JPH04170374A - Method for joining aln ceramics to copper plate - Google Patents

Method for joining aln ceramics to copper plate

Info

Publication number
JPH04170374A
JPH04170374A JP29553590A JP29553590A JPH04170374A JP H04170374 A JPH04170374 A JP H04170374A JP 29553590 A JP29553590 A JP 29553590A JP 29553590 A JP29553590 A JP 29553590A JP H04170374 A JPH04170374 A JP H04170374A
Authority
JP
Japan
Prior art keywords
copper plate
joining
temp
copper
aln ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29553590A
Other languages
Japanese (ja)
Inventor
Yumiko Kouno
有美子 河野
Kenichi Otsuka
大塚 研一
Masato Kumagai
正人 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29553590A priority Critical patent/JPH04170374A/en
Publication of JPH04170374A publication Critical patent/JPH04170374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To enable joining excellent in heat resistant impact properties by cooling the joined body of a copper plate and an AlN ceramics sintered body at two steps in the specified conditions after joining when the silver-copper eutectic solder material contg. active metal is used and the AlN ceramics sintered body is joined to the copper plate. CONSTITUTION:The silver-copper eutectic solder material contg. active metal (e.g. titanium) is used and an AlN ceramics sintered body is joined to a copper plate. After joining, this joined body is quenched at >=5 deg.C/minute temp. lowering velocity to the temp. range within 500-700 deg.C. Then it is slowly cooled at <=5 deg.C/ minute temp. lowering velocity to <=200 deg.C. Thereby since it is quenched to 500-700 deg.C from the burning temp., the component of solder material is inhibited from being diffused to the copper plate. This copper plate is prevented from being hardened. Further when the joined body is slowly cooled from this temp., primary crystal formed at a time of quenching is integrated. The thermal stress between the copper plate and AlN ceramics is relaxed by deformation of the solder material layer at this time and residual stress is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子装置の基板における銅板とAj2Nセラ
ミックスとの接合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of bonding a copper plate and Aj2N ceramics in a substrate of an electronic device.

〔従来の技術] 銅板とA42Nセラミツクスとを接合した場合、熱膨張
差(銅17 X 10−4/”C1A42N4〜5×1
0−4/”C)に起因する残留応力が発生し、接合後冷
却時に、あるいは周囲の低温高温にさらされ熱衝撃が加
わった時に、AεNにクラックが発生しやすい欠点があ
った。
[Prior art] When a copper plate and A42N ceramics are bonded, the difference in thermal expansion (copper 17 x 10-4/"C1A42N4~5x1
0-4/''C) is generated, and AεN has the disadvantage that cracks are likely to occur during cooling after bonding or when thermal shock is applied due to exposure to low and high temperatures in the surroundings.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はこのような欠点を改善するために提案されたも
ので、活性金属を含むろう材を用いて銅板とAlNセラ
ミックスとを高温で接合し冷却する際に熱膨張の差によ
って生ずる残留熱応力を緩和することにより、耐熱衝撃
特性を向上させようとするものである。
The present invention was proposed in order to improve these drawbacks, and the present invention addresses residual thermal stress caused by the difference in thermal expansion when a copper plate and AlN ceramics are bonded at high temperature using a brazing filler metal containing an active metal and cooled. The aim is to improve thermal shock resistance by relaxing the .

[課題を解決するための手段] 本発明は上記課題を解決するために銅板とAffNセラ
ミックス焼結体との接合後の冷却工程を制御するもので
あって、活性金属を含む銀銅共晶ろう材を用いて銅板と
AβNセラミックス焼結体とを接合するに当り、 (a)接合後500℃以上700℃以下の温度域まで5
℃/分以上の降温速度で急冷する。
[Means for Solving the Problems] In order to solve the above problems, the present invention controls the cooling process after joining a copper plate and an AffN ceramic sintered body, and uses a silver-copper eutectic solder containing an active metal. (a) When bonding a copper plate and an AβN ceramic sintered body using a
Rapid cooling at a cooling rate of ℃/min or higher.

(b)次いで200℃以下まで、5℃/分以下の降温速
度で徐冷する。
(b) Next, it is gradually cooled down to 200°C or less at a temperature decreasing rate of 5°C/min or less.

という2工程から構成することを特徴とする銅板AβN
セラミックスとの接合方法を提供するものである。
Copper plate AβN is characterized by consisting of two steps:
This provides a method for joining ceramics.

[作用] 活性金属を含む銀銅共晶ろう材を用いて銅板とAβNセ
ラミックス焼結体とを接合する場合に、焼成温度から5
00℃〜700℃まで急冷すると、ろう材成分が銅板へ
拡散するのを抑制することができ、銅板が硬化するのを
防止することができる。
[Function] When bonding a copper plate and an AβN ceramic sintered body using a silver-copper eutectic brazing filler metal containing an active metal,
When rapidly cooled to 00° C. to 700° C., diffusion of the brazing material component into the copper plate can be suppressed, and the copper plate can be prevented from hardening.

次いでこの温度から徐冷すると急冷時に生じた初晶が合
体する。その時のろう材層の変形により銅板とAJ2N
セラミックスとの間の熱応力が緩和される。
Then, when the material is slowly cooled from this temperature, the primary crystals formed during the rapid cooling coalesce. Due to the deformation of the brazing metal layer at that time, the copper plate and AJ2N
Thermal stress with ceramics is relaxed.

焼成温度から500℃以下まで、急冷すると残留応力が
かえって増加し、冷却中に割れを生ずる。また700℃
より高温で急冷をやめると、ろう相成分鋼板への拡散が
進み、銅板が硬化して耐熱衝撃性が低下する。したがっ
て急冷は500℃〜700℃までとする。
If the material is rapidly cooled from the firing temperature to 500.degree. C. or lower, the residual stress will increase and cracks will occur during cooling. Also 700℃
If quenching is stopped at a higher temperature, the wax phase components will diffuse into the steel sheet, harden the copper sheet, and reduce thermal shock resistance. Therefore, quenching is carried out at a temperature of 500°C to 700°C.

冷却速度は5℃/分以上、好ましくは15℃/分以上と
する。5℃/分未満では、ろう材成分の鋼中への拡散を
有効に防止することができない。
The cooling rate is 5°C/min or more, preferably 15°C/min or more. If it is less than 5° C./min, diffusion of the brazing filler metal components into the steel cannot be effectively prevented.

次に、徐冷について説明する。急冷によって生じたろう
材層中の初品は徐冷によって合体し結晶粒子が大きくな
り、その変形が、応力緩和に寄与する。また、各温度に
おいて銅が塑性域にある間に応力緩和するだけの時間的
余裕ができる。
Next, slow cooling will be explained. The initial pieces in the brazing material layer produced by rapid cooling coalesce and become larger crystal grains, and their deformation contributes to stress relaxation. Additionally, there is enough time for stress relaxation while copper is in the plastic region at each temperature.

この初晶の合体および銅の塑性変形はそれぞれ200℃
以上で起るので200℃までの温度領域を徐冷する。
This coalescence of primary crystals and plastic deformation of copper are each 200℃
Since this occurs at temperatures above 200°C, the temperature range up to 200°C is slowly cooled.

徐冷の冷却速度は5℃/分以下、好ましくは2℃/分以
下とする。5℃/分を越える冷却速度では初品の合体が
十分に起らないので、5℃/分以下に限定する。
The cooling rate of slow cooling is 5° C./min or less, preferably 2° C./min or less. If the cooling rate exceeds 5°C/min, sufficient coalescence of the initial product will not occur, so the cooling rate is limited to 5°C/min or less.

〔実施例〕〔Example〕

ろう材として72Ag−27Cu−ITiの銀銅ろうを
用い、厚さ50LLmのろう材層を、厚さ0.635m
mのAlN基材上に形成し、厚さ0.3mmの銅板を載
せ、真空中において、s o o’cx5分間焼成した
Using 72Ag-27Cu-ITi silver-copper solder as the brazing material, a 50LLm thick brazing material layer was formed into a 0.635m thick brazing material.
A copper plate with a thickness of 0.3 mm was placed thereon, and the film was fired for 5 minutes in a vacuum for 5 minutes.

この基板を650℃までそれぞれ冷却速度(PI > 
2o℃/分、6.5℃/分、1℃/分の速度で冷却し、
次いで200℃までそれぞれ冷却速度(P2)10℃/
分、2℃/分、0.5℃/分の速度で冷却し、それぞれ
10サイクルの熱衝撃を与えて、割れ、ひびの発生状態
を観察した。その結果を第1表に示した。
The cooling rate (PI >
Cooling at a rate of 2°C/min, 6.5°C/min, 1°C/min,
Then, the cooling rate (P2) was 10°C/200°C.
The samples were cooled at a rate of 2° C./min, 2° C./min, and 0.5° C./min, and thermal shock was applied for 10 cycles each, and the state of cracking and cracking was observed. The results are shown in Table 1.

650℃までを急冷し、次いで200’Cまでを徐冷し
たサンプルは優れた耐熱衝撃性を示した。
Samples that were rapidly cooled to 650°C and then slowly cooled to 200'C exhibited excellent thermal shock resistance.

第1図に、上記試験片を800℃から650℃まで20
℃/分、1℃/分で冷却し次いで200℃まで10℃/
分、0.5℃/分の速度で冷却したサンプルのろう材層
の断面の400倍の顕微鏡による金属組織の写真を示し
た。第2表はその条件を示したものである。第2図(a
)〜(d)は、それずれ第1図(a)〜(d)の説明図
である。
Figure 1 shows the above test piece being heated from 800°C to 650°C for 20 minutes.
°C/min, cooled at 1 °C/min then 10 °C/min to 200 °C
A microscopic photograph of the metallographic structure of the cross section of the brazing material layer of the sample cooled at a rate of 0.5° C./min and 400 times is shown. Table 2 shows the conditions. Figure 2 (a
) to (d) are explanatory diagrams of FIGS. 1(a) to (d), respectively.

第1図(d)では初晶の合体成長が明瞭である。In FIG. 1(d), the coalescent growth of primary crystals is clear.

[発明の効果] 本発明によれば、ろう相成分が銅板に拡散せず、銅板が
硬化しない。またろう材層の初晶が合体して銅板とAJ
2N間の熱応力が緩和され、残留応力が少なくなるので
耐熱衝撃性に優れた接合を行うことができる。
[Effects of the Invention] According to the present invention, the wax phase component does not diffuse into the copper plate, and the copper plate does not harden. In addition, the primary crystals of the brazing metal layer combine with the copper plate and AJ.
Since thermal stress between 2N and residual stress is reduced, it is possible to perform bonding with excellent thermal shock resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)はろう材層の金属結晶組織を示す
倍率400倍の顕微鏡写真、第2図(a)〜(d)はそ
れぞれ第1図(a)〜(d)に対応する説明図である。
Figures 1 (a) to (d) are micrographs with a magnification of 400 times showing the metal crystal structure of the brazing material layer, and Figures 2 (a) to (d) are micrographs shown in Figures 1 (a) to (d), respectively. It is a corresponding explanatory diagram.

Claims (1)

【特許請求の範囲】 1 活性金属を含む銀銅共晶ろう材を用いて銅板とAl
Nセラミックス焼結体とを接合するに当り、 接合後500℃以上700℃以下の温度域まで5℃/分
以上の降温速度で急冷した後、200℃以下まで、5℃
/分以下の降温速度で徐冷することを特徴とする銅板と
AlNセラミックスとの接合方法。
[Claims] 1. Copper plate and Al using silver-copper eutectic brazing filler metal containing active metal.
When joining the N ceramic sintered body, after joining, it is rapidly cooled at a cooling rate of 5°C/min or more to a temperature range of 500°C or higher and 700°C or lower, and then 5°C to 200°C or lower.
A method for joining a copper plate and AlN ceramics, characterized by slow cooling at a temperature decreasing rate of /min or less.
JP29553590A 1990-11-02 1990-11-02 Method for joining aln ceramics to copper plate Pending JPH04170374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29553590A JPH04170374A (en) 1990-11-02 1990-11-02 Method for joining aln ceramics to copper plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29553590A JPH04170374A (en) 1990-11-02 1990-11-02 Method for joining aln ceramics to copper plate

Publications (1)

Publication Number Publication Date
JPH04170374A true JPH04170374A (en) 1992-06-18

Family

ID=17821893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29553590A Pending JPH04170374A (en) 1990-11-02 1990-11-02 Method for joining aln ceramics to copper plate

Country Status (1)

Country Link
JP (1) JPH04170374A (en)

Similar Documents

Publication Publication Date Title
US6354484B1 (en) Process for producing a metal-ceramic composite substrate
US20050121499A1 (en) Methods and device for controlling pressure in reactive multilayer joining and resulting product
KR910020190A (en) Improved High Temperature Solder Alloy
JPS5813487A (en) Diffusion bonding method
JPH0144773B2 (en)
US4362471A (en) Article, such as a turbine rotor and blade which comprises a first zone of a nonoxide ceramic material and a second zone of a softer material
JPH04170374A (en) Method for joining aln ceramics to copper plate
JPH0570708B2 (en)
JPH02199073A (en) Joined product of ceramic and metallic materials and joining method thereof
KR100526690B1 (en) Method for Manufacturing Parts Consisted of Two Types of Ni-Based Superalloys
JPH0451583A (en) Metal-sheet bonded ceramic board
Kirihara et al. Fabrication of Ti/Ti5Si3 functionally graded material by eutectic bonding method
JPH0270040A (en) High-strength low thermal expansion alloy
JPH03249168A (en) Surface modifying method for ti alloy
RU2129061C1 (en) Method for soldering refractory dispersion-hardened nickel-chrome base alloys
ATE89538T1 (en) METHOD OF JOINING OXIDE CERAMIC AND METAL AND TOOL MANUFACTURED THEREFORE.
JPH0142914B2 (en)
JPH04317475A (en) Method of brazing member made of materials of different coefficients of thermal expansion
JP3194814B2 (en) Diffusion bonding method of precipitation hardening alloy
JPH02250951A (en) Method for hardening titanium material
JPS6240981A (en) Joining method for cast iron
KR0179194B1 (en) High-temperature brazing alloys for ceramic metal joints
KR950017008A (en) Metal Hardide Composites for Surface Hardening and Surface Hardening Method Using The Same
RU2105080C1 (en) Method for heat treatment of high-temperature age-hardenable alloys based on nickel-chromium before soldering
JP2878908B2 (en) Adjustment method of residual stress of functionally graded material block