specifically, thin slices of natural or synthetic diamond are attached to, for example, semiconductor lasers or high-frequency oscillation elements to dissipate the heat generated by the elements themselves. Incidentally, in recent years, an example has been reported in which diamond ffM was produced by vapor phase synthesis and the diamond thin film was applied to a heat sink (Electronic Materials, September 1989 issue, 7).
(pages 4 to 79). In this case, the thermal conductivity of the diamond thin film produced by the vapor phase synthesis is largely dependent on the production conditions and is at most 1.
000 W/m-. Note that the thermal conductivity of diamond is that of natural diamond H.
200 OW/m- or more for type a (type with few impurities) and 100 OW/m for type Ia (type containing nitrogen as an impurity)
It is about OW/m-.

【発明が解決しようとしているX!題】しかしながら、
前記気相合成により作製する手法では、ダイヤモンド中
に窒素等の不純物を含んでいないにもかかわらず、II
 a型ダイヤモンドの熱伝導率の半分程度の熱伝導率を
有するに過ぎない。これは、気相合成により得られるダ
イヤモンド薄膜が多結晶薄膜であり、多くの無秩序な粒
界を含んでいるためと考えられる。 第3図は、かかる従来のダイヤモンド膜作製の工程を示
すものであるが、第3図(a)に示すように核発生基点
4aは無秩序であるから、第3図(b)に示すように該
核発生基点4a上に析出した単結晶粒子5を夫々成長さ
せることにより得られた膜は、粒径が不均一で粒界の面
積も区々である(第3図(c))。 なお、粒界の存在は、一般に熱伝導率を低下させる原因
となるので、多結晶よりも単結晶の方がヒートシンクと
して望ましいが、現在の技術では、半導体作製に用いら
れているSi、GaAs等の基体上に、大きな面積のダ
イヤモンドの単結晶薄膜を得るのは困難である。 上述のような事情に鑑み、本発明者他は、アプライド・
フィジクス・レター誌(第53JJ、1815ベージ、
1988年)において、ダイヤモンド単結晶粒子を所定
の部位に選択的に形成する方法を報告し、その後鋭意検
討した結果、本発明者は、高熱伝導率のダイヤモンド薄
膜を作製し得ることを見い圧した。
[X that the invention is trying to solve! Title: However,
Although diamond does not contain impurities such as nitrogen, II.
Its thermal conductivity is only about half that of A-type diamond. This is thought to be because the diamond thin film obtained by vapor phase synthesis is a polycrystalline thin film and contains many disordered grain boundaries. FIG. 3 shows the process of producing such a conventional diamond film. Since the nucleation base points 4a are disordered as shown in FIG. 3(a), as shown in FIG. 3(b), The film obtained by growing the single crystal grains 5 precipitated on the nucleation base point 4a has non-uniform grain sizes and varying grain boundary areas (FIG. 3(c)). Note that the presence of grain boundaries generally causes a decrease in thermal conductivity, so single crystals are more desirable as heat sinks than polycrystals, but with current technology, Si, GaAs, etc. used in semiconductor fabrication It is difficult to obtain a large area single-crystal diamond film on a substrate. In view of the above-mentioned circumstances, the present inventors and others have developed an applied
Physics Letters (53rd JJ, 1815 page,
In 1988), we reported a method for selectively forming diamond single-crystal particles in predetermined locations, and as a result of subsequent intensive studies, the present inventor found that it was possible to create a diamond thin film with high thermal conductivity. did.

【課題を解決しようとする手段】[Means to try to solve the problem]

本発明は、基体上に、核発生基点としての多数の領域を
互いに適宜間隔を置いて規則的に形成し、該領誠上にダ
イヤモンド単結晶粒子を析出させ、さらに、該析出され
た各・単結晶粒子を夫々成長させて膜状に形成すること
を特徴とする。 すなわち、本発明の製造方法で作製されたダイヤモンド
膜は、粒界の位置や量が制御されているため、従来例に
比べて熱伝導率を大幅に向上させることが可能となった
。 具体的には、ダイヤモンドの核発生基点を適宜間隔を置
いてマトリクス状に形成し、該多核発生基点にダイヤモ
ンド単結晶粒子を成長・合体させるとほぼ粒径が均一で
粒界が前記基点間に存するようなダイヤモンド膜が形成
される。
In the present invention, a large number of regions as nucleation points are regularly formed on a substrate at appropriate intervals, diamond single crystal particles are precipitated on the regions, and each of the precipitated It is characterized by growing single crystal grains to form a film. That is, in the diamond film produced by the production method of the present invention, since the position and amount of grain boundaries are controlled, it is possible to significantly improve thermal conductivity compared to the conventional example. Specifically, diamond nucleation base points are formed in a matrix at appropriate intervals, and diamond single crystal grains are grown and coalesced at the multi-nucleation base points, so that the grain size is almost uniform and grain boundaries are formed between the base points. A diamond film similar to that described above is formed.

【作用】[Effect]

本発明に係る作製方法の工程では、初めに、ダイヤモン
ド結晶を気相法により表面に成長可能であるような基体
を用意する。そのような基体としては、例えばSi、G
e等の半導体基板、石英、アルミナ等の酸化物基板、S
iC基板、GaAs基板、W、Mo等の高融点金属基板
などを挙げることができ。 次に、ダイヤモンド結晶の核発生基点となるような部位
を前記基体上に規則的に形成する。かかる核発生基点を
規則的に形成する方法としては、例えば特開昭62−2
97298号公報、特開昭63−315598号公報、
及びアプライド・フィジクス・レター誌(5FIS3巻
、1815ページ、1988年)の論文等に記載されて
いる。以下にその一例を示す。 まず、基体表面に核発生基点となるような微細な凹凸を
形成する。この形成方法としてダイヤモンド、立方晶窒
化ホウ素、アルミナ、炭化ケイ素の砥粒を用いて基板表
面に傷付は処理を行ったり、前記砥粒を分散させたアル
コールや水などの液体中に基体を挿入し超音波振動を与
えるなどの方法がある。 次に、前記基体上に規則的に所定間隔を置きマスクを形
成する。前記マスクの材料は、例えばフォトリソグラフ
ィー法(光描画法)やEBリソグラフィー法(を子線光
描画法)を用いて形成されたレジスト等特に限定されな
い。なお、形成されるマスクの大きさは、ダイヤモンド
単結晶粒子を析出させるために10μm2以下が望まし
い。10μm2以上であると、形成される核発生基点が
複数個になり多結晶粒子になり易くなる。 次いで、前記マスクを介して基体の表面をエツチングす
ることにより微細な凹凸を有する領域を規則的に形成す
る。 前記エツチングは、ドライエツチング、ウェットエツチ
ングのいずれでも良い。ウェットエツチングを行う場合
は、例えばフッ素、硝酸混液によるエツチングなどを挙
げることができる。また、ドライエツチングを行う場合
は、例えばプラズマエツチング、イオンビームエツチン
グなどを挙げることができる。プラズマエツチングのエ
ツチングガスとしてはCF4ガスなどを挙げることがで
き、イオンビームエツチングのエツチングガスとしては
アルゴン、ヘリウム、ネオン等の希ガス、酸素、フッ素
、水素、炭素などを含んだガスも可能である。エツチン
グの深さは、好ましくは100〜10000人、より好
ましくは500〜1000人程度の深さにエツチングす
れば、十分にパターン形成できる。 次いで、前記マスクを除去し前記基体上の核発生基点上
にダイヤモンド単結晶粒子の形成を施すと、マスク形成
により凹凸が残存した部分のみにダイヤモンド核が発生
し、そのダイヤモンド核が成長合体することによりダイ
ヤモンド膜が形成される。 本発明におけるダイヤモンド膜の形成は、公知の熱フィ
ラメントCVD (化学的気相蒸着)法、マイクロ波プ
ラズマCVD法、直流プラズマCVD法、高周波プラズ
マCVD法などいずれの方法を用いても構わない。CV
Dの原料ガスとしてはメタン、エタン、エチレン等の炭
化水素ガス、メタノール、エタノール、アセトン等の含
酸素有機化合物、−酸化炭素を用いることができる。こ
れらのガスは一般に水素ガスと混合(炭素原料ガス濃度
を0.01〜50容量%)して使用するが、アルゴン、
ヘリウム等の不活性ガス、02.H2O、CO2等の酸
素含有ガスなどを添加しても差し支えない。ガス圧力は
製法によっても異なるが0.01から1000Torr
程度である。ガス流量は成膜装置容量によっても異なる
が原料ガス全体で10mJ2/minから50f!、/
min程度である。 成膜時の基板の温度は通$250〜1200℃程度であ
る。 また、前記核発生基点の間隔は、粒界の量を少なくする
ため数μm以上望ましくは5μm以上とすることが好ま
しい。 前記核発生基点から成長するダイヤモンド粒子は、核発
生基点面積が10μm2以下のように狭いものであると
単一核からの単結晶成長になり易い。但し、気相合成さ
れるダイヤモンドでは、析出条件によっては多重双晶粒
子(いくつかの鏡映関係にある結晶からなる粒子)が析
出し易い。 なお、本発明者の知見によれば、多重双晶粒子の析出は
、熱伝導率を低下させる原因とはならない。従って、本
発明における単結晶粒子の析出は、多重双晶粒子の析出
を含むものである。
In the steps of the manufacturing method according to the present invention, first, a substrate on which diamond crystals can be grown by a vapor phase method is prepared. Such substrates include, for example, Si, G
Semiconductor substrates such as e, oxide substrates such as quartz and alumina, S
Examples include an iC substrate, a GaAs substrate, and a high melting point metal substrate such as W or Mo. Next, portions that serve as nucleation points for diamond crystals are regularly formed on the substrate. As a method for regularly forming such nucleation base points, for example, Japanese Patent Application Laid-Open No. 62-2
No. 97298, Japanese Patent Application Laid-Open No. 63-315598,
and an article in Applied Physics Letters (vol. 5FIS, 3 pages, 1815, 1988). An example is shown below. First, fine irregularities are formed on the surface of the substrate to serve as starting points for nucleation. This formation method involves treating scratches on the substrate surface using abrasive grains of diamond, cubic boron nitride, alumina, or silicon carbide, or inserting the substrate into a liquid such as alcohol or water in which the abrasive grains are dispersed. There are methods such as applying ultrasonic vibration. Next, masks are formed on the substrate at regular intervals. The material of the mask is not particularly limited, and may be, for example, a resist formed using a photolithography method (optical writing method) or an EB lithography method (a consonant beam writing method). Note that the size of the formed mask is preferably 10 μm 2 or less in order to precipitate diamond single crystal particles. If it is 10 μm2 or more, a plurality of nucleation base points will be formed, making it easy to form polycrystalline particles. Next, by etching the surface of the substrate through the mask, regions having fine irregularities are regularly formed. The etching may be either dry etching or wet etching. When performing wet etching, for example, etching with a mixed solution of fluorine and nitric acid can be used. Further, when performing dry etching, for example, plasma etching, ion beam etching, etc. can be used. Etching gases for plasma etching include CF4 gas, and etching gases for ion beam etching include rare gases such as argon, helium, and neon, and gases containing oxygen, fluorine, hydrogen, and carbon. . A sufficient pattern can be formed by etching to a depth of preferably 100 to 10,000, more preferably 500 to 1,000. Next, when the mask is removed and diamond single crystal particles are formed on the nucleation base points on the substrate, diamond nuclei are generated only in the areas where the unevenness remains due to the mask formation, and the diamond nuclei grow and coalesce. A diamond film is formed. The diamond film in the present invention may be formed by any known method such as hot filament CVD (chemical vapor deposition), microwave plasma CVD, direct current plasma CVD, or high frequency plasma CVD. CV
As the raw material gas D, hydrocarbon gases such as methane, ethane, and ethylene, oxygen-containing organic compounds such as methanol, ethanol, and acetone, and carbon oxide can be used. These gases are generally used mixed with hydrogen gas (carbon raw material gas concentration 0.01 to 50% by volume), but argon,
Inert gas such as helium, 02. There is no problem in adding an oxygen-containing gas such as H2O or CO2. Gas pressure varies depending on the manufacturing method, but is 0.01 to 1000 Torr.
That's about it. The gas flow rate varies depending on the capacity of the film forming equipment, but the total raw material gas flow rate is from 10mJ2/min to 50f! ,/
It is about min. The temperature of the substrate during film formation is generally about $250 to 1200°C. Further, the distance between the nucleation base points is preferably several μm or more, preferably 5 μm or more, in order to reduce the amount of grain boundaries. Diamond particles growing from the nucleation base tend to grow as single crystals from a single nucleus when the nucleation base area is narrow, such as 10 μm 2 or less. However, in diamond synthesized in a vapor phase, multiple twin grains (particles consisting of several crystals in a mirroring relationship) are likely to precipitate depending on the precipitation conditions. According to the findings of the present inventors, the precipitation of multiple twin grains does not cause a decrease in thermal conductivity. Therefore, the precipitation of single crystal grains in the present invention includes the precipitation of multiple twin crystal grains.

【実施例】 次に、本発明を図面を参照しながら、さらに具体的かつ
詳細に説明する。 ゛  (実施例1) iS1図(a)に示すようなダイヤモンド形成用基板1
として、シリコン単結晶基板、すなわち面方位が(10
0)、直径が25mm、厚さが0゜5mmのものを用い
た。 そして、まず平均粒径20μmのダイヤモンド砥粒を分
散させたアルコール中にSi基板を挿入し、超音波洗浄
器を用いて超音波振動を与えることにより、前記基板1
の表面に核発生基点4となるような微小な凹凸を形成す
る(第1図(b)、第2図(a))。 次いで、前記基板1上にフォトリソグラフィー法を用い
て直径1μmのマスクたるレジストパターン2を5μm
間隔で形成しく第1図(C))、Arイオンビームエツ
チング芸装を用いて1000人のエツチングを行なった
(第1図(d))。 このときのArイオンビームの加速電圧は0.6kVで
エツチング時間は6分間とした。 次いで、アセトンで前記レジストパターン2を除去し、
公知の熱フイラメントCVD法により前記核発生基点に
ダイヤモンド単結晶粒子3の形成を行なった(第1図(
e))。なお、その際のガス流量は、水素200mJ2
/min、メタン2mIL/minとし、熱源としての
タングステン製フィラメントの温度は2000℃、基板
1の温度は800℃、圧力は100Torr、成膜時間
は6時間であった。 以上のダイヤモンド形成により、レジストパターン2が
形成されていた部分から選択的にダイヤモンド単結晶粒
子または双晶粒子が析出し、これらが成長・合体してダ
イヤモンド膜が得られた(第1図(f))。 東2図(a)、(b)、(C)に示すように、前記核発
生基点1aは、適宜間隔を置いてマトリクス状に形成さ
れ、該多核発生基点1a上にはダイヤモンド単結晶粒子
3が析出し、該各単結晶粒子3の成長により、粒径が略
均−で粒界が前記基点の間に存するようなダイヤモンド
膜が形成された。 なお、ACカロリメトリー法を用い該ダイヤモンド膜の
熱伝導率測定を行なったところ、測定値1500W/m
−Kを得た。 (1i、流側2) 前記レジストパターン2を10μm間隔で形成し、前記
成膜時間を10時間とする以外は上記実施例1と同様の
条件でダイヤモンド膜を形成し、得られた膜の熱伝導率
を測定したところ、測定値1720W/m−Kを得た。 (比較例1) 超音波振動により微小な凹凸を形成したシリコン基板を
そのまま用いる以外は上記実施例1と同様の条件でダイ
ヤモンド膜を形成したところ、粒径1μm以下の粒子が
集まった多結晶膜が得られた。この場合における膜の熱
伝導率の測定値は、700W/m−にであった。
EXAMPLES Next, the present invention will be described more specifically and in detail with reference to the drawings.゛ (Example 1) Diamond forming substrate 1 as shown in iS1 figure (a)
As a silicon single crystal substrate, that is, the plane orientation is (10
0) with a diameter of 25 mm and a thickness of 0.5 mm. First, a Si substrate is inserted into alcohol in which diamond abrasive grains having an average particle size of 20 μm are dispersed, and ultrasonic vibration is applied using an ultrasonic cleaner to remove the substrate 1.
Fine irregularities are formed on the surface of the substrate to serve as nucleation base points 4 (FIG. 1(b), FIG. 2(a)). Next, a resist pattern 2 serving as a mask with a diameter of 1 μm is formed on the substrate 1 using a photolithography method to form a resist pattern 2 with a thickness of 5 μm.
Etching of 1,000 people was performed using Ar ion beam etching equipment (Fig. 1(d)). At this time, the acceleration voltage of the Ar ion beam was 0.6 kV, and the etching time was 6 minutes. Next, remove the resist pattern 2 with acetone,
Diamond single-crystal particles 3 were formed at the nucleation base point by a known hot filament CVD method (see Fig. 1).
e)). In addition, the gas flow rate at that time was 200 mJ2 of hydrogen.
The temperature of the tungsten filament as a heat source was 2000° C., the temperature of the substrate 1 was 800° C., the pressure was 100 Torr, and the film forming time was 6 hours. Through the above diamond formation, diamond single crystal grains or twin crystal grains were selectively precipitated from the portion where resist pattern 2 had been formed, and these grew and coalesced to obtain a diamond film (Fig. 1 (f) )). As shown in Fig. 2 (a), (b), and (C), the nucleation base points 1a are formed in a matrix shape at appropriate intervals, and diamond single crystal particles 3 are formed on the multi-nucleation base points 1a. was precipitated, and due to the growth of each single crystal grain 3, a diamond film was formed in which the grain size was approximately uniform and the grain boundaries existed between the base points. In addition, when the thermal conductivity of the diamond film was measured using the AC calorimetry method, the measured value was 1500 W/m.
-I got K. (1i, Stream side 2) A diamond film was formed under the same conditions as in Example 1 above, except that the resist pattern 2 was formed at intervals of 10 μm and the film formation time was 10 hours. When the conductivity was measured, a measured value of 1720 W/mK was obtained. (Comparative Example 1) A diamond film was formed under the same conditions as in Example 1 above, except that a silicon substrate with minute irregularities formed by ultrasonic vibration was used as it was, and a polycrystalline film containing particles with a grain size of 1 μm or less was formed. was gotten. The measured thermal conductivity of the membrane in this case was 700 W/m-.

【発明の効果】【Effect of the invention】

以上のように本発明によれば、基体上に、核発生基点と
しての多数の領域を互いに適宜間隔を置いて規則的に形
成し、該領域上にダイヤモンド単結晶粒子を析出させ、
さらに、該析出された各単結晶粒子を夫々成長させて膜
状に形成することを特徴とするので、従来の技術では無
秩序に形成されていた粒界の位置や量を所望に応じて制
御することができ、高熱伝導率を有するダイヤモンド膜
を得ることが可能となった。 このようにして得られた高熱伝導性ダイヤモンド膜は、
半導体レーザー、マイクロ波発振素子、超LSI素子等
の半導体素子のヒートシンクとして極めて有用である。
As described above, according to the present invention, a large number of regions as nucleation points are regularly formed on a substrate at appropriate intervals, and diamond single crystal particles are precipitated on the regions,
Furthermore, since each of the precipitated single crystal grains is grown individually to form a film, the position and amount of grain boundaries, which were formed randomly in conventional techniques, can be controlled as desired. This made it possible to obtain a diamond film with high thermal conductivity. The highly thermally conductive diamond film obtained in this way is
It is extremely useful as a heat sink for semiconductor devices such as semiconductor lasers, microwave oscillation devices, and VLSI devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のヒートシンク用ダイヤモンド製造工程
の模式図、第2図は本発明のダイヤモンド結晶成長の模
式図、第3図は従来のダイヤモンド結晶成長の模式図で
ある。 (符号の説明) 1・・・基体、1a・・・核発生基点、2・・・レジス
トパターン、3・・・ダイヤモンド単結晶粒子。 第1図 第2図 0 0 (m” o   O。 第3y!J 、。°。  −40 (a)’、”
FIG. 1 is a schematic diagram of the diamond manufacturing process for heat sinks of the present invention, FIG. 2 is a schematic diagram of diamond crystal growth of the present invention, and FIG. 3 is a schematic diagram of conventional diamond crystal growth. (Explanation of symbols) 1... Substrate, 1a... Nucleation base point, 2... Resist pattern, 3... Diamond single crystal particle. Fig. 1 Fig. 2 0 0 (m” o O. 3rd y!J,.°. -40 (a)',”

Claims (1)

【特許請求の範囲】[Claims]  基体上に、核発生基点としての多数の領域を互いに適
宜間隔を置いて規則的に形成し、該領域上にダイヤモン
ド単結晶粒子を析出させ、さらに、該析出された各単結
晶粒子を夫々成長させて膜状に形成することを特徴とす
る高熱伝導性ダイヤモンド膜の製造方法。
A large number of regions as nucleation points are formed regularly on the substrate at appropriate intervals, diamond single crystal particles are precipitated on the regions, and each of the precipitated single crystal particles is grown individually. A method for producing a highly thermally conductive diamond film, which is characterized in that it is formed into a film shape.
JP29817090A 1990-11-02 1990-11-02 Production of high thermal conductivity diamond film Pending JPH04170392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29817090A JPH04170392A (en) 1990-11-02 1990-11-02 Production of high thermal conductivity diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29817090A JPH04170392A (en) 1990-11-02 1990-11-02 Production of high thermal conductivity diamond film

Publications (1)

Publication Number Publication Date
JPH04170392A true JPH04170392A (en) 1992-06-18

Family

ID=17856110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29817090A Pending JPH04170392A (en) 1990-11-02 1990-11-02 Production of high thermal conductivity diamond film

Country Status (1)

Country Link
JP (1) JPH04170392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460080B1 (en) * 2001-12-11 2004-12-08 (주)한백 Method and apparatus of manufacturing polycrystalline silicon thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460080B1 (en) * 2001-12-11 2004-12-08 (주)한백 Method and apparatus of manufacturing polycrystalline silicon thin film

Similar Documents

Publication Publication Date Title
JP2955231B2 (en) Method for producing seed plate for crystal growth and method for producing single crystal using the same
US5632812A (en) Diamond electronic device and process for producing the same
CA2097472C (en) Method for the manufacture of large single crystals
JP4032482B2 (en) Method for producing single crystal diamond
US5483084A (en) Diamond covered member and process for producing the same
JP3121102B2 (en) Flat diamond crystal and method for forming the same
JP3728464B2 (en) Method for manufacturing substrate for vapor phase synthesis of single crystal diamond film
JPH06107494A (en) Vapor growth method for diamond
JP3549228B2 (en) Highly oriented diamond heat dissipation substrate
JPH04170392A (en) Production of high thermal conductivity diamond film
JP2683060B2 (en) Diamond film and its manufacturing method
JPH06151661A (en) Diamond heatsink and its manufacture and semiconductor device
JP3176086B2 (en) Diamond crystal and substrate for diamond formation
JPH0769792A (en) Method for epitaxial growth of diamond crystal and method for selective epitacial growth
JP2780497B2 (en) Method for forming diamond film on Si substrate by CVD method
JP4646484B2 (en) Diamond manufacturing method
JPH06172089A (en) Synthesis of diamond
JPH05102048A (en) Diamond substrate and its manufacture
JPH06267845A (en) Semiconductor device and its manufacture
JP2798907B2 (en) Method of making diamond coating
JPH0769793A (en) Method for selective growth of diamond crystal and method for selective epitaxial growth
JPH06262522A (en) Grinding wheel and its manufacture
JPH05102047A (en) Diamond substrate and its manufacture
Ravi Alternating Chemistry Synthesis of Diamond
JPH0920592A (en) Production of polycrystalline diamond plate